
STATS 200: Solutions to Homework 1

1. (a) Recall that a Binomial(n, p) random variable has mean np and variance np(1−p).
A total of pN people support Hillary, each voting independently with probability
1
2
, so VHillary ∼ Binomial(pN, 1

2
). Then

E[VHillary] = 1
2
pN, Var[VHillary] = 1

4
pN,

and the standard deviation of VHillary is
√

1
4
pN . Similarly, as (1 − p)N people

support Donald, VDonald ∼ Binomial((1− p)N, 1
2
), so

E[VDonald] = 1
2
(1− p)N, Var[VDonald] = 1

4
(1− p)N,

and the standard deviation of VDonald is
√

1
4
(1− p)N . The fraction of voters who

vote for Hillary is

VHillary

VHillary + VDonald

=
VHillary/N

VHillary/N + VDonald/N
.

As E[VHillary/N ] = 1
2
p (a constant) and Var[VHillary/N ] = 1

4
p/N → 0 as N → ∞,

VHillary/N should be close to 1
2
p with high probability when N is large. Similarly,

as E[VDonald/N ] = 1
2
(1 − p) and Var[VDonald/N ] = 1

4
(1 − p)/N → 0 as N → ∞,

VDonald/N should be close to 1
2
(1−p) with high probability when N is large. Then

the fraction of voters for Hillary should, with high probability, be close to

1
2
p

1
2
p+ 1

2
(1− p)

= p.

(The above statements “close to with high probability” may be formalized us-
ing Chebyshev’s inequality, which states that a random variable is, with high
probability, not too many standard deviations away from its mean.)

(b) Let VH,p and VH,a be the number of passive and active voters who vote for Hillary,
and similarly define VD,p and VD,a for Donald. There are qHpN passive Hillary
supporters, each of whom vote independently with probability 1

4
, so

VH,p ∼ Binomial(qHpN,
1
4
).
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Similarly,

VH,a ∼ Binomial((1− qH)pN, 3
4
),

VD,p ∼ Binomial(qD(1− p)N, 1
4
),

VD,a ∼ Binomial((1− qD)(1− p)N, 3
4
),

and these four random variables are independent. Since VHillary = VH,p + VH,a,

E[VHillary] = E[VH,p] + E[VH,a] = 1
4
qHpN + 3

4
(1− qH)pN,

Var[VHillary] = Var[VH,p] + Var[VH,a] = 3
16
qHpN + 3

16
(1− qH)pN = 3

16
pN,

and the standard deviation of VHillary is
√

3
16
pN . Similarly,

E[VDonald] = E[VD,p] + E[VD,a] = 1
4
qD(1− p)N + 3

4
(1− qD)(1− p)N,

Var[VDonald] = Var[VD,p] + Var[VD,a] = 3
16
qD(1− p)N + 3

16
(1− qD)(1− p)N

= 3
16

(1− p)N,

and the standard deviation of VDonald is
√

3
16

(1− p)N .

The quantity p̂ estimates p, but in this case p may not be the fraction of voters
who vote for Hillary: By the same argument as in part (a), the fraction of voters
who vote for Hillary is given by

VHillary

VHillary + VDonald

=
VHillary/N

VHillary/N + VDonald/N

≈
1
4
qHp+ 3

4
(1− qH)p

1
4
qHp+ 3

4
(1− qH)p+ 1

4
qD(1− p) + 3

4
(1− qD)(1− p)

,

where the approximation is accurate with high probability when N is large. When
qH 6= qD, this is different from p: For example, if qH = 0 and qD = 1, this is equal
to p

p+(1−p)/3
which is greater than p, reflecting the fact that Hillary supporters are

more likely to vote than are Donald supporters.

(c) Let p̂ be the proportion of the 1000 surveyed people who support Hillary. Among
the surveyed people supporting Hillary, let q̂H be the proportion who are passive.
Similarly, among the surveyed people supporting Donald, let q̂D be the proportion
who are passive. (Note that these are observed quantities, computed from our
sample of 1000 people.) Then we may estimate the number of voters for Hillary
and Donald by

V̂Hillary = 1
4
q̂H p̂N + 3

4
(1− q̂H)p̂N

V̂Donald = 1
4
q̂D(1− p̂)N + 3

4
(1− q̂D)(1− p̂)N.
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q̂H p̂ is simply the proportion of the 1000 surveyed people who both support Hillary
and are passive. Hence, letting X1, . . . , X1000 indicate whether each surveyed
person both supports Hillary and is passive, we have

q̂H p̂ = 1
n
(X1 + . . .+Xn).

Each Xi ∼ Bernoulli(qHp), so linearity of expectation implies E[q̂H p̂] = qHp.
Similarly, (1 − q̂H)p̂, q̂D(1 − p̂), and (1 − q̂D)(1 − p̂) are the proportions of the
1000 surveyed people who support Hillary and are active, support Donald and
are passive, and support Donald and are active, so the same argument shows
E[(1 − q̂H)p̂] = (1 − qH)p, E[q̂D(1 − p̂)] = qD(1 − p), and E[(1 − q̂D)(1 − p̂)] =
(1− qD)(1− p). Then applying linearity of expectation again yields

E[V̂Hillary] = E[VHillary], E[V̂Donald] = E[VDonald].

2. X has the same distribution as−X, so E[X] = E[−X] = −E[X], hence E[X] = 0. Sim-
ilarly E[Y ] = 0. Also (X, Y ) has the same joint distribution as (−X, Y ), so E[XY ] =
E[−XY ] = −E[XY ], hence E[XY ] = 0. Then Cov[X, Y ] = E[XY ] − E[X]E[Y ] = 0.
On the other hand, conditional on X = x, Y is uniformly distributed on the interval
[−
√

1− x2,
√

1− x2]. As this depends on x, X and Y are not independent.

3. X is the sum of n independent Bernoulli random variables X1, . . . , Xn, each with
moment generating function

MXi
(t) = E exp(tXi) = pet + (1− p).

Combining these and applying independence yields

MX(t) = E exp(tX) = E exp(t(X1 + . . .+Xn)) =
n∏

i=1

E exp(tXi) = (1− p+ pet)n.

4. (a) Any linear combination of Y1, . . . , Ym is a linear combination of X1, . . . , Xk, so
(Y1, . . . , Ym) is multivariate normal. Using linearity of expectation and bilinearity
of covariance, we compute

E[Yi] = ai1 E[X1] + . . .+ aik E[Xk] = 0,

Cov[Yi, Yj] = Cov[ai1X1 + . . .+ aikXk, aj1X1 + . . .+ ajkXk]

=
k∑

r=1

k∑
s=1

airajs Cov[Xr, Xs] =
k∑

r=1

k∑
s=1

airajsΣrs = aiΣa
T
j ,

where ai and aj denote rows i and j of the matrix A. (The computation of
covariance is valid for both i 6= j and i = j; in the latter case this yields Var[Yi] =
Cov[Yi, Yi].) As aiΣa

T
j = (AΣAT )ij, this implies by definition Y ∼ N (0, AΣAT ).
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(b) Take X1, . . . , Xk
iid∼ N (0, 1), define Zj = aj1X1 + . . .+ajkXk for each j = 1, . . . , k,

and let Yj = Zj + µj. As (X1, . . . , Xk) have the multivariate normal distribution
N (0, I) where I is the k × k identity matrix, and as AIAT = AAT = Σ, part
(a) implies (Z1, . . . , Zk) ∼ N (0,Σ). Then (Y1, . . . , Yk) ∼ N (µ,Σ) (since adding
the vector µ = (µ1, . . . , µk) does not change the variances and covariances of
Y1, . . . , Yk but shifts their means by µ1, . . . , µk).

5. We have

P[X + Y > 0 | X > 0] =
P[X + Y > 0, X > 0]

P[X > 0]
.

Since X has the same distribution as −X, P[X > 0] = P[−X > 0] = P[X < 0],
so P[X > 0] = 1

2
. To compute P[X + Y > 0, X > 0], note that this is the integral

of the bivariate normal PDF fX,Y (x, y) in the region to the right of the y-axis and
above the line y = −x. The integral of fX,Y (x, y) over all of R2 must equal 1; hence
by rotational symmetry of fX,Y (x, y) around the origin, the integral over any wedge
formed by two rays extending from the origin is θ/(2π) where θ is the angle formed by
these rays. For the above region, this angle is 3π/4, so P[X + Y > 0, X > 0] = 3/8.
Then P[X + Y > 0 | X > 0] = 3/4.

6. Code is as follows:

X.median = numeric(5000)

for(i in 1:5000) {

X = rnorm(99, mean = 0, sd = 1)

X.median[i] = median(X)

}

print(mean(X.median))

print(sd(X.median))

hist(X.median)

The mean and standard deviation of the sample medians are -0.001 and 0.126, respec-
tively. The histogram of the medians is shown in the following figure. The sampling
distribution of the sample median looks approximately normally distributed with this
mean and standard deviation.
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Histogram of X.median

X.median
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