
STATS 200: Solutions to Homework 2∗

1 Monte Carlo integration

(a) The expected value of f(X)
g(X) when X ∼ g is

E
[
f(X)

g(X)

]
=

∫ b

a

f(x)

g(x)
g(x)dx =

∫ b

a
f(x)dx = I(f).

Then

E
[
În(f)

]
= E

[
1

n

n∑
i=1

f(Xi)

g(Xi)

]
=

1

n

n∑
i=1

E
[
f(Xi)

g(Xi)

]
= I(f).

As f(Xi)/g(Xi) are IID, by the Law of Large Numbers,

În(f) =
1

n

n∑
i=1

f(Xi)

g(Xi)
→ E

[
f(X)

g(X)

]
= I(f)

in probability as n→∞.

(b) For X ∼ g, set

σ2 := Var

[
f(X)

g(X)

]
= E

[(
f(X)

g(X)

)2
]
−
(
E
[
f(X)

g(X)

])2

=

∫ b

a

f(x)2

g(x)
dx− (I(f))2 .

∗Edited from the solutions by Zhenpeng Zhou; thanks to Zhenpeng for sharing
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Then

Var
[
În(f)

]
= Var

[
1

n

n∑
i=1

f(Xi)

g(Xi)

]

=
1

n2

n∑
i=1

Var

[
f(Xi)

g(Xi)

]
=

1

n
Var

[
f(X)

g(X)

]
=

σ2

n

Let Yi = f(Xi)
g(Xi)

and Ȳ = 1
n

∑n
i=1 Yi. Then by the Central Limit Theorem,

√
n

(
Ȳ − E[Yi]

σ

)
→ N (0, 1)

in distribution as n→∞. Note Ȳ = În(f) and E[Y ] = I(f), so
√
n

σ

(
În(f)− I(f)

)
→ N (0, 1).

Therefore cn =
√
n
σ .

(c) For f(x) = cos(2πx) and g(x) = 1, we have

E
[
f(X)

g(X)

]
=

∫ 1

0
f(x)dx = 0

and

σ2 = Var

[
f(X)

g(X)

]
=

∫ 1

0
cos2(2πx)dx−

(∫ 1

0
cos(2πx)dx

)2

=
1

2
− 0 =

1

2

By part (b), În(f)−I(f) is approximately distributed asN (0, σ
2

n ) = N (0, 1
2000)

for large n, so

P[|În(f)− I(f)| > 0.05] ≈ 2× Φ

(
−0.05/

1√
2000

)
≈ 0.02535
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where Φ(x) is the standard normal CDF.

(d) There are many possible answers; the intuition is that to reduce Var[f(X)/g(X)],
we would like g(x) to be larger when f(x)2 is larger. One possibility is

g(x) =
π

2
| cos(2πx)|.

One may verify that ∫ 1

0
| cos(2πx)| dx =

2

π
,

so
∫ 1
0 g(x)dx = 1 and

Var[f(X)/g(X)] =

∫ 1

0

cos2(2πx)
π
2 | cos(2πx)|

dx =
2

π
× 2

π
=

4

π2
≈ 0.41.

Then În(f) − I(f) is approximately distributed as N (0, σ
2

n ) = N (0, 0.00041),
and

P[|În(f)− I(f)| > 0.05] ≈ 2× Φ
(
−0.05/

√
0.00041

)
≈ 0.013.

2 Continuous mapping

We must show, for any ε > 0,

P[|g(Xn)− g(c)| > ε]→ 0

as n→∞.

For any ε > 0, as g : R→ R is continuous at c, there exists δ > 0 such that if
|x− c| ≤ δ then |g(x)− g(c)| ≤ ε. Hence if |g(x)− g(c)| > ε, then |x− c| > δ.
This implies

P[g(Xn)− g(c)| > ε] ≤ P[|Xn − c| > δ].

But since Xn → c in probability,

P[|Xn − c| > δ]→ 0

as n→∞. So P[g(Xn)− g(c)| > ε]→ 0 also as n→∞, as desired.
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3 Testing gender ratios

(a) There are many possible answers. We may take T1 to be the average number of
male children per family,

T1 = X̄,

and perform a two-sided test based on T1 to check whether roughly half of the
children are male. We may take T2 to be Pearson’s chi-squared statistic

T2 =
12∑
k=0

(Ok − Ek)2/Ek

where Ok is the number of families with k male children and Ek is the expected
number under the hypothesized binomial distribution, i.e.Ek = 6115×

(
12
k

)
(0.5)12,

and perform a one-sided test that rejects for large T2 to check whether the shape of
the observed distribution ofX1, . . . , X6115 matches the shape of the binomial PDF.

(b) R code corresponding to the above T1 and T2 is as follows:

ks = seq(0,12)
counts = c(7,45,181,478,829,1112,1343,1033,670,286,104,24,3)
expected = 6115*choose(12,ks)*(0.5ˆ12)

T1_obs = sum(ks*counts)/6115
T2_obs = sum((counts-expected)ˆ2/expected)

T1s = numeric(1000)
T2s = numeric(1000)
for (i in 1:1000) {
X = rbinom(6115, 12, 0.5)
T1s[i] = mean(X)
counts = numeric(13)
for (k in 0:12) {

counts[k+1] = length(which(X==k))
}
T2s[i] = sum((counts-expected)ˆ2/expected)

}
hist(T1s)
hist(T2s)
T1_pvalue = length(which(T1s<T1_obs))/1000 * 2
T2_pvalue = length(which(T2s>T2_obs))/1000
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Histograms of the null distributions of T1 and T2 are below:
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The values of the test statistics for the observed data are T1 = 5.77 and
T2 = 249, which are both far outside the range of the simulated null distribu-
tions above. The simulated p-values for the two tests are both < 0.001, and there
is strong evidence that H0 is not correct.

(c) There may be both biological and sociological reasons why H0 is false.
Biologically, the human male-to-female sex ratio at birth is not exactly 1:1. The
probability p that a child is male might also vary from family to family. The sexes
of children within a family might be dependent; in particular, one source of depen-
dence is the presence of identical twins.
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Sociologically, there may be a relationship between family size and the sex
ratio of children in the family, because the current sex ratio influences parents’
decision of whether to have another child. Note that the given data is only for fam-
ilies with 12 children, which is quite large even for that time. There is a noticeable
bias towards families with more girls than boys, which may be explained if parents
tended to continue having children when their current children were predominantly
female.

4 Most-powerful test for the normal variance

(a) The joint PDF under H0 is

f0(x1, ..., xn) =

(
1√

2πσ20

)n
exp

(
−
∑n

i=1 x
2
i

2σ20

)
The joint PDF under H1 is

f1(x1, ..., xn) =

(
1√

2πσ21

)n
exp

(
−
∑n

i=1 x
2
i

2σ21

)
So the likelihood ratio statistic is

L(X1, ..., Xn) =
f0(X1, ..., Xn)

f1(X1, ..., Xn)
=

(
σ1
σ0

)n
exp

(
σ20 − σ21
2σ20σ

2
1

n∑
i=1

x2i

)

Since σ20 < σ21 , L is a decreasing function of T :=
∑n

i=1X
2
i . Then rejecting

for small values of L is the same as rejecting for large values of T .

Since under H0,
∑n

i=1

(
Xi
σ0

)2
∼ χ2

n, we have 1
σ2
0
T ∼ χ2

n, so T ∼ σ20χ2
n. Then

the rejection threshold should be c = σ20χ
2
n(α), and the most powerful test rejects

H0 when T > c.

(b) Under H1,
∑n

i=1

(
Xi
σ1

)2
∼ χ2

n, so T ∼ σ21χ2
n. Then the probability of type

II error is

β = PH1 [acceptH0] = PH1 [T ≤ σ20χ2
n(α)]

= PH1

[
T

σ21
≤ σ20
σ21
χ2
n(α)

]
= F

(
σ20
σ21
χ2
n(α)

)
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where F is the χ2
n CDF. The power of the test is then

Power = 1− β = 1− F

(
σ20
σ21
χ2
n(α)

)
As σ21 →∞, β → F (0) = 0 and the power of the test→ 1.

5 Testing a uniform null

The likelihood ratio statistic is

L(X) =
f0(X)

f1(X)
=

1

2X

The condition L(X) < c is then equivalent to X > c̃, where c̃ = 1
2c .

Under the hypothesis H0, X ∼ Uniform(0, 1), so the rejection threshold c̃
should be 1− 0.1 = 0.9, i.e. the most powerful tests rejects H0 when X > 0.9.

Under the hypothesis H1, X ∼ f1(x) = 2x. Then the type II error probability
is

β = PH1 [acceptH0] = PH1 [X ≤ 0.9] =

∫ 0.9

0
2x dx = 0.81.

Thus the power of the test is

Power = 1− β = 0.19

This is the maximum power that can be achieved: According to the Neyman-
Pearson lemma, for any other test of H0 with significance level at most 0.1, its
power against H1 is at most 0.19.
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