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Solutions to Homework 4
Solutions by Pragya Sur

4.1 Problem 1

4.1.1 Part a

Suppose the given values of |D1|, · · · , |Dn| are d1, · · · , dn. Then the only values T can take are its values
corresponding to the arguments (±d1, · · · ,±dn), and due to symmetry under the null each of them is equally
likely. That is, T is equal to T (a1, · · · , an) with probability 1/2n for (a1, · · · , an) being each of the 2n tuples
(±d1, · · · ,±dn).

4.1.2 Part b

Generate n IID Bernoulli(1/2) random variables and define variables Zi = 1 if the ith Bernoulli variable is
1 and Zi = −1 otherwise. (Then Z ′is are n IID signs.) Then compute T (Z1D1, · · · , ZnDn). Repeat this
procedure a large number of times, say B = 10000 times, to generate B values for the statistic T . This
approximates the conditional distribution of T given |D1|, . . . , |Dn| under H0. To perform a level α test of
H0 based on T , one can reject H0 if T (D1, . . . , Dn) exceeds the (αB)th largest simulated value.

4.1.3 Part c

If each Di = Xi − Yi, then assigning a random sign to the ith coordinate is equivalent to permuting Xi and
Yi, so the test in part b may be interpreted as a permutation test.

In the general paired sample case, to determine the rejection threshold of a test of H0 based on T ,
one can do the following. For each paired sample, generate a Bernoulli(1/2) variable. If it is 1, swap
Xi and Yi, otherwise do not swap. Call the new values X∗1 , · · · , X∗n, Y ∗1 , · · · , Y ∗n , and compute T =
T (X∗1 , · · · , X∗n, Y ∗1 , · · · , Y ∗n ). Repeat this procedure a large number of times, say B = 10000 times, and
compute the value of T each time. The rejection threshold may be taken as the (αB)th largest simulated
value, as in part (a).

4.2 Problem 2

4.2.1 Part a

Given that X ∼ N( h√
n
, 1), we have

P[X > 0] = P
[
X − h√

n
> − h√

n

]
= 1− Φ

(
− h√

n

)
= Φ

(
h√
n

)
.

A first order Taylor expansion for a differentiable function f suggests that

f(x+ h) ≈ f(x) + hf ′(x)
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Applying this to the above and noting Φ′(x) is the normal PDF φ(x) = 1√
2π
e−

x2

2 ,

Φ(
h√
n

) ≈ Φ(0) +
h√
n
φ(0) =

1

2
+

h√
2πn

4.2.2 Part b

The sign statistic S can be written as

S =
∑
i

Yi, where Yi ∼ Bernoulli(P[Xi > 0]).

By the CLT,
√
n(Sn − E[Yi]) is approximately distributed as N (0,Var[Yi]). Applying part (a), E[Yi] ≈

1
2 + h√

2πn
, so

√
n

(
S

n
− E[Yi]

)
≈
√
n

(
S

n
− 1

2
− h√

2πn

)
=

1√
n

(
S − n

2

)
− h√

2π
.

For large n,

Var[Yi] ≈
(

1

2
+

h√
2πn

)(
1−

(
1

2
+

h√
2πn

))
≈ 1

2
× 1

2
=

1

4
.

So 1√
n

(S − n
2 ) is approximately distributed as N ( h√

2π
, 14 ). Multiplying by 2,

√
4
n (S − n

2 ) is approximately

distributed as N ( 2h√
2π
, 1).

The power of the sign test against the alternative N( h√
n
, 1) is given by

P
[
S >

n

2
+

√
n

4
z(α)

]
= P

[√
4

n

(
S − n

2

)
− 2h√

2π
> z(α)− 2h√

2π

]
≈ 1−Φ

(
z(α)− 2h√

2π

)
= Φ

(
2h√
2π
− z(α)

)
.

4.2.3 Part c

Note that µ = h/
√
n and n = 100, which implies h = 1, 2, 3, 4 respectively. Plugging this in the power

formula, we get the powers of the sign test are 0.1985, 0.4804, 0.773 and 0.939 respectively. These are close
to the answers from Homework 3.

4.2.4 Part d

For µ = 0.2, h = 0.2
√
n, and we obtain the sample size by solving

Φ

(
0.4
√
n√

2π
− z(0.05)

)
= 0.9

This gives n = 336.2917, rounding up gives 337.

4.3 Problem 3

4.3.1 Part a

Each person in each group is selected independently from either the high risk group or the low risk group.
So the cholesterol level for each person in each group is a random variable independent of that for any other
person. Also, since for both the treatment and control groups, with probability 1/2 a high risk individual
is chosen and with probability 1/2 a low risk individual is chosen, they must have the same distribution.
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So, the variables X1, · · · , Xn, Y1, · · · , Yn are IID from a common distribution. To compute the mean and
variance, we may write Xi as

Xi = ZiHi + (1− Zi)Li (4.1)

where Hi ∼ N (µH , σ
2), Li ∼ N (µL, σ

2), Zi ∼ Bernoulli(1/2), and these are independent. Then

E[Xi] = E[Zi]E[Hi] + E[1− Zi]E[Li] (independence)

=
1

2
µH +

1

2
µL.

To compute the variance, we have

E[X2
i ] = E[Z2

iH
2
i + 2Zi(1− Zi)HiLi + (1− Zi)2L2

i ].

Note that since Zi ∈ {0, 1}, Zi(1− Zi) = 0, Z2
i = Zi, and (1− Zi)2 = (1− Zi). Then

E[X2
i ] = E[Zi]E[H2

i ] + E[1− Zi]E[L2
i ] =

1

2
E[H2

i ] +
1

2
E[L2

i ].

We have E[H2
i ] = Var[Hi] + (E[Hi])

2 = µ2
H + σ2, and similarly E[L2

i ] = µ2
L + σ2. So

E[X2
i ] =

1

2
(µ2
L + µ2

H) + σ2,

and

Var[Xi] = E[X2
i ]− (E[Xi])

2 =
1

2
(µ2
L + µ2

H) + σ2 − 1

4
(µ2
L − 2µLµH + µ2

H) = σ2 +
1

4
(µH − µL)2.

4.3.2 Part b

As the Xi’s and Yi’s are all IID, by the Central Limit Theorem,
√
n(X̄ − E[Xi]) → N (0,Var[Xi]) and√

n(Ȳ − E[Xi]) → N (0,Var[Xi]) in distribution, so their difference
√
n(X̄ − Ȳ ) → N (0, 2 Var[Xi]). The

pooled variance is

S2
p =

1

2n− 2

(
n∑
i=1

(Xi − X̄)2 +

n∑
i=1

(Yi − Ȳ )2

)
=

1

2
S2
X +

1

2
S2
Y ,

where S2
X = 1

n−1
∑
i(Xi − X̄)2 and S2

Y = 1
n−1

∑
i(Yi − Ȳ )2 are the individual sample variances. By the

result at the end of Lecture 10, S2
X → Var[Xi] and S2

Y → Var[Yi] = Var[Xi] in probability, so the Continuous
Mapping Theorem implies S2

p → Var[Xi]. Then

T =
X̄ − Ȳ

Sp

√
1
n + 1

n

=

√
Var[Xi]

Sp

√
n(X̄ − Ȳ )√
2 Var[Xi]

→ N (0, 1)

in distribution by Slutsky’s lemma. Hence, a test that rejects for T > z(α) is approximately level α for large
n.

4.3.3 Part c

The difference in this part from Part a is that here

Xi = ZiHi + (1− Zi)Li, (4.2)

where Hi, Li are defined as before but Zi ∼ Bernoulli(p). Then

E[Xi] = pµH + (1− p)µL.
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Similarly, E[Yi] = qµH + (1− q)µL.
For the variances, we compute as in part (a)

E[X2
i ] = E[Zi]E[H2

i ] + E[1− Zi]E[L2
i ] = p(µ2

H + σ2) + (1− p)(µ2
L + σ2) = pµ2

H + (1− p)µ2
L + σ2,

so

Var[Xi] = E[X2
i ]− (E[Xi])

2 = pµ2
H + (1− p)µ2

L + σ2 − (pµH + (1− p)µL)2 = σ2 + (µH − µL)2p(1− p).

Similarly, Var[Yi] = σ2 + (µH − µL)2q(1− q).

4.3.4 Part d

In this case S2
X → Var[Xi] and S2

Y → Var[Yi] in probability, so

S2
p →

1

2
(Var[Xi] + Var[Yi]) = σ2 +

1

2

(
p(1− p) + q(1− q)

)
(µH − µL)2 =: c.

By the CLT,
√
n(X̄ − E[Xi]) → N (0,Var[Xi]) and

√
n(Ȳ − E[Yi]) → N (0,Var[Yi]). The Xi’s and Yi’s are

independent, so the difference
√
n(X̄ − Ȳ − E[Xi] + E[Yi])→ N (0,Var[Xi] + Var[Yi]).

Then

T =
X̄ − Ȳ
Sp
√

2/n
=

1√
2S2

p

(
√
n(X̄ − Ȳ ))

is approximately distributed as

1√
2c
N
(√
n(E[Xi]− E[Yi]),Var[Xi] + Var[Yi]

)
= N

(√
n(E[Xi]− E[Yi])√

2c
, 1

)
.

Let

m :=

√
n(E[Xi]− E[Yi])√

2c
=

√
n(p− q)(µH − µL)√

2c
=

√
n(p− q)(µH − µL)√

2σ2 +
(
p(1− p) + q(1− q)

)
(µH − µL)2

,

so T is approximately N (m, 1). Then the rejection probability is

P[T > z(α)] = P[T −m > z(α)−m] ≈ 1− Φ(z(α)−m) = Φ(m− z(α)).

This probability is increasing in m, and only equals α when m = 0. If (p− q)(µH −µL) > 0, then m→∞ as
n→∞, and we expect to falsely reject H0 with probability close to 1 for large n. If (p− q)(µH − µL) < 0,
then m→ −∞ as n→∞, and we expect the significance level of the test to in fact be close to 0 for large n.

4.4 Problem 4

4.4.1 Part a

We know that P1, · · · , Pn ∼ U(0, 1) (IID). So for any t ∈ (0, 1),

P[
n

min
i=1

Pi ≤ t] = 1− P[
n

min
i=1

Pi > t]

= 1− P[Pi > t ∀ i = 1, · · · , n]

= 1−
n∏
i=1

P[Pi > t]

= 1− (1− t)n



4-5

4.4.2 Part b

If all the tests are performed at significance level 1− (1− α)1/n,

P(rejecting any of the n null hypotheses) = P(Pi < 1− (1− α)1/n for any i)

= P(
n

min
i=1

Pi < 1− (1− α)1/n)

= 1− (1− 1 + (1− α)1/n)n = α.

Hence, the probability of (falsely) rejecting any of the n null hypothesis is exactly α.
The Bonferroni procedure rejects when Pi ≤ α/n and the above procedure rejects when Pi ≤ 1−(1−α)1/n.

Note that (
1− α

n

)n
> 1− α,

so 1 − (1 − α)1/n > α/n. Hence whenever the Bonferroni test rejects, this procedure also rejects, so this
procedure is more powerful than the Bonferroni test.

4.4.3 Part c

Suppose there are k true null hypotheses and without loss of generality let us assume that these are the
first k. If all the tests are performed at significance level 1 − (1 − α)1/n, and V is the number of true null
hypotheses that are rejected, then the FWER is

P(V ≥ 1) = P(
k

min
i=1

Pi ≤ 1− (1− α)1/n)

= 1− P(
k

min
i=1

Pi > 1− (1− α)1/n)

= 1− P(Pi > 1− (1− α)1/n ∀ i = 1, · · · , k)

= 1− (1− 1 + (1− α)1/n)k

= 1− (1− α)k/n

Since k ≤ n and α < 1, (1− α)k/n > (1− α) and hence 1− (1− α)k/n < α, so the FWER is controlled.
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