

Solutions to Homework 4

Solutions by Pragya Sur

4.1 Problem 1

4.1.1 Part a

Suppose the given values of $|D_1|, \dots, |D_n|$ are d_1, \dots, d_n . Then the only values T can take are its values corresponding to the arguments $(\pm d_1, \dots, \pm d_n)$, and due to symmetry under the null each of them is equally likely. That is, T is equal to $T(a_1, \dots, a_n)$ with probability $1/2^n$ for (a_1, \dots, a_n) being each of the 2^n tuples $(\pm d_1, \dots, \pm d_n)$.

4.1.2 Part b

Generate n IID Bernoulli(1/2) random variables and define variables $Z_i = 1$ if the i th Bernoulli variable is 1 and $Z_i = -1$ otherwise. (Then Z'_i s are n IID signs.) Then compute $T(Z_1 D_1, \dots, Z_n D_n)$. Repeat this procedure a large number of times, say $B = 10000$ times, to generate B values for the statistic T . This approximates the conditional distribution of T given $|D_1|, \dots, |D_n|$ under H_0 . To perform a level α test of H_0 based on T , one can reject H_0 if $T(D_1, \dots, D_n)$ exceeds the $(\alpha B)^{\text{th}}$ largest simulated value.

4.1.3 Part c

If each $D_i = X_i - Y_i$, then assigning a random sign to the i th coordinate is equivalent to permuting X_i and Y_i , so the test in part b may be interpreted as a permutation test.

In the general paired sample case, to determine the rejection threshold of a test of H_0 based on T , one can do the following. For each paired sample, generate a Bernoulli(1/2) variable. If it is 1, swap X_i and Y_i , otherwise do not swap. Call the new values $X_1^*, \dots, X_n^*, Y_1^*, \dots, Y_n^*$, and compute $T = T(X_1^*, \dots, X_n^*, Y_1^*, \dots, Y_n^*)$. Repeat this procedure a large number of times, say $B = 10000$ times, and compute the value of T each time. The rejection threshold may be taken as the $(\alpha B)^{\text{th}}$ largest simulated value, as in part (a).

4.2 Problem 2

4.2.1 Part a

Given that $X \sim N(\frac{h}{\sqrt{n}}, 1)$, we have

$$\mathbb{P}[X > 0] = \mathbb{P}\left[X - \frac{h}{\sqrt{n}} > -\frac{h}{\sqrt{n}}\right] = 1 - \Phi\left(-\frac{h}{\sqrt{n}}\right) = \Phi\left(\frac{h}{\sqrt{n}}\right).$$

A first order Taylor expansion for a differentiable function f suggests that

$$f(x + h) \approx f(x) + hf'(x)$$

Applying this to the above and noting $\Phi'(x)$ is the normal PDF $\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$,

$$\Phi\left(\frac{h}{\sqrt{n}}\right) \approx \Phi(0) + \frac{h}{\sqrt{n}}\phi(0) = \frac{1}{2} + \frac{h}{\sqrt{2\pi n}}$$

4.2.2 Part b

The sign statistic S can be written as

$$S = \sum_i Y_i, \text{ where } Y_i \sim \text{Bernoulli}(\mathbb{P}[X_i > 0]).$$

By the CLT, $\sqrt{n}\left(\frac{S}{n} - \mathbb{E}[Y_i]\right)$ is approximately distributed as $\mathcal{N}(0, \text{Var}[Y_i])$. Applying part (a), $\mathbb{E}[Y_i] \approx \frac{1}{2} + \frac{h}{\sqrt{2\pi n}}$, so

$$\sqrt{n}\left(\frac{S}{n} - \mathbb{E}[Y_i]\right) \approx \sqrt{n}\left(\frac{S}{n} - \frac{1}{2} - \frac{h}{\sqrt{2\pi n}}\right) = \frac{1}{\sqrt{n}}\left(S - \frac{n}{2}\right) - \frac{h}{\sqrt{2\pi n}}.$$

For large n ,

$$\text{Var}[Y_i] \approx \left(\frac{1}{2} + \frac{h}{\sqrt{2\pi n}}\right)\left(1 - \left(\frac{1}{2} + \frac{h}{\sqrt{2\pi n}}\right)\right) \approx \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}.$$

So $\frac{1}{\sqrt{n}}(S - \frac{n}{2})$ is approximately distributed as $\mathcal{N}(\frac{h}{\sqrt{2\pi}}, \frac{1}{4})$. Multiplying by 2, $\sqrt{\frac{4}{n}}(S - \frac{n}{2})$ is approximately distributed as $\mathcal{N}(\frac{2h}{\sqrt{2\pi}}, 1)$.

The power of the sign test against the alternative $N(\frac{h}{\sqrt{n}}, 1)$ is given by

$$\mathbb{P}\left[S > \frac{n}{2} + \sqrt{\frac{4}{n}}z(\alpha)\right] = \mathbb{P}\left[\sqrt{\frac{4}{n}}\left(S - \frac{n}{2}\right) - \frac{2h}{\sqrt{2\pi}} > z(\alpha) - \frac{2h}{\sqrt{2\pi}}\right] \approx 1 - \Phi\left(z(\alpha) - \frac{2h}{\sqrt{2\pi}}\right) = \Phi\left(\frac{2h}{\sqrt{2\pi}} - z(\alpha)\right).$$

4.2.3 Part c

Note that $\mu = h/\sqrt{n}$ and $n = 100$, which implies $h = 1, 2, 3, 4$ respectively. Plugging this in the power formula, we get the powers of the sign test are 0.1985, 0.4804, 0.773 and 0.939 respectively. These are close to the answers from Homework 3.

4.2.4 Part d

For $\mu = 0.2$, $h = 0.2\sqrt{n}$, and we obtain the sample size by solving

$$\Phi\left(\frac{0.4\sqrt{n}}{\sqrt{2\pi}} - z(0.05)\right) = 0.9$$

This gives $n = 336.2917$, rounding up gives 337.

4.3 Problem 3

4.3.1 Part a

Each person in each group is selected independently from either the high risk group or the low risk group. So the cholesterol level for each person in each group is a random variable independent of that for any other person. Also, since for both the treatment and control groups, with probability 1/2 a high risk individual is chosen and with probability 1/2 a low risk individual is chosen, they must have the same distribution.

So, the variables $X_1, \dots, X_n, Y_1, \dots, Y_n$ are IID from a common distribution. To compute the mean and variance, we may write X_i as

$$X_i = Z_i H_i + (1 - Z_i) L_i \quad (4.1)$$

where $H_i \sim \mathcal{N}(\mu_H, \sigma^2)$, $L_i \sim \mathcal{N}(\mu_L, \sigma^2)$, $Z_i \sim \text{Bernoulli}(1/2)$, and these are independent. Then

$$\begin{aligned} \mathbb{E}[X_i] &= \mathbb{E}[Z_i] \mathbb{E}[H_i] + \mathbb{E}[1 - Z_i] \mathbb{E}[L_i] \quad (\text{independence}) \\ &= \frac{1}{2} \mu_H + \frac{1}{2} \mu_L. \end{aligned}$$

To compute the variance, we have

$$\mathbb{E}[X_i^2] = \mathbb{E}[Z_i^2 H_i^2 + 2Z_i(1 - Z_i)H_i L_i + (1 - Z_i)^2 L_i^2].$$

Note that since $Z_i \in \{0, 1\}$, $Z_i(1 - Z_i) = 0$, $Z_i^2 = Z_i$, and $(1 - Z_i)^2 = (1 - Z_i)$. Then

$$\mathbb{E}[X_i^2] = \mathbb{E}[Z_i] \mathbb{E}[H_i^2] + \mathbb{E}[1 - Z_i] \mathbb{E}[L_i^2] = \frac{1}{2} \mathbb{E}[H_i^2] + \frac{1}{2} \mathbb{E}[L_i^2].$$

We have $\mathbb{E}[H_i^2] = \text{Var}[H_i] + (\mathbb{E}[H_i])^2 = \mu_H^2 + \sigma^2$, and similarly $\mathbb{E}[L_i^2] = \mu_L^2 + \sigma^2$. So

$$\mathbb{E}[X_i^2] = \frac{1}{2}(\mu_L^2 + \mu_H^2) + \sigma^2,$$

and

$$\text{Var}[X_i] = \mathbb{E}[X_i^2] - (\mathbb{E}[X_i])^2 = \frac{1}{2}(\mu_L^2 + \mu_H^2) + \sigma^2 - \frac{1}{4}(\mu_L^2 - 2\mu_L\mu_H + \mu_H^2) = \sigma^2 + \frac{1}{4}(\mu_H - \mu_L)^2.$$

4.3.2 Part b

As the X_i 's and Y_i 's are all IID, by the Central Limit Theorem, $\sqrt{n}(\bar{X} - \mathbb{E}[X_i]) \rightarrow \mathcal{N}(0, \text{Var}[X_i])$ and $\sqrt{n}(\bar{Y} - \mathbb{E}[X_i]) \rightarrow \mathcal{N}(0, \text{Var}[X_i])$ in distribution, so their difference $\sqrt{n}(\bar{X} - \bar{Y}) \rightarrow \mathcal{N}(0, 2\text{Var}[X_i])$. The pooled variance is

$$S_p^2 = \frac{1}{2n-2} \left(\sum_{i=1}^n (X_i - \bar{X})^2 + \sum_{i=1}^n (Y_i - \bar{Y})^2 \right) = \frac{1}{2} S_X^2 + \frac{1}{2} S_Y^2,$$

where $S_X^2 = \frac{1}{n-1} \sum_i (X_i - \bar{X})^2$ and $S_Y^2 = \frac{1}{n-1} \sum_i (Y_i - \bar{Y})^2$ are the individual sample variances. By the result at the end of Lecture 10, $S_X^2 \rightarrow \text{Var}[X_i]$ and $S_Y^2 \rightarrow \text{Var}[Y_i] = \text{Var}[X_i]$ in probability, so the Continuous Mapping Theorem implies $S_p^2 \rightarrow \text{Var}[X_i]$. Then

$$T = \frac{\bar{X} - \bar{Y}}{S_p \sqrt{\frac{1}{n} + \frac{1}{n}}} = \frac{\sqrt{\text{Var}[X_i]}}{S_p} \frac{\sqrt{n}(\bar{X} - \bar{Y})}{\sqrt{2\text{Var}[X_i]}} \rightarrow \mathcal{N}(0, 1)$$

in distribution by Slutsky's lemma. Hence, a test that rejects for $T > z(\alpha)$ is approximately level α for large n .

4.3.3 Part c

The difference in this part from Part a is that here

$$X_i = Z_i H_i + (1 - Z_i) L_i, \quad (4.2)$$

where H_i, L_i are defined as before but $Z_i \sim \text{Bernoulli}(p)$. Then

$$\mathbb{E}[X_i] = p\mu_H + (1 - p)\mu_L.$$

Similarly, $\mathbb{E}[Y_i] = q\mu_H + (1 - q)\mu_L$.

For the variances, we compute as in part (a)

$$\mathbb{E}[X_i^2] = \mathbb{E}[Z_i] \mathbb{E}[H_i^2] + \mathbb{E}[1 - Z_i] \mathbb{E}[L_i^2] = p(\mu_H^2 + \sigma^2) + (1 - p)(\mu_L^2 + \sigma^2) = p\mu_H^2 + (1 - p)\mu_L^2 + \sigma^2,$$

so

$$\text{Var}[X_i] = \mathbb{E}[X_i^2] - (\mathbb{E}[X_i])^2 = p\mu_H^2 + (1 - p)\mu_L^2 + \sigma^2 - (p\mu_H + (1 - p)\mu_L)^2 = \sigma^2 + (\mu_H - \mu_L)^2 p(1 - p).$$

Similarly, $\text{Var}[Y_i] = \sigma^2 + (\mu_H - \mu_L)^2 q(1 - q)$.

4.3.4 Part d

In this case $S_X^2 \rightarrow \text{Var}[X_i]$ and $S_Y^2 \rightarrow \text{Var}[Y_i]$ in probability, so

$$S_p^2 \rightarrow \frac{1}{2}(\text{Var}[X_i] + \text{Var}[Y_i]) = \sigma^2 + \frac{1}{2}(p(1 - p) + q(1 - q))(\mu_H - \mu_L)^2 =: c.$$

By the CLT, $\sqrt{n}(\bar{X} - \mathbb{E}[X_i]) \rightarrow \mathcal{N}(0, \text{Var}[X_i])$ and $\sqrt{n}(\bar{Y} - \mathbb{E}[Y_i]) \rightarrow \mathcal{N}(0, \text{Var}[Y_i])$. The X_i 's and Y_i 's are independent, so the difference $\sqrt{n}(\bar{X} - \bar{Y} - \mathbb{E}[X_i] + \mathbb{E}[Y_i]) \rightarrow \mathcal{N}(0, \text{Var}[X_i] + \text{Var}[Y_i])$.

Then

$$T = \frac{\bar{X} - \bar{Y}}{S_p \sqrt{2/n}} = \frac{1}{\sqrt{2S_p^2}}(\sqrt{n}(\bar{X} - \bar{Y}))$$

is approximately distributed as

$$\frac{1}{\sqrt{2c}} \mathcal{N}(\sqrt{n}(\mathbb{E}[X_i] - \mathbb{E}[Y_i]), \text{Var}[X_i] + \text{Var}[Y_i]) = \mathcal{N}\left(\frac{\sqrt{n}(\mathbb{E}[X_i] - \mathbb{E}[Y_i])}{\sqrt{2c}}, 1\right).$$

Let

$$m := \frac{\sqrt{n}(\mathbb{E}[X_i] - \mathbb{E}[Y_i])}{\sqrt{2c}} = \frac{\sqrt{n}(p - q)(\mu_H - \mu_L)}{\sqrt{2c}} = \frac{\sqrt{n}(p - q)(\mu_H - \mu_L)}{\sqrt{2\sigma^2 + (p(1 - p) + q(1 - q))(\mu_H - \mu_L)^2}},$$

so T is approximately $\mathcal{N}(m, 1)$. Then the rejection probability is

$$\mathbb{P}[T > z(\alpha)] = \mathbb{P}[T - m > z(\alpha) - m] \approx 1 - \Phi(z(\alpha) - m) = \Phi(m - z(\alpha)).$$

This probability is increasing in m , and only equals α when $m = 0$. If $(p - q)(\mu_H - \mu_L) > 0$, then $m \rightarrow \infty$ as $n \rightarrow \infty$, and we expect to falsely reject H_0 with probability close to 1 for large n . If $(p - q)(\mu_H - \mu_L) < 0$, then $m \rightarrow -\infty$ as $n \rightarrow \infty$, and we expect the significance level of the test to in fact be close to 0 for large n .

4.4 Problem 4

4.4.1 Part a

We know that $P_1, \dots, P_n \sim U(0, 1)$ (IID). So for any $t \in (0, 1)$,

$$\begin{aligned} \mathbb{P}[\min_{i=1}^n P_i \leq t] &= 1 - \mathbb{P}[\min_{i=1}^n P_i > t] \\ &= 1 - \mathbb{P}[P_i > t \quad \forall i = 1, \dots, n] \\ &= 1 - \prod_{i=1}^n \mathbb{P}[P_i > t] \\ &= 1 - (1 - t)^n \end{aligned}$$

4.4.2 Part b

If all the tests are performed at significance level $1 - (1 - \alpha)^{1/n}$,

$$\begin{aligned}\mathbb{P}(\text{rejecting any of the } n \text{ null hypotheses}) &= \mathbb{P}(P_i < 1 - (1 - \alpha)^{1/n} \text{ for any } i) \\ &= \mathbb{P}(\min_{i=1}^n P_i < 1 - (1 - \alpha)^{1/n}) \\ &= 1 - (1 - (1 - (1 - \alpha)^{1/n})^n) = \alpha.\end{aligned}$$

Hence, the probability of (falsely) rejecting any of the n null hypothesis is exactly α .

The Bonferroni procedure rejects when $P_i \leq \alpha/n$ and the above procedure rejects when $P_i \leq 1 - (1 - \alpha)^{1/n}$. Note that

$$\left(1 - \frac{\alpha}{n}\right)^n > 1 - \alpha,$$

so $1 - (1 - \alpha)^{1/n} > \alpha/n$. Hence whenever the Bonferroni test rejects, this procedure also rejects, so this procedure is more powerful than the Bonferroni test.

4.4.3 Part c

Suppose there are k true null hypotheses and without loss of generality let us assume that these are the first k . If all the tests are performed at significance level $1 - (1 - \alpha)^{1/n}$, and V is the number of true null hypotheses that are rejected, then the FWER is

$$\begin{aligned}\mathbb{P}(V \geq 1) &= \mathbb{P}(\min_{i=1}^k P_i \leq 1 - (1 - \alpha)^{1/n}) \\ &= 1 - \mathbb{P}(\min_{i=1}^k P_i > 1 - (1 - \alpha)^{1/n}) \\ &= 1 - \mathbb{P}(P_i > 1 - (1 - \alpha)^{1/n} \forall i = 1, \dots, k) \\ &= 1 - (1 - (1 - (1 - \alpha)^{1/n})^k) \\ &= 1 - (1 - \alpha)^{k/n}\end{aligned}$$

Since $k \leq n$ and $\alpha < 1$, $(1 - \alpha)^{k/n} > (1 - \alpha)$ and hence $1 - (1 - \alpha)^{k/n} < \alpha$, so the FWER is controlled.