HOMEWORK 5 SOLUTIONS

ALEX CHIN

1. The geometric model. The method of moments estimator sets the popu-

lation mean, 1/p, equal to the sample mean, X = nt Z?:l X;. Inverting to

solve for p gives )
pvom = X1

For the maximum likelihood estimator, the likelihood is

n

L(p|X1, Ce 7Xn) = H(p(l — p)Xifl) — pn(l 7p)n()7(—1)

i=1

and the log-likelihood is therefore

¢(p) =nlogp+n(X — 1)log(1 — p).

The derivative is

/ _E_?’L(X—l)
f(p)—p T

Setting equal to zero and solving for p gives
Pvie = X1

(We must also check that /(p) achieves a maximum at X ~*; this may be verified
by checking that ¢'(p) takes positive for p < X! and negative values for p >
X-1L)

We can get the asymptotic distribution using the delta method. We have
from the central limit theorem that

AE —1/p) = N (0?’) .

Taking g(#) = 1/6 gives (¢'(0))* = 0%, which for § = 1/pis (¢'(6))*> = p*.
Hence
Vi(pmie —p) = Vn(1/X = p) = vn(g(X) = g(1/p)) = N (0,p*(1 = p)) .
Alternatively, we could obtain the variance using the Fisher information:

Vn(pmie —p) = N (07 I(lp)) )
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where I(p) is the Fisher information for a single observation. We compute

2
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1 X -1
:—E —_
PLop? (1—p)2}

- pP(1-p)
So
V(e — p) = N (0,p*(1 - p)) .
2. Fisher information in the normal model.

(@) Denote v = ¢2. Then

1 1 2
X|pv) = ——e 2 (X1
[l v) = 7=

and
L(p,v) = log f(X|p,v) = ! lo 27r—71 lo v——l (X —p)?
s g My 9 g ) g 2% w)

In order to obtain the Fisher information matrix I(u, v), we must compute
the four second-order partial derivatives of ¢(1, v). These quantities are

o1
o2 v’
0% 1 1 9
9 =22 X T
A
oudv — Ovdu v?

Then

I(Uv U) = *Eu,v

9% 3%
ou? 8uav‘| _ |:1/’U 0 :|

%t %4 0 1/2v?

ovop Ov2

This matrix has inverse

I(u,0)™" =20° F/?Q 1311] - [8 2?;2} '

Substituting back v = 02, we have

_ o2 0
I(M702) ! = |:0 20,4:| )



which we conclude is the asymptotic variance of the maximum likelihood
estimate. In other words,

il LA =2 ([ ])

(b) The joint log-likelihood in this one-parameter sub-model is given by

n

n n 1 9
L(v) = —§log27r— §logv— %ZX“

i=1

where again v = 0. Then

and setting equal to zero and solving for v gives
=5 Z X7

Since the off-diagonals of the inverse Fisher information matrix are zero,
the sample mean and standard deviation are asymptotically uncorrelated,
and so % and 52 have the same asymptotic standard error.

3. Necessity of regularity conditions.

(a) The likelihood is
1 n
L) =— 1{0 < X; <6}
0= g [Tro=x<0)

Now, notice that the expression

[0 < x; <oy,
i=1
taken as a function of 6, is the same as
1{0 > X, forall i} = 1{6 > max X, }.
This means that the likelihood can be written as
L) = %1{9 > max X, },

and that the maximum likelihood estimate is the value of § that maximizes
1/6™ on the interval [max; X;, c0). Since 1/6™ is a decreasing function, this
maximum occurs at the left endpoint, so

6= max X;.



(b) The true parameter § must satisfy § > X, foralli =1, ..., n, since the range
of X; is bounded above by 6. Hence 6 > max; X; = 0 as well. This means
that for any value of n, \/n(f — 0) takes on positive values with probability
zero, so v/n(f — #) cannot be asymptotically normally distributed.

4. Generalized method-of-moments and the MLE.

(a) A Poisson random variable has mass function

ATe L 2loga—a
f@ld) = —— = e

forz =0,1,2,.... Reparametrizing by 6 = log A, we obtain
1 fz—e?
Flalf) = e,
which is of the form in Equation (1). The functions are given by
T(x) = x, A(9) = €?, and h(z) = —.
(b) The derivative of the right hand side is
da /BOT(x)fA(G)h(x)dx _ / ieGT(x)fA(O)h(x)dI
do do
= / (T(z) — A'(0))e?T@=AO b () da.
Since the derivative of the left hand side is 0, we have
0= / (T(z) — A'(0))e"T@=AO () dz.,
which implies

/ T(z)e?T@=AO b (2)dx = A'(9) / IT@=AO (1) da .

Eq[T'(X)] 1
Using the identities noted above, we obtain the formula
Eo[T(X)] = A'(6).

(By replacing integrals with sums, the identity holds for discrete models as
well.)

In the Poisson model, A() = €%, so A'(f) = ¢’ as well, and T(X) = X.
This means

which we know to be true.



(©

From part (b), E¢[T(X)] = A'(#), so the generalized method-of-moments
estimator is the value of § satisfying

1 n
= ;T(X

We now compute the maximum likelihood estimator. The log-likelihood is

OZT( ) —nA(0 —|—Zlogh

which has derivative
Z T(X;) —nA'(0).

Setting equal to zero, we see that the MLE must satisfy

which is the same as the GMM estimator for g(z) = T'(z).

In the Poisson model T'(z) = z, so the MLE is equal to the parameter value

such that A = ¢f = % >, X;, which defines the usual method of moments
estimator.

5. Computing the gamma MLE.

(a)

As in Lecture 13, we denote the function

()
T'(«@)

where (o) = I"(a)/I'(a) is the digamma function. Its derivative is

f(a) = loga —

= loga —1(a),

(@) = £ — (o),

«

where 9’(a) is the trigamma function.

The Newton-Raphson update rule is

—fla®) +log X — 1

n

» log X;
f'(a®) '

QD) — o)

We can implement this as follows:



gamma .MLE = function (X) {
ahat compute. ahat (X)
bhat ahat / mean (X)

return (c (ahat, bhat))

# estimate ahat by Newton-Raphson
compute.ahat = function (X) {

a.prev = —Inf

a = mean(X) "2 / var(X) # initial guess

# while not converged, do Newton-Raphson update
while (abs(a - a.prev) > le-12) {

a.prev = a
numerator = —-f(a.prev) + log(mean (X)) - mean (log (X))
denominator = f.prime (a.prev)

a = a.prev + numerator / denominator

}

return (a)

# define some helper functions
f = function (alpha) {
return (log(alpha) - digamma (alpha))

f.prime = function(alpha) {
return(l / alpha - trigamma (alpha))

We run the simulation:

n = 500
n.reps = 5000
alpha = 1
beta = 2

alpha.hat = numeric(n.reps)
beta.hat = numeric (n.reps)

for (i in 1l:n.reps) {
X = rgamma (n, shape = alpha, rate = beta)
estimates = gamma.MLE (X)



alpha.hat[i] = estimates|[1]
beta.hat[i] = estimates[2]
}

Here are the resulting histograms:

hist (alpha.hat, breaks=20)

Histogram of alpha.hat
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hist (beta.hat, breaks=20)

Histogram of beta.hat
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In class, the inverse of the Fisher information matrix was computed to be

1 1 & 3 )
](0476) 7/11(04)%7# (é ¢/(Q) .

7



Plugging in o = 1, 5 = 2 gives
11,27 = 4 1/4 1/2\ _ (1551 3.101
’ T (1) —1\1/2 v/(1)) T \3.101 10.202
using ¢/ (1) = 7%/6 ~ 1.645.

Now, let’s take a look at the empirical moments produced by the simula-
tion. Here are the means:

mean (alpha.hat)
## [1] 1.005632
mean (beta.hat)

#4# [1] 2.016265

They are close to the true values of & = 1 and § = 2, as expected. Now
here are the variance and covariance terms:

var (alpha.hat)

## [1] 0.003208509

var (beta.hat)

## [1] 0.02137089

cov (alpha.hat, beta.hat)

## [1] 0.006502189

In order to compare to the Fisher information, we need to scale by n.

n * var (alpha.hat)

## [1] 1.604255

n % var (beta.hat)

## [1] 10.68545

n * cov(alpha.hat, beta.hat)

## [1] 3.251095



