
HOMEWORK 5 SOLUTIONS

ALEX CHIN

1. The geometric model. The method of moments estimator sets the popu-
lation mean, 1/p, equal to the sample mean, X̄ = n−1

∑n
i=1Xi. Inverting to

solve for p gives
p̂MOM = X̄−1.

For the maximum likelihood estimator, the likelihood is

L(p|X1, . . . , Xn) =

n∏
i=1

(p(1− p)Xi−1) = pn(1− p)n(X̄−1)

and the log-likelihood is therefore

`(p) = n log p+ n(X̄ − 1) log(1− p).

The derivative is

`′(p) =
n

p
− n(X̄ − 1)

1− p
.

Setting equal to zero and solving for p gives

p̂MLE = X̄−1.

(We must also check that `(p) achieves a maximum at X̄−1; this may be verified
by checking that `′(p) takes positive for p < X̄−1 and negative values for p >
X̄−1.)

We can get the asymptotic distribution using the delta method. We have
from the central limit theorem that

√
n(X̄ − 1/p)⇒ N

(
0,

1− p
p2

)
.

Taking g(θ) = 1/θ gives (g′(θ))2 = θ−4, which for θ = 1/p is (g′(θ))2 = p4.
Hence
√
n(p̂MLE − p) =

√
n(1/X̄ − p) =

√
n(g(X̄)− g(1/p))⇒ N

(
0, p2(1− p)

)
.

Alternatively, we could obtain the variance using the Fisher information:

√
n(p̂MLE − p)⇒ N

(
0,

1

I(p)

)
,
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where I(p) is the Fisher information for a single observation. We compute

I(p) = −Ep[`′′(p)] = −Ep
[
∂2

∂2p
(log p+ (X − 1) log(1− p))

]
= −Ep

[
∂

∂p

(
1

p
− X − 1

1− p

)]
= −Ep

[
− 1

p2
− X − 1

(1− p)2

]
=

1

p2(1− p)
.

So √
n(p̂MLE − p)⇒ N

(
0, p2(1− p)

)
.

2. Fisher information in the normal model.

(a) Denote v = σ2. Then

f(X|µ, v) =
1√
2πv

e−
1
2v (X−µ)2

and

`(µ, v) = log f(X|µ, v) = −1

2
log 2π − 1

2
log v − 1

2v
(X − µ)2.

In order to obtain the Fisher information matrix I(µ, v), we must compute
the four second-order partial derivatives of `(µ, v). These quantities are

∂2`

∂µ2
= −1

v
,

∂2`

∂v2
=

1

2v2
− 1

v3
(X − µ)2,

∂2`

∂µ∂v
=

∂2`

∂v∂µ
= −X − µ

v2
.

Then

I(µ, v) = −Eµ,v

[
∂2`
∂µ2

∂2`
∂µ∂v

∂2`
∂v∂µ

∂2`
∂v2

]
=

[
1/v 0
0 1/2v2

]
.

This matrix has inverse

I(µ, v)−1 = 2v3

[
1/2v2 0

0 1/v

]
=

[
v 0
0 2v2

]
.

Substituting back v = σ2, we have

I(µ, σ2)−1 =

[
σ2 0
0 2σ4

]
,
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which we conclude is the asymptotic variance of the maximum likelihood
estimate. In other words,

√
n

([
X̄
S2

]
−
[
µ
σ2

])
⇒ N

([
0
0

]
,

[
σ2 0
0 2σ4

])
.

(b) The joint log-likelihood in this one-parameter sub-model is given by

`(v) = −n
2

log 2π − n

2
log v − 1

2v

n∑
i=1

X2
i ,

where again v = σ2. Then

`′(v) = − n

2v
+

1

2v2

n∑
i=1

X2
i ,

and setting equal to zero and solving for v gives

ṽ = σ̃2 =
1

n

n∑
i=1

X2
i .

Since the off-diagonals of the inverse Fisher information matrix are zero,
the sample mean and standard deviation are asymptotically uncorrelated,
and so σ̂2 and σ̃2 have the same asymptotic standard error.

3. Necessity of regularity conditions.

(a) The likelihood is

L(θ) =
1

θn

n∏
i=1

1{0 ≤ Xi ≤ θ}.

Now, notice that the expression
n∏
i=1

1{0 ≤ Xi ≤ θ},

taken as a function of θ, is the same as

1{θ > Xi for all i} = 1{θ ≥ max
i
Xi}.

This means that the likelihood can be written as

L(θ) =
1

θn
1{θ ≥ max

i
Xi},

and that the maximum likelihood estimate is the value of θ that maximizes
1/θn on the interval [maxiXi,∞). Since 1/θn is a decreasing function, this
maximum occurs at the left endpoint, so

θ̂ = max
i
Xi.
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(b) The true parameter θ must satisfy θ ≥ Xi for all i = 1, . . . , n, since the range
of Xi is bounded above by θ. Hence θ ≥ maxiXi = θ̂ as well. This means
that for any value of n,

√
n(θ̂− θ) takes on positive values with probability

zero, so
√
n(θ̂ − θ) cannot be asymptotically normally distributed.

4. Generalized method-of-moments and the MLE.

(a) A Poisson random variable has mass function

f(x|λ) =
λxe−λ

x!
=

1

x!
ex log λ−λ.

for x = 0, 1, 2, . . . . Reparametrizing by θ = log λ, we obtain

f(x|θ) =
1

x!
eθx−e

θ

,

which is of the form in Equation (1). The functions are given by

T (x) = x, A(θ) = eθ, and h(x) =
1

x!
.

(b) The derivative of the right hand side is

d

dθ

∫
eθT (x)−A(θ)h(x)dx =

∫
d

dθ
eθT (x)−A(θ)h(x)dx

=

∫
(T (x)−A′(θ))eθT (x)−A(θ)h(x)dx.

Since the derivative of the left hand side is 0, we have

0 =

∫
(T (x)−A′(θ))eθT (x)−A(θ)h(x)dx,

which implies∫
T (x)eθT (x)−A(θ)h(x)dx︸ ︷︷ ︸

Eθ[T (X)]

= A′(θ)

∫
eθT (x)−A(θ)h(x)dx︸ ︷︷ ︸

1

.

Using the identities noted above, we obtain the formula

Eθ[T (X)] = A′(θ).

(By replacing integrals with sums, the identity holds for discrete models as
well.)

In the Poisson model, A(θ) = eθ, so A′(θ) = eθ as well, and T (X) = X .
This means

Eθ[X] = eθ = λ,

which we know to be true.
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(c) From part (b), Eθ[T (X)] = A′(θ), so the generalized method-of-moments
estimator is the value of θ satisfying

A′(θ) =
1

n

n∑
i=1

T (Xi).

We now compute the maximum likelihood estimator. The log-likelihood is

θ

n∑
i=1

T (Xi)− nA(θ) +

n∑
i=1

log h(Xi),

which has derivative
n∑
i=1

T (Xi)− nA′(θ).

Setting equal to zero, we see that the MLE must satisfy

A′(θ) =
1

n

n∑
i=1

T (Xi),

which is the same as the GMM estimator for g(x) = T (x).

(d) In the Poisson model T (x) = x, so the MLE is equal to the parameter value
such that λ̂ = eθ̂ = 1

n

∑n
i=1Xi, which defines the usual method of moments

estimator.

5. Computing the gamma MLE.

(a) As in Lecture 13, we denote the function

f(α) = logα− Γ′(α)

Γ(α)
= logα− ψ(α),

where ψ(α) = Γ′(α)/Γ(α) is the digamma function. Its derivative is

f ′(α) =
1

α
− ψ′(α),

where ψ′(α) is the trigamma function.

The Newton-Raphson update rule is

α(t+1) = α(t) +
−f(α(t)) + log X̄ − 1

n

∑n
i=1 logXi

f ′(α(t))
.

We can implement this as follows:
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gamma.MLE = function(X) {
ahat = compute.ahat(X)
bhat = ahat / mean(X)

return(c(ahat, bhat))
}

# estimate ahat by Newton-Raphson
compute.ahat = function(X) {

a.prev = -Inf
a = mean(X)^2 / var(X) # initial guess

# while not converged, do Newton-Raphson update
while(abs(a - a.prev) > 1e-12) {
a.prev = a
numerator = -f(a.prev) + log(mean(X)) - mean(log(X))
denominator = f.prime(a.prev)
a = a.prev + numerator / denominator

}

return(a)
}

# define some helper functions
f = function(alpha) {

return(log(alpha) - digamma(alpha))
}

f.prime = function(alpha) {
return(1 / alpha - trigamma(alpha))

}

(b) We run the simulation:

n = 500
n.reps = 5000
alpha = 1
beta = 2

alpha.hat = numeric(n.reps)
beta.hat = numeric(n.reps)

for (i in 1:n.reps) {
X = rgamma(n, shape = alpha, rate = beta)
estimates = gamma.MLE(X)
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alpha.hat[i] = estimates[1]
beta.hat[i] = estimates[2]

}

Here are the resulting histograms:

hist(alpha.hat, breaks=20)
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hist(beta.hat, breaks=20)

Histogram of beta.hat
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In class, the inverse of the Fisher information matrix was computed to be

I(α, β)−1 =
1

ψ′(α) αβ2 − 1
β2

( α
β2

1
β

1
β ψ′(α)

)
.
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Plugging in α = 1, β = 2 gives

I(1, 2)−1 =
4

ψ′(1)− 1

(
1/4 1/2
1/2 ψ′(1)

)
≈
(

1.551 3.101
3.101 10.202

)
using ψ′(1) = π2/6 ≈ 1.645.
Now, let’s take a look at the empirical moments produced by the simula-
tion. Here are the means:

mean(alpha.hat) # should be close to 1

## [1] 1.005632

mean(beta.hat) # should be close to 2

## [1] 2.016265

They are close to the true values of α = 1 and β = 2, as expected. Now
here are the variance and covariance terms:

var(alpha.hat)

## [1] 0.003208509

var(beta.hat)

## [1] 0.02137089

cov(alpha.hat, beta.hat)

## [1] 0.006502189

In order to compare to the Fisher information, we need to scale by n.

n * var(alpha.hat) # should be close to 1.551

## [1] 1.604255

n * var(beta.hat) # should be close to 10.202

## [1] 10.68545

n * cov(alpha.hat, beta.hat) # should be close to 3.101

## [1] 3.251095
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