1.

(a)

STATS 200: Solutions to Homework 6

The expectation of X is
EX]=20-0+40-14+2(1-6)-2+%(1—6)-3=1-20.

For an IID sample X,...,X,, equating % — 20 with the sample mean X and

solving for 6, the method-of-moments estimate is § = (3 — X). For the 10 given

3
observations, 6 = 0.417.

The variance of X is
Var[X] = ]E[X2] — IEZ[X]2
2
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= 2440 — 40°.

Then Var[f] = 1 Var[X] = L Var[X] = L(2 + 40 — 46%). An estimate of the

T4
standard error is \/ ﬁ(% + 46 — 4@2), which for the 10 given observations is 0.173.

(An alternative estimate of the standard error is given by ﬁ times the sample
variance of Xi, ..., X}, which for the 10 given observations is 0.171.)

For an IID sample X1,...,X,, let Ny, N1, No, N3 be the total numbers of obser-
vations equal to 0, 1, 2, and 3. Then the log-likelihood is
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= Nylog §9 + N log 59 + N log 5(1 —60) + N3log 5(1 —0).

To compute the MLE for 0, we set

=9 T 10 1-9¢

and solve for 0, yielding § = (No + Ny)/(No+ N1 + Na + N3) = (No + Ny)/n. For
the 10 given observations, # = 0.5.



The total probability that X = 0 or X = 1 is 6, so Ny + N; ~ Binomial(n, 0).
Then Var([f] = - Var[Ny + N;] = 9(1—;9). (Alternatively, we may compute

2 L r=0orzx=1
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892 10gf<x|9> = { ’ 1

—m r=2o0rx= 3,
so the Fisher information is /(f) = — IE[(,?—;Q log f(X10)] = ﬁ. This shows that
the variance of 6 is approximately 9(1—;9) for large n.) An estimate of the standard

error is 1/0(1 — 0)/n, which for the 10 given observations is 0.158.

(¢) X = ¢(3,0,2,1,3,2,1,0,2,1)

n = length(X)

B 10000

theta_hat_star = numeric(B)

for (i in 1:B) {
X_star = sample(X,n,replace=TRUE)
theta_hat_star[i] = length(which(X_star <= 1))/n

}

print (sd(theta_hat_star))

We obtain a bootstrap-estimated standard error of 0.159.

(a) p — p in probability, hence Vlbop) _y Af (0,1) in distribution by Slutsky’s

p(1-p)
Lemma. So for large n
P |—20.025) < Y22 =2 . 0.095)| ~ 0.95.
V(1 =p)

We may rewrite the above as

A ~

- o(1—p
P [p— PA=D)0.025) < p < p+ | L2
n

0.025)] ~ 0.95,

so an approximate 95% confidence interval is p & ’@2(0.025).

(b) The following conditions are equivalent:

(n + 2(a/2)2)p? — (2np + 2(a/2)2)p + np* < 0.



This occurs when p is between the two real roots of above quadratic equation,
which are given by

o+ 2(a/2)? & /@p T (@D — A T (/D)
2(n+ z(a/2)?) .

Taking o = 0.05 and simplifying the above, we obtain an approximate 95% con-
fidence interval of

bt 2(0.025)2 12(0.025)\/13(1;’3) | 2(0.025)2
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(¢) ns = ¢(10,40,100)
ps = c(0.1,0.3,0.5)
B=100000
z = gnorm(0.975)
for (n in ns) {
for (p in ps) {
cover_A = numeric(B)
cover_B = numeric(B)
for (i in 1:B) {
phat = rbinom(1l,n,p)/n
U = phat+z*sqrt (phat*(1-phat)/n)
L = phat-z*sqrt(phat*(1-phat)/n)
if (p<=U &k p >= L) {

cover_A[i] =1
} else {
cover_A[i] = O
}
U = (phat+z~2/(2*n)+z*sqrt (phat*(1-phat)/n+z~2/(4*n~2)))/(1+z"2/n)
L = (phat+z~2/(2+%n)-z*sqrt(phat*(l-phat)/n+z"2/(4*n"2)))/(1+z"2/n)
if (p<=U & p > 1) {
cover_B[i] =1
} else {
cover_B[i] = O
}
+
print(c(n,p,mean(cover_A) ,mean(cover_B)))
+
}

For the interval from part (a), we obtain the following coverage probabilities:



p=01 p=03 p=0.5
n =10 0.65 0.84 0.89
n = 40 0.91 0.93 0.92

n = 100 0.93 0.95 0.94

For the interval from part (b), we obtain the following coverage probabilities:

p=01 p=03 p=20.5>5
n=10| 0.93 0.92 0.98
n=401| 0.94 0.94 0.96

n =100 | 0.94 0.94 0.94

The intervals from part (b) are more accurate when n is small.

(a) The KL-divergence is given by

Dra (o) £ (aI) = E, |log 150
ﬁXe’X

= Eg IOgW

=E,[—1logI'(2) + log X — X —log A + AX]
= —logI'(2) —log A+ E,[log X] + (A — 1) E,[X]
= —1ogT(2) — log A+ (2) + 2(\ — 1).

Setting the derivative with respect to A equal to 0, this is minimized at \* = 1/2.

(b) By the Law of Large Numbers, X — E,[X] = 2 in probability, so A = 1/X — 1/2
in probability by the Continuous Mapping Theorem.

(¢) The Fisher information in the exponential model is given by

2 2

I(\) = —E, [a_ log f(X|A)] = —E, {a—(log)\ - /\X)} = 1/\%

ON? ON?
The corresponding plug-in estimate of the standard error is #(A) = —)-(175
n = 500
B = 10000

lamb_hat = numeric(B)

se_Fisher = numeric(B)

se_sandwich = numeric(B)

for (i in 1:B) {
X = rgamma(n,2,rate=1)
lamb_hat[i] = 1/mean(X)
se_Fisher[i] = 1/(mean(X)*sqrt(n))



se_sandwich[i] = sd(X)/(mean(X) "2*sqrt(n))
}
print (mean(lamb_hat))
print (sd(lamb_hat))
hist(se_Fisher)
hist(se_sandwich)
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The empirical mean and standard error of A are 0.501 and 0.016; the mean is close
to A* = 0.5 from part (a). The Fisher-information-based estimate of the standard
error is incorrect—it estimates the standard error as approximately 0.022. The
sandwich estimate of the standard error seems correct—it estimates the standard
error as 0.016, with some variability in the third decimal place.

We may estimate p by p = X, and ¢ by § = Y. The plugin estimator for the
log-odds-ratio is
log < P / a :
l-p/ 1—¢q

p q
g@ﬂ)=bg<———/—jg>Zk%p—bﬂl—m—qu+bgl—w-

Let

1—-p/ 1
Applying a first-order Taylor expansion to g,
. p—p q—q
9, ) = 9(p,q) + :
p(l=p)  q(1-q)

p and ¢ are independent, and by the Central Limit Theorem, /n(p — p) —
N(0,p(1—p)) and /m(¢§—q) = N(0,q(1 —q)). Hence, for large m and n, g(p, §)
is approximately distributed as N (g(p, q), v) where
1— 1 1— 1 1 1
p(l—p) : 2+Q( 9 : . n ‘
n p*(1—p) m ¢*(1=q)* np(l—p) mq(l—q)

v =



(c) Let v =

1 1
o T o be the plugin estimate of v. As m,n — oo, v/v — 1 in

probability, so by part (b) and Slutsky’s lemma,

9(p,q) — 9(p, q)

Vo

for large m and n. Rearranging yields a 95% confidence interval for g(p, ¢) given
by

95, 4) = 2(0.025)V5 = log (1 P /1 d q) £ 2(0. 025)\/@(11_ -+ mqul_ .

Denoting this 1nterval by [ ( ,q),U(p,q)], we may exponentiate to obtain the
confidence interval [eZ(®9) U@, Q)] for the odds-ratio £ /1%

P {—2(0.025) < < 2(0.025)} ~ 0.95




