

HOMEWORK 7 SOLUTIONS

ALEX CHIN

1. The Laplace distribution.

(a) The joint log-likelihood is

$$\ell(\mu, b) = -n \log(2b) - \frac{1}{b} \sum_{i=1}^n |X_i - \mu|.$$

The likelihood is differentiable in b , so differentiating with respect to b gives

$$\frac{\partial \ell}{\partial b} = -\frac{n}{b} + \frac{1}{b^2} \sum_{i=1}^n |X_i - \mu|.$$

Setting this equal to 0, substituting in the MLE $\hat{\mu}$ for μ , and solving gives the MLE for b as

$$\hat{b} = \frac{1}{n} \sum_{i=1}^n |X_i - \hat{\mu}|.$$

We can see that the MLE $\hat{\mu}$ is the value of μ that minimizes the total absolute deviations $K(\mu) = \sum_{i=1}^n |X_i - \mu|$. Without loss of generality assume that the X_1, \dots, X_n are ordered. We shall see that the minimizer is the sample median $\hat{\mu} = X_m$, where $m = (n + 1)/2$. When the derivative of K exists, which is everywhere except for the data points X_1, \dots, X_n , it is equal to $-\sum_{i=1}^n \text{sgn}(X_i - \mu)$, and since n is odd, this is never equal to zero. So the minimizer must occur at one of the points where the function is non-differentiable, X_1, \dots, X_n . We see that $K(\mu)$ is continuous everywhere (it is the sum of absolute value functions) and furthermore it is decreasing for $\mu < X_m$ and increasing for $\mu > X_m$. Therefore the minimizer is given by $\hat{\mu} = X_m$.

For clarity, we can plot an example showing K and K' , where the red vertical lines indicate data points.

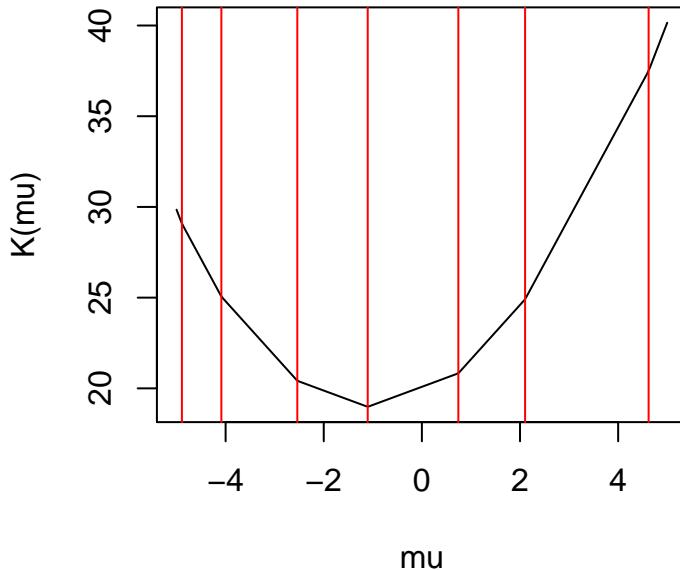
```
set.seed(13)
n = 7
x = runif(n, -5, 5)
```

```

f = function(mu) sum(abs(x - mu))
f_prime = function(mu) -sum(sign(x - mu))

mu = seq(-5, 5, 0.05)
plot(mu, sapply(mu, f), type = "l", xlab="mu", ylab="K(mu)")
for (i in x) abline(v=i, col="red")

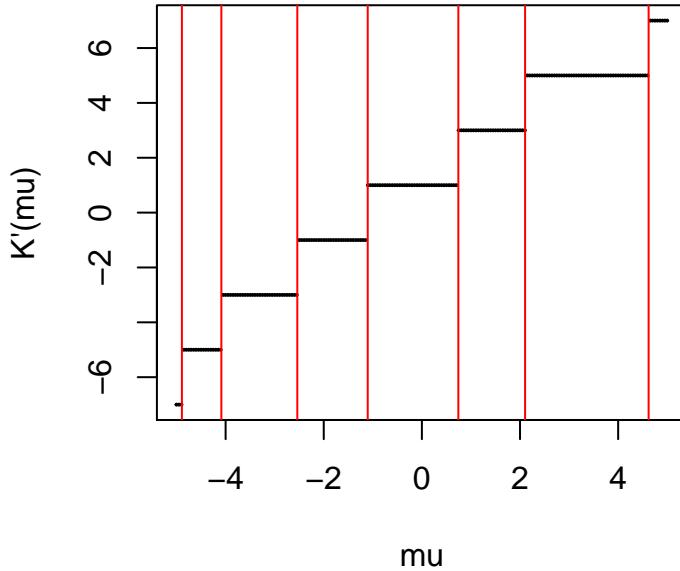
```



```

plot(mu, sapply(mu, f_prime), xlab="mu", ylab="K'(mu)", cex=0.2, pch=20)
for (i in x) abline(v=i, col="red")

```



This estimator is more robust to outliers because it only depends on the middle few ordered values, so a few data points with extreme values won't change the median, whereas the mean depends on all data points.

(b) If $\mu = 0$ and $B \sim \text{InverseGamma}(\alpha, \beta)$, then the posterior density is given by

$$\begin{aligned}
 f(B|\alpha, \beta, X_1, \dots, X_n) &\propto f(X_1, \dots, X_n|B)f(B|\alpha, \beta) \\
 &= \frac{1}{(2B)^n} \exp\left\{-\frac{1}{B} \sum_{i=1}^n |X_i|\right\} \frac{\beta^\alpha}{\Gamma(\alpha)} B^{-\alpha-1} e^{-\beta/B} \\
 &\propto B^{-(\alpha+n)-1} \exp\left\{-\frac{1}{B} \left(\beta + \sum_{i=1}^n |X_i|\right)\right\},
 \end{aligned}$$

where we have dropped any normalizing constants into the proportionality term. From here, we can see that the posterior distribution of B follows an $\text{InverseGamma}(\alpha + n, \beta + \sum |X_i|)$ distribution, and therefore has posterior mean $(\beta + \sum |X_i|)/(\alpha + n - 1)$.

(c) The MLE for b when $\mu = 0$ is

$$\hat{b} = \frac{1}{n} \sum_{i=1}^n |X_i|.$$

We can write the posterior mean as a weighted average

$$\underbrace{\frac{\beta + \sum_{i=1}^n |X_i|}{\alpha + n - 1}}_{\text{posterior mean}} = \frac{\alpha - 1}{\alpha + n - 1} \underbrace{\frac{\beta}{\alpha - 1}}_{\text{prior mean}} + \frac{n}{\alpha + n - 1} \underbrace{\frac{1}{n} \sum_{i=1}^n |X_i|}_{\text{MLE}}$$

of the prior mean and the MLE, from which we see that the posterior mean tends to the MLE as $n \rightarrow \infty$.

2. Bayesian inference for multinomial proportions.

(a) The posterior distribution has density proportional to

$$P_1^{\alpha_1-1} \times \cdots \times P_6^{\alpha_6-1} \times P_1^{X_1} \times \cdots \times P_6^{X_6} = P_1^{\alpha_1+X_1-1} \times \cdots \times P_6^{\alpha_6+X_6-1}.$$

So the posterior distribution of (P_1, \dots, P_6) given (X_1, \dots, X_6) is Dirichlet($\alpha_1 + X_1, \dots, \alpha_6 + X_6$). The posterior mean and variance are given by

$$\mathbf{E}[P_i | X_1, \dots, X_6] = \frac{\alpha_i + X_i}{\alpha_0 + n\bar{X}} \quad \mathbf{V}[P_i | X_1, \dots, X_6] = \frac{(\alpha_i + X_i)(\alpha_0 + n\bar{X} - \alpha_i - X_i)}{(\alpha_0 + n\bar{X})^2(\alpha_0 + n\bar{X} + 1)}.$$

(b) We would like to select the parameters α_i such that

- The prior mean is $1/6$ for each i , and
- The prior variance is small.

Since $\mathbf{E}[P_i] = \alpha_i / \sum_{j=1}^6 \alpha_j$, a prior mean of $1/6$ can be achieved by setting $\alpha_i = \alpha$ for each i . Then the variance is given by

$$\mathbf{V}[P_i] = \frac{\alpha(6\alpha - \alpha)}{(6\alpha)^2(\alpha + 1)} = \frac{5}{36(\alpha + 1)},$$

from which we see that a large value of α achieves small variance. (The stronger our prior belief that the die is fair, the larger we would set α .)

(c) From the posterior mean calculated in part (a), we can interpret the parameters α_i as “prior counts” so an uninformative prior sets $\alpha_i = 0$. Then the posterior mean is

$$\mathbf{E}[P_i | X_1, \dots, X_6] = \frac{X_i}{\sum_{j=1}^n X_j} = \frac{X_i}{n},$$

which is the same as the MLE (see Lecture 13).

3. GLRT and the t -test. The log-likelihood for the full model is

$$-\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2,$$

and the MLEs for μ and σ are

$$\hat{\mu} = \bar{X} \quad \text{and} \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \hat{\mu})^2.$$

Under the submodel defined by $\mu = 0$, the log-likelihood is

$$-\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n X_i^2$$

and the MLE for σ^2 is

$$\tilde{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2.$$

Therefore, the GLRT statistic is given by

$$\begin{aligned} \frac{\sup_{\sigma^2} \ell(0, \sigma^2)}{\sup_{\mu, \sigma^2} \ell(\mu, \sigma^2)} &= \frac{(2\pi\tilde{\sigma}^2)^{-n/2} \exp\left\{-\frac{1}{2\tilde{\sigma}^2} \sum_{i=1}^n X_i^2\right\}}{(2\pi\hat{\sigma}^2)^{-n/2} \exp\left\{-\frac{1}{2\hat{\sigma}^2} \sum_{i=1}^n (X_i - \hat{\mu})^2\right\}} \\ &= \left(\frac{\hat{\sigma}^2}{\tilde{\sigma}^2}\right)^{n/2} \\ &= \left(\frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\sum_{i=1}^n X_i^2}\right)^{n/2} \\ &= \left(\frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2 + n\bar{X}^2}\right)^{n/2}. \end{aligned}$$

We can rewrite this as

$$\begin{aligned} \Lambda(X_1, \dots, X_n) &= \left(\frac{(n-1)S_X^2}{(n-1)S_X^2 + n\bar{X}^2}\right)^{n/2} \\ &= \left(\frac{n-1}{n-1 + n\bar{X}^2/S_X^2}\right)^{n/2} \\ &= \left(\frac{n-1}{n-1 + T^2}\right)^{n/2}, \end{aligned}$$

which is a decreasing function of T^2 and hence of $|T|$ as well.

4. Migration rates. The full log-likelihood is proportional to

$$\sum_{1 \leq i, j \leq 3} N_{ij} \log p_{ij}$$

and so the MLEs are given by

$$\hat{p}_{ij} = \frac{N_{ij}}{n} \quad \text{for } 1 \leq i, j \leq 3$$

(see Example 13.4 in the lecture notes).

Under the equilibrium null hypothesis, the likelihood is

$$p_{11}^{N_{11}} p_{22}^{N_{22}} p_{33}^{N_{33}} p_{12}^{N_{12}+N_{21}} p_{13}^{N_{13}+N_{31}} p_{23}^{N_{23}+N_{32}} = \prod_{i=1}^3 p_{ii}^{N_{ii}} \prod_{1 \leq i < j \leq 3} p_{ij}^{N_{ij}+N_{ji}}.$$

So we wish to maximize

$$\sum_{i=1}^3 N_{ii} \log p_{ii} + \sum_{1 \leq i < j \leq 3} (N_{ij} + N_{ji}) \log p_{ij} + \lambda(p_{11} + p_{22} + p_{33} + 2p_{12} + 2p_{13} + 2p_{23} - 1)$$

where the last term is the Lagrange multiplier for the constraint that the parameters sum to one.

Taking derivatives and solving gives $\tilde{p}_{ii} = -N_{ii}/\lambda$ for the diagonal elements and $\tilde{p}_{ij} = -(N_{ij} + N_{ji})/(2\lambda)$ for the off-diagonal elements. We furthermore see that $\lambda = -n$ satisfies the constraint, so our MLE estimates in the submodel are

$$\tilde{p}_{ii} = \frac{N_{ii}}{n} \quad \text{for } i = j, \quad \text{and} \quad \tilde{p}_{ij} = \frac{N_{ij} + N_{ji}}{2n} \quad \text{for } i \neq j.$$

The generalized likelihood ratio test statistic is given by

$$\Lambda = \prod_{1 \leq i, j \leq n} \left(\frac{\tilde{p}_{ij}}{\hat{p}_{ij}} \right)^{N_{ij}},$$

Since $\tilde{p}_{ij} = \hat{p}_{ij}$ if $i = j$, we need only worry about the off-diagonal terms. So

$$-2 \log \Lambda = 2 \sum_{i \neq j} N_{ij} \log \frac{2N_{ij}}{N_{ij} + N_{ji}}.$$

To perform the test if n is large, we can compute $-2 \log \Lambda$ and compare it to the $(1 - \alpha)$ cutoff value of a χ^2_3 distribution, where there are 3 degrees of freedom because the submodel contains 3 fewer parameters than the full model.