
HOMEWORK 7 SOLUTIONS

ALEX CHIN

1. The Laplace distribution.

(a) The joint log-likelihood is

`(µ, b) = −n log(2b)− 1

b

n∑
i=1

|Xi − µ|.

The likelihood is differentiable in b, so differentiating with respect to b gives

∂`

∂b
= −n

b
+

1

b2

n∑
i=1

|Xi − µ|.

Setting this equal to 0, substituting in the MLE µ̂ for µ, and solving gives
the MLE for b as

b̂ =
1

n

n∑
i=1

|Xi − µ̂|.

We can see that the MLE µ̂ is the value of µ that minimizes the total absolute
deviations K(µ) =

∑n
i=1 |Xi − µ|. Without loss of generality assume that

the X1, . . . , Xn are ordered. We shall see that the minimizer is the sample
median µ̂ = Xm, where m = (n + 1)/2. When the derivative of K exists,
which is everywhere except for the data points X1, . . . , Xn, it is equal to
−
∑n
i=1 sgn(Xi − µ), and since n is odd, this is never equal to zero. So

the minimizer must occur at one of the points where the function is non-
differentiable, X1, . . . , Xn. We see that K(µ) is continuous everywhere (it
is the sum of absolute value functions) and furthermore it is decreasing for
µ < Xm and increasing for µ > Xm. Therefore the minimizer is given by
µ̂ = Xm.

For clarity, we can plot an example showing K and K ′, where the red ver-
tical lines indicate data points.

set.seed(13)
n = 7
x = runif(n, -5, 5)
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f = function(mu) sum(abs(x - mu))
f_prime = function(mu) -sum(sign(x - mu))

mu = seq(-5, 5, 0.05)
plot(mu, sapply(mu, f), type = "l", xlab="mu", ylab="K(mu)")
for (i in x) abline(v=i, col="red")
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plot(mu, sapply(mu, f_prime), xlab="mu", ylab="K'(mu)", cex=0.2, pch=20)
for (i in x) abline(v=i, col="red")
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This estimator is more robust to outliers because it only depends on the
middle few ordered values, so a few data points with extreme values won’t
change the median, whereas the mean depends on all data points.

(b) If µ = 0 and B ∼ InverseGamma(α, β), then the posterior density is given
by

f(B|α, β,X1, . . . , Xn) ∝ f(X1, . . . , Xn|B)f(B|α, β)

=
1

(2B)n
exp

{
− 1

B

n∑
i=1

|Xi|

}
βα

Γ(α)
B−α−1e−β/B

∝ B−(α+n)−1 exp

{
− 1

B

(
β +

n∑
i=1

|Xi|

)}
,

where we have dropped any normalizing constants into the proportional-
ity term. From here, we can see that the posterior distribution of B follows
an InverseGamma(α + n, β +

∑
|Xi|) distribution, and therefore has pos-

terior mean (β +
∑
|Xi|)/(α+ n− 1).

(c) The MLE for b when µ = 0 is

b̂ =
1

n

n∑
i=1

|Xi|.
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We can write the posterior mean as a weighted average

β +
∑n
i=1 |Xi|

α+ n− 1︸ ︷︷ ︸
posterior mean

=
α− 1

α+ n− 1

β

α− 1︸ ︷︷ ︸
prior mean

+
n

α+ n− 1

1

n

n∑
i=1

|Xi|︸ ︷︷ ︸
MLE

of the prior mean and the MLE, from which we see that the posterior mean
tends to the MLE as n→∞.

2. Bayesian inference for multinomial proportions.

(a) The posterior distribution has density proportional to

Pα1−1
1 × · · · × Pα6−1

6 × PX1
1 × · · · × PX6

6 = Pα1+X1−1
1 × · · · × Pα6+X6−1

6 .

So the posterior distribution of (P1, . . . , P6) given (X1, . . . , X6) is Dirichlet(α1+
X1, . . . , α6 +X6). The posterior mean and variance are given by

E[Pi|X1, . . . , X6] =
αi +Xi

α0 + nX̄
V[Pi|X1, . . . , X6] =

(αi +Xi)(α0 + nX̄ − αi −Xi)

(α0 + nX̄)2(α0 + nX̄ + 1)
.

(b) We would like to select the parameters αi such that

• The prior mean is 1/6 for each i, and

• The prior variance is small.

Since E[Pi] = αi/
∑6
j=1 αj , a prior mean of 1/6 can be achieved by setting

αi = α for each i. Then the variance is given by

V[Pi] =
α(6α− α)

(6α)2(α+ 1)
=

5

36(α+ 1)
,

from which we see that a large value of α achieves small variance. (The
stronger our prior belief that the die is fair, the larger we would set α.)

(c) From the posterior mean calculated in part (a), we can interpret the param-
eters αi as “prior counts” so an uninformative prior sets αi = 0. Then the
posterior mean is

E[Pi|X1, . . . , X6] =
Xi∑n
j=1Xj

=
Xi

n
,

which is the same as the MLE (see Lecture 13).
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3. GLRT and the t-test. The log-likelihood for the full model is

−n
2

log(2πσ2)− 1

2σ2

n∑
i=1

(Xi − µ)2,

and the MLEs for µ and σ are

µ̂ = X̄ and σ̂2 =
1

n

n∑
i=1

(Xi − µ̂)2.

Under the submodel defined by µ = 0, the log-likelihood is

−n
2

log(2πσ2)− 1

2σ2

n∑
i=1

X2
i

and the MLE for σ2 is

σ̃2 =
1

n

n∑
i=1

X2
i .

Therefore, the GLRT statistic is given by

supσ2 `(0, σ2)

supµ,σ2 `(µ, σ2)
=

(2πσ̃2)−n/2 exp
{
− 1

2σ̃2

∑n
i=1X

2
i

}
(2πσ̂2)−n/2 exp

{
− 1

2σ̂2

∑n
i=1(Xi − µ̂)2

}
=

(
σ̂2

σ̃2

)n/2
=

(∑n
i=1(Xi − X̄)2∑n

i=1X
2
i

)n/2
=

( ∑n
i=1(Xi − X̄)2∑n

i=1(Xi − X̄)2 + nX̄2

)n/2
.

We can rewrite this as

Λ(X1, . . . , Xn) =

(
(n− 1)S2

X

(n− 1)S2
X + nX̄2

)n/2
=

(
n− 1

n− 1 + nX̄2/S2
X

)n/2
=

(
n− 1

n− 1 + T 2

)n/2
,

which is a decreasing function of T 2 and hence of |T | as well.

5



4. Migration rates. The full log-likelihood is proportional to∑
1≤i,j≤3

Nij log pij

and so the MLEs are given by

p̂ij =
Nij
n

for 1 ≤ i, j ≤ 3

(see Example 13.4 in the lecture notes).
Under the equilibrium null hypothesis, the likelihood is

pN11
11 pN22

22 pN33
33 pN12+N21

12 pN13+N31
13 pN23+N32

23 =
3∏
i=1

pNii
ii

∏
1≤i<j≤3

p
Nij+Nji

ij .

So we wish to maximize

3∑
i=1

Nii log pii+
∑

1≤i<j≤3

(Nij+Nji) log pij+λ(p11+p22+p33+2p12+2p13+2p23−1)

where the last term is the Lagrange multiplier for the constraint that the pa-
rameters sum to one.

Taking derivatives and solving gives p̃ii = −Nii/λ for the diagonal ele-
ments and p̃ij = −(Nij + Nji)/(2λ) for the off-diagonal elements. We fur-
thermore see that λ = −n satisfies the constraint, so our MLE estimates in the
submodel are

p̃ii =
Nii
n

for i = j, and p̃ij =
Nij +Nji

2n
for i 6= j.

The generalized likelihood ratio test statistic is given by

Λ =
∏

1≤i,j≤n

(
p̃ij
p̂ij

)Nij

,

Since p̃ij = p̂ij if i = j, we need only worry about the off-diagonal terms. So

−2 log Λ = 2
∑
i 6=j

Nij log
2Nij

Nij +Nji
.

To perform the test if n is large, we can compute −2 log Λ and compare it to the
(1 − α) cutoff value of a χ2

3 distribution, where there are 3 degrees of freedom
because the submodel contains 3 fewer parameters than the full model.
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