
STATS 200: Homework 3

Due Wednesday, October 19, at 5PM

1. The t1t1t1 distribution.
(a) Let T ∼ t1 (the t distribution with 1 degree of freedom). Explain why T has the same dis-

tribution as X
|Y | where X, Y

IID∼ N (0, 1), and hence why T also has the same distribution as X
Y

.

(The distribution of X
Y

when X, Y
IID∼ N (0, 1) is also called the Cauchy distribution. An

exercise using the change-of-variables formula shows that this has PDF

f(x) =
1

π

1

x2 + 1
.

You may use this result without proof in part (b).)

(b) t1 is an example of an extremely “heavy-tailed” distribution: For T ∼ t1, show that

E[|T |] = ∞ and E[T 2] = ∞. If T1, . . . , Tn
IID∼ t1, explain why the Law of Large Numbers

and the Central Limit Theorem do not apply to the sample mean 1
n
(T1 + . . .+ Tn).

2. The tttn distribution for large nnn.
For this question, you may use a result called Slutsky’s lemma: If sequences of random vari-
ables {Xn}∞n=1 and {Yn}∞n=1 satisfy Xn → c in probability for a constant c ∈ R and Yn → Y
in distribution for a random variable Y , then XnYn → cY in distribution.

(a) Let Un ∼ χ2
n. Show that 1/

√
1
n
Un → 1 in probability as n→∞. (Hint: Apply the Law

of Large Numbers and the Continuous Mapping Theorem.)

(b) Using Slutsky’s lemma, show that if Tn ∼ tn for each n = 1, 2, 3, . . ., then as n → ∞,
Tn → Z in distribution where Z ∼ N (0, 1). (This formalizes the statement that “the tn
distribution approaches the standard normal distribution as n gets large”.)

(c) Explain heuristically, in a few sentences, why use of the t-test is approximately valid by
the Central Limit Theorem if n is large, even if X1, . . . , Xn are not normally distributed.
(You may use the fact that when n is large, the ratio of the sample variance S2 to the true
data variance σ2 is very close to 1 with high probability.)

3. Comparing binomial proportions. The internet company Oogl would like to under-
stand whether visitors to a website are more likely to click on an advertisement at the top
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of the page than one on the side of the page. They conduct an “AB test” in which they
show n visitors (group A) a version of the website with the advertisement at the top, and m
visitors (group B) a version of the website with the (same) advertisement at the side. They
record how many visitors in each group clicked on the advertisement.

(a) Formulate this problem as a hypothesis test. (You may assume that visitors in group
A independently click on the ad with probability pA and visitors in group B independently
click on the ad with probability pB, where both pA and pB are unknown probabilities in
(0, 1).) What are the null and alternative hypotheses? Are they simple or composite?

(b) Let p̂A be the fraction of visitors in group A who clicked on the ad, and similarly for
p̂B. A reasonable intuition is to reject H0 when p̂A − p̂B is large. What is the variance of
p̂A − p̂B? Is this the same for all data distributions in H0?

(c) Describe a way to estimate the variance of p̂A − p̂B using the available data, assuming
H0 is true—call this estimate V̂ . Explain heuristically why, when n and m are both large,
the test statistic

T =
p̂A − p̂B√

V̂

is approximately distributed as N (0, 1) under any data distribution in H0. (You may as-
sume that when n and m are both large, the ratio of V̂ to the true variance of p̂A − p̂B that
you derived in part (b) is very close to 1 with high probability.) Explain how to use this
observation to perform an approximate level-α test of H0 versus H1.

4. Sign test. Consider data X1, . . . , Xn
IID∼ f for some unknown probability density function

f , and the testing problem

H0 : f has median 0

H1 : f has median µ for some µ > 0

(a) Explain why the Wilcoxon signed rank statistic does not have the same sampling distri-
bution under every P ∈ H0. Draw a picture of the graph of a density function f with median
0, such that the Wilcoxon signed rank statistic would tend to take larger values under f than
under any density function g that is symmetric about 0.

(b) Consider the sign statistic S, defined as the number of values in X1, . . . , Xn that are
greater than 0. Explain why S has the same sampling distribution under every P ∈ H0.
How would you conduct a level-α test of H0 versus H1 using the test statistic S? (Describe
explicitly the rejection threshold; you may assume that for X ∼ Binomial(n, 1

2
), there exists

an integer k such that P[X ≥ k] is exactly α.)

(c) When n is large, explain why we may reject H0 when S > n
2

+
√

n
4
z(α) where z(α) is

the upper α point of N (0, 1), instead of using the rejection threshold you derived in part (b).
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5. Power comparisons. Consider the problem of testing

H0 : X1, . . . , Xn
IID∼ N (0, 1)

H1 : X1, . . . , Xn
IID∼ N (µ, 1)

at significance level α = 0.05, where µ > 0. We’ve seen four tests that may be applied to
this problem, summarized below:

• Likelihood ratio test: Reject H0 when X̄ > 1√
n
z(0.05).

• t-test: Reject H0 when T :=
√
nX̄/S > tn−1(0.05), where S2 = 1

n−1
∑

i(Xi − X̄)2.

• Wilcoxon signed rank test: Reject H0 when W+ >
n(n+1)

4
+
√

n(n+1)(2n+1)
24

z(0.05), where

W+ is the Wilcoxon signed rank statistic.

• Sign test (from Problem 4 above): Reject H0 when S > n
2

+
√

n
4
z(0.05), where S is

the number of positive values in X1, . . . , Xn.

(For the Wilcoxon and sign test statistics, we are using the normal approximations for their
null distributions.) These tests are successively more robust to violations of the N (0, 1)
distributional assumption imposed by H0.

(a) For n = 100, verify numerically that these tests have significance level close to α, in
the following way: Perform 10,000 simulations. In each simulation, draw a sample of 100
observations from N (0, 1), compute the above four test statistics X̄, T , W+, and S on this
sample, and record whether each test accepts or rejects H0. Report the fraction of simula-
tions for which each test rejected H0, and confirm that these fractions are close to 0.05.

For those of you doing this in R, the following commands may be helpful:

qnorm(0.95)

qt(0.95,df=99)

give the values z(0.05) and t99(0.05), respectively (i.e. the 0.95 quantiles of the N (0, 1) and
t99 distributions). For a numeric data vector X, you may use the built-in functions

t.test(X)$statistic

wilcox.test(X)$statistic

to compute the values of the t-statistic and the Wilcoxon signed-rank statistic. (Computing
X̄ and S should be easy using the functions reviewed in the last two homeworks.) To check
whether a test accepts or rejects, we may use an if-else statement. For example, the following
records whether the Wilcoxon test rejects across each of 10,000 simulations:

n = 100

output.W = numeric(10000)

for (i in 1:10000) {

3



X = rnorm(n, mean=0, sd=1)

W = wilcox.test(X)$statistic

if (W > n*(n+1)/4+sqrt(n*(n+1)*(2*n+1)/24)*qnorm(0.95)) {

output.W[i] = 1

} else {

output.W[i] = 0

}

}

(b) For n = 100, numerically compute the powers of these tests against the alternative H1,
for the values µ = 0.1, 0.2, 0.3, and 0.4. Do this by performing 10,000 simulations as in part
(a), except now drawing each sample of 100 observations from N (µ, 1) instead of N (0, 1).
(You should be able to re-use most of your code from part (a).) Report your computed
powers either in a table or visually using a graph.

(c) How do the powers of the four tests compare, when testing against a normal alternative?
Your friend says, “We should always use the testing procedure that makes the fewest distri-
butional assumptions, because we never know in practice, for example, whether the variance
is truly 1 or whether data is truly normal.” Comment on this statement. Rice says, “It has
been shown that even when the assumption of normality holds, the [Wilcoxon] signed rank
test is nearly as powerful as the t test. The [signed rank test] is thus generally preferable,
especially for small sample sizes.” Do your simulated results support this conclusion?
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