
STATS 200: Homework 5

Due Thursday, November 10, at 5PM

1. The geometric model. Suppose X1, . . . , Xn
IID∼ Geometric(p), where Geometric(p) is

the geometric distribution on the positive integers {1, 2, 3, . . .} defined by the PMF

f(x|p) = p(1− p)x−1,

with a single parameter p ∈ [0, 1]. Compute the method-of-moments estimate of p, as well
as the MLE of p. For large n, what approximately is the sampling distribution of the MLE?
(You may use, without proof, the fact that the Geometric(p) distribution has mean 1/p.)

2. Fisher information in the normal model. Let X1, . . . , Xn
IID∼ N (µ, σ2). We showed

in class that the MLEs for µ and σ2 are given by µ̂ = X̄ and σ̂2 = 1
n

∑n
i=1(Xi − X̄)2.

(a) By computing the Fisher information matrix I(µ, σ2), derive the approximate joint dis-
tribution of µ̂ and σ̂2 for large n. (Hint: Substitute v = σ2 and treat v as the parameter
rather than σ.)

(b) Suppose it is known that µ = 0. Compute the MLE σ̃2 in the one-parameter sub-model
N (0, σ2). The Fisher information matrix in part (a) has off-diagonal entries equal to 0—
when µ = 0 and n is large, what does this tell you about the standard error of σ̃2 as compared
to that of σ̂2?

3. Necessity of regularity conditions. Let X1, . . . , Xn
IID∼ Uniform(0, θ) for a single

parameter θ > 0. (Uniform(0, θ) denotes the continuous uniform distribution on (0, θ),
having PDF

f(x|θ) =
1

θ
1{0 ≤ X ≤ θ}.)

(a) Compute the MLE θ̂ of θ. (Hint: Note that the PDFs f(x|θ) do not have the same
support for all θ > 0, and they are also not differentiable with respect to θ—you will need
to reason directly from the definition of the MLE.)

(b) If the true parameter is θ, explain why θ̂ ≤ θ always, and hence why it cannot be true
that

√
n(θ̂ − θ) converges in distribution to N (0, v) for any v > 0.
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4. Generalized method-of-moments and the MLE.
Consider a parametric model {f(x|θ) : θ ∈ R} of the form

f(x|θ) = eθT (x)−A(θ)h(x), (1)

where T , A, and h are known functions.

(a) Show that the Poisson(λ) model is of this form, upon reparametrizing by θ = log λ.
What are the functions T (x), A(θ), and h(x)?

(b) For any model of the form (1), differentiate the identity

1 =

∫
eθT (x)−A(θ)h(x)dx

with respect to θ on both sides, to obtain a formula for Eθ[T (X)]. (Eθ denotes expectation
when X ∼ f(x|θ).) Verify that this formula is correct for the Poisson example in part (a).

(c) The generalized method-of-moments estimator is defined by the following procedure:
For a fixed function g(x), compute Eθ[g(X)] in terms of θ, and take the estimate θ̂ to be the
value of θ for which

Eθ[g(X)] =
1

n

n∑
i=1

g(Xi).

(The method-of-methods estimator discussed in class is the special case of this procedure

for g(x) = x.) Let X1, . . . , Xn
IID∼ f(x|θ), where f(x|θ) is of the form (1), and consider the

generalized method-of-moments estimator using the function g(x) = T (x). Show that this
estimator is the same as the MLE. (You may assume that the MLE is the unique solution
to the equation 0 = l′(θ), where l(θ) is the log-likelihood.)

(d) Explain why the MLE and the method-of-moments estimator (the usual one defined in
class with g(x) = x) are the same for the Poisson(λ) model.

5. Computing the Gamma MLE.
(a) Implement a function that takes as input a vector of data values X, performs the Newton-
Raphson iterations to compute the MLEs α̂ and β̂ in the Gamma(α, β) model, and outputs
α̂ and β̂. (You may use the form of the Newton-Raphson update equation derived in class.)

In R, this function may be defined as

gammaMLE <- function(X) {

...

return(c(ahat,bhat))

}

where ... should be filled in with the code to compute the MLE estimates ahat and bhat

from X. You may terminate the Newton-Raphson iterations when |α(t+1)−α(t)| is sufficiently
small: For example, the high-level organization of the code to compute α̂ can be

2



a.prev = -Inf

a = # fill in code to initialize alpha^{(0)}

while (abs(a-a.prev) > 1e-12) {

# fill in code to compute alpha^{(t+1)} from alpha^{(t)} = a

# set a.new to be alpha^{(t+1)}

a.prev = a

a = a.new

}

ahat = a

The log-gamma function log Γ(α), digamma function ψ(α) = Γ′(α)/Γ(α), and its derivative
ψ′(α) (called the trigamma function) are available in R as lgamma(alpha), digamma(alpha),
and trigamma(alpha) respectively.

(b) For n = 500, use your function from part (a) to simulate the sampling distributions

of α̂ and β̂ computed from X1, . . . , Xn
IID∼ Gamma(1, 2). Plot histograms of the values of

α̂ and β̂ across 5000 simulations, and report the simulated mean and variance of α̂ and β̂
as well as the simulated covariance between α̂ and β̂. Compute the inverse of the Fisher
Information matrix I(α, β) at α = 1 and β = 2—do your simulations support that (α̂, β̂) is
approximately distributed as N ((1, 2), 1

n
I(1, 2)−1)? (You may use the formula for the Fisher

information matrix I(α, β) and/or its inverse derived in class.)

In R, you may simulate X1, . . . , Xn
IID∼ Gamma(α, β) using

X = rgamma(n, alpha, rate=beta)

The sample variance of a vector of values X is given by var(X), and the sample covariance
between two vectors of values X and Y (of the same length) is given by cov(X,Y).

3


