

STATS 200: Homework 5

Due Thursday, November 10, at 5PM

1. **The geometric model.** Suppose $X_1, \dots, X_n \stackrel{IID}{\sim} \text{Geometric}(p)$, where $\text{Geometric}(p)$ is the geometric distribution on the positive integers $\{1, 2, 3, \dots\}$ defined by the PMF

$$f(x|p) = p(1-p)^{x-1},$$

with a single parameter $p \in [0, 1]$. Compute the method-of-moments estimate of p , as well as the MLE of p . For large n , what approximately is the sampling distribution of the MLE? (You may use, without proof, the fact that the $\text{Geometric}(p)$ distribution has mean $1/p$.)

2. **Fisher information in the normal model.** Let $X_1, \dots, X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$. We showed in class that the MLEs for μ and σ^2 are given by $\hat{\mu} = \bar{X}$ and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$.

(a) By computing the Fisher information matrix $I(\mu, \sigma^2)$, derive the approximate joint distribution of $\hat{\mu}$ and $\hat{\sigma}^2$ for large n . (Hint: Substitute $v = \sigma^2$ and treat v as the parameter rather than σ .)

(b) Suppose it is known that $\mu = 0$. Compute the MLE $\tilde{\sigma}^2$ in the one-parameter sub-model $\mathcal{N}(0, \sigma^2)$. The Fisher information matrix in part (a) has off-diagonal entries equal to 0—when $\mu = 0$ and n is large, what does this tell you about the standard error of $\tilde{\sigma}^2$ as compared to that of $\hat{\sigma}^2$?

3. **Necessity of regularity conditions.** Let $X_1, \dots, X_n \stackrel{IID}{\sim} \text{Uniform}(0, \theta)$ for a single parameter $\theta > 0$. ($\text{Uniform}(0, \theta)$ denotes the continuous uniform distribution on $(0, \theta)$, having PDF

$$f(x|\theta) = \frac{1}{\theta} \mathbb{1}\{0 \leq X \leq \theta\}.$$

(a) Compute the MLE $\hat{\theta}$ of θ . (Hint: Note that the PDFs $f(x|\theta)$ do not have the same support for all $\theta > 0$, and they are also not differentiable with respect to θ —you will need to reason directly from the definition of the MLE.)

(b) If the true parameter is θ , explain why $\hat{\theta} \leq \theta$ always, and hence why it cannot be true that $\sqrt{n}(\hat{\theta} - \theta)$ converges in distribution to $\mathcal{N}(0, v)$ for any $v > 0$.

4. Generalized method-of-moments and the MLE.

Consider a parametric model $\{f(x|\theta) : \theta \in \mathbb{R}\}$ of the form

$$f(x|\theta) = e^{\theta T(x) - A(\theta)} h(x), \quad (1)$$

where T , A , and h are known functions.

(a) Show that the Poisson(λ) model is of this form, upon reparametrizing by $\theta = \log \lambda$. What are the functions $T(x)$, $A(\theta)$, and $h(x)$?

(b) For any model of the form (1), differentiate the identity

$$1 = \int e^{\theta T(x) - A(\theta)} h(x) dx$$

with respect to θ on both sides, to obtain a formula for $\mathbb{E}_\theta[T(X)]$. (\mathbb{E}_θ denotes expectation when $X \sim f(x|\theta)$.) Verify that this formula is correct for the Poisson example in part (a).

(c) The **generalized method-of-moments** estimator is defined by the following procedure: For a fixed function $g(x)$, compute $\mathbb{E}_\theta[g(X)]$ in terms of θ , and take the estimate $\hat{\theta}$ to be the value of θ for which

$$\mathbb{E}_\theta[g(X)] = \frac{1}{n} \sum_{i=1}^n g(X_i).$$

(The method-of-methods estimator discussed in class is the special case of this procedure for $g(x) = x$.) Let $X_1, \dots, X_n \stackrel{IID}{\sim} f(x|\theta)$, where $f(x|\theta)$ is of the form (1), and consider the generalized method-of-moments estimator using the function $g(x) = T(x)$. Show that this estimator is the same as the MLE. (You may assume that the MLE is the unique solution to the equation $0 = l'(\theta)$, where $l(\theta)$ is the log-likelihood.)

(d) Explain why the MLE and the method-of-moments estimator (the usual one defined in class with $g(x) = x$) are the same for the Poisson(λ) model.

5. Computing the Gamma MLE.

(a) Implement a function that takes as input a vector of data values \mathbf{X} , performs the Newton-Raphson iterations to compute the MLEs $\hat{\alpha}$ and $\hat{\beta}$ in the Gamma(α, β) model, and outputs $\hat{\alpha}$ and $\hat{\beta}$. (You may use the form of the Newton-Raphson update equation derived in class.)

In R, this function may be defined as

```
gammaMLE <- function(X) {
  ...
  return(c(ahat, bhat))
}
```

where \dots should be filled in with the code to compute the MLE estimates $\hat{\alpha}$ and $\hat{\beta}$ from \mathbf{X} . You may terminate the Newton-Raphson iterations when $|\alpha^{(t+1)} - \alpha^{(t)}|$ is sufficiently small: For example, the high-level organization of the code to compute $\hat{\alpha}$ can be

```

a.prev = -Inf
a = # fill in code to initialize alpha^(0)
while (abs(a-a.prev) > 1e-12) {
  # fill in code to compute alpha^{(t+1)} from alpha^{(t)} = a
  # set a.new to be alpha^{(t+1)}
  a.prev = a
  a = a.new
}
ahat = a

```

The log-gamma function $\log \Gamma(\alpha)$, digamma function $\psi(\alpha) = \Gamma'(\alpha)/\Gamma(\alpha)$, and its derivative $\psi'(\alpha)$ (called the trigamma function) are available in R as `lgamma(alpha)`, `digamma(alpha)`, and `trigamma(alpha)` respectively.

(b) For $n = 500$, use your function from part (a) to simulate the sampling distributions of $\hat{\alpha}$ and $\hat{\beta}$ computed from $X_1, \dots, X_n \stackrel{IID}{\sim} \text{Gamma}(1, 2)$. Plot histograms of the values of $\hat{\alpha}$ and $\hat{\beta}$ across 5000 simulations, and report the simulated mean and variance of $\hat{\alpha}$ and $\hat{\beta}$ as well as the simulated covariance between $\hat{\alpha}$ and $\hat{\beta}$. Compute the inverse of the Fisher Information matrix $I(\alpha, \beta)$ at $\alpha = 1$ and $\beta = 2$ —do your simulations support that $(\hat{\alpha}, \hat{\beta})$ is approximately distributed as $\mathcal{N}((1, 2), \frac{1}{n}I(1, 2)^{-1})$? (You may use the formula for the Fisher information matrix $I(\alpha, \beta)$ and/or its inverse derived in class.)

In R, you may simulate $X_1, \dots, X_n \stackrel{IID}{\sim} \text{Gamma}(\alpha, \beta)$ using

```
X = rgamma(n, alpha, rate=beta)
```

The sample variance of a vector of values X is given by `var(X)`, and the sample covariance between two vectors of values X and Y (of the same length) is given by `cov(X, Y)`.