STATS 200: Homework 6

Due Wednesday, November 16, at 5PM

1. A discrete model (based on Rice 8.4). Suppose that X is a discrete random variable
with

P[X = 0] = ge
PIX = 1] = -6
PIX =2 = 2(1-6)
P[X = 3] = %(1—9)

where 0 < # < 1 is a parameter. The following 10 independent observations were taken
from such a distribution: {3,0,2,1,3,2,1,0,2,1}. (For parts (a) and (b), feel free to use any
asymptotic approximations you wish, even though n = 10 here is rather small.)

(a) Find the method of moments estimate of ¢, and compute an approximate standard error
of your estimate using asymptotic theory.

(b) Find the maximum likelihood estimate of 6, and compute an approximate standard error
of your estimate using asymptotic theory. (Hint: Your formula for the log-likelihood based
on n observations Xi, ..., X, should depend on the numbers of 0’s, 1’s, 2’s, and 3’s in this
sample. )

(c) Compute, instead, an approximate standard error for your MLE in part (b) using the
nonparametric bootstrap and B = 10000 bootstrap simulations. (Provide both your code
and the standard error estimate.)

(In R, sample(X,n,replace=TRUE) returns a vector containing n samples with replacement
from a vector X of length n.)

2. Confidence intervals for a binomial proportion.

Let X4,..., X, o Bernoulli(p) be n tosses of a biased coin, and let p = X. In this problem
we will explore two different ways to construct a 95% confidence interval for p, both based
on the Central Limit Theorem result

Vn(p —p) = N(0,p(1 - p)). (1)
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(a) Use the plugin estimate p(1 — p) for the variance p(1 — p) to obtain a 95% confidence
interval for p. (This is the procedure discussed in Lecture 19, yielding the Wald interval for p.)

(b) Instead of using the plugin estimate p(1 — p), note that equation (1) implies, for large n,
P, [~ /o(1 = p)(a/2) < Vialp - p) < V(T = p)(a/2)] = 1- 0.

Solve the equation /n(p —p) = \/p(1 — p)z(a/2) for p in terms of p, and solve the equation

Vi —p) = —v/p(1 —p)z(a/2) for p in terms of p, to obtain a different 95% confidence
interval for p.

(c) Perform a simulation study to determine the true coverage of the confidence intervals in
parts (a) and (b), for the 9 combinations of sample size n = 10, 40, 100 and true parameter
p = 0.1, 0.3, 0.5. (For each combination, perform at least B = 100,000 simulations. In
each simulation, you may simulate p directly from %Binomial(n,p) instead of simulating
Xi,..., X, E.g.in R, phat = rbinom(1,n,p)/n.) Report the simulated coverage levels in
two tables. Which interval yields true coverage closer to 95% for small values of n?

3. MLE in a misspecified model. Suppose you fit the model Exponential(A) to data
Xi,..., X, by computing the MLE A = 1/X, but the true distribution of the data is

Xi,..., X, Y Gamma(2,1).

(a) Let f(z|\) be the PDF of the Exponential(\) distribution, and let g(x) be the PDF
of the Gamma(2, 1) distribution. Compute an explicit formula for the the KL-divergence
Dx1.(g(x)|| f(z|\)) in terms of A, and find the value A* that minimizes this KL-divergence.

(You may use the fact that if X ~ Gamma(a, ), then E[X] = a/f and E[log X] =
() — log 8 where v is the digamma function.)

(b) Show directly, using the Law of Large Numbers and the Continuous Mapping Theorem,
that the MLE A converges in probability to A* as n — oc.

(c) Perform a simulation study for the standard error of A with sample size n = 500, as

follows: In each of B = 10000 simulations, sample X1,..., X, o Gamma(2, 1), compute
the MLE A = 1/X for the exponential model, compute an estimate of the standard error of A

using the Fisher information I()), and compute also the sandwich estimate of the standard
error, Sx/(X?\/n), derived in Lecture 16.

Report the true mean and standard deviation of A that you observe across your 10000
simulations. Is the mean close to A\* from part (a)? Plot a histogram of the 10000 esti-
mated standard errors using the Fisher information, and also plot a histogram of the 10000
estimated standard errors using the sandwich estimate. Do either of these methods for esti-
mating the standard error of \ seem accurate in this setting?



4. The delta method for two samples. Let X;,..., X, oy Bernoulli(p), and let

Yi,..., Y, 1y Bernoulli(g), where the X;’s and Y;’s are independent. For example, X7, ..., X,
may represent, among n individuals exposed to a certain risk factor for a disease, which in-
dividuals have this disease, and Y1, ..., Y}, may represent, among m individuals not exposed
to this risk factor, which individuals have this disease. The odds-ratio

b /7
1—p/ 1—¢q

provides a quantitative measure of the association between this risk factor and this disease.
(For more details, see Rice Section 13.6.) The log-odds-ratio is the (natural) logarithm of

this quantity,
og (2 /1
l—p/ 1—-q)

(a) Suggest reasonable estimators p and ¢ for p and ¢, and suggest a plugin estimator for
the log-odds-ratio.

(b) Using the first-order Taylor expansion

9(p.8) ~ g(p, @) + (5 — p>§—§<p, )+ (- q>§—g<p, 2

as well as the Central Limit Theorem and independence of the X;’s and Y;’s, derive an
asymptotic normal approximation to the sampling distribution of your plugin estimator in
part (a). (Hint: Recall the proof of the delta method from Lecture 18.)

(c) Give an approximate 95% confidence interval for the log-odds-ratio log t£ /7%. Translate
this into an approximate 95% confidence interval for the odds-ratio {£ /.. (You may use
a plugin estimate for the variance of the normal distribution that you derived in part (b).)



