
STATS 200: Homework 7

Due Wednesday, November 30, at 5PM

1. The Laplace distribution. The Laplace (or double-exponential) distribution with mean
µ and scale b is a continuous distribution over R with PDF

f(x|µ, b) =
1

2b
exp

(
−|x− µ|

b

)
.

It is sometimes used as an alternative to the normal distribution to model data with heavier
tails, as this PDF decays exponentially in |x− µ| rather than in (x− µ)2.

(a) What are the MLEs µ̂ and b̂ given data X1, . . . , Xn? Why is this MLE µ̂ more robust to
outliers than the MLE µ̂ in the N (µ, σ2) model?

You may assume that n is odd and that the data values X1, . . . , Xn are all distinct. (Hint:
The log-likelihood is differentiable in b but not in µ. To find the MLE µ̂, you will need to
reason directly from its definition.)

(b) Suppose it is known that µ = 0. In a Bayesian analysis, let us model the scale parameter
as a random variable B with prior distribution B ∼ InverseGamma(α, β), where α, β > 0.
If X1, . . . , Xn ∼ Laplace(0, b) when B = b, what are the posterior distribution and posterior
mean of B given the data X1, . . . , Xn?

(The InverseGamma(α, β) distribution is a continuous distribution on (0,∞) with PDF

f(x) =
βα

Γ(α)
x−α−1e−β/x

and with mean β
α−1

when α > 1.)

(c) Still supposing it is known that µ = 0, what is the MLE b̂ for b in this sub-model? How
does this compare to the posterior mean from part (b) when n is large?

2. Bayesian inference for multinomial proportions. The Dirichlet(α1, . . . , αK) distri-
bution with parameters α1, . . . , αK > 0 is a continuous joint distribution over K random
variables (P1, . . . , PK) such that 0 ≤ Pi ≤ 1 for all i = 1, . . . , K and P1 + . . . + PK = 1. It
has (joint) PDF

f(p1, . . . , pk|α1, . . . , αK) ∝ pα1−1
1 × . . .× pαK−1

K .
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Letting α0 = α1 + . . .+ αK , this distribution satisfies

E[Pi] =
αi
α0

, Var[Pi] =
αi(α0 − αi)
α2
0(α0 + 1)

.

(a) Let (X1, . . . , X6) ∼ Multinomial(n, (p1, . . . , p6)) be the numbers of 1’s through 6’s ob-
tained in n rolls of a (possibly biased) die. Let us model (P1, . . . , P6) as random variables with
prior distribution Dirichlet(α1, . . . , α6). What is the posterior distribution of (P1, . . . , P6)
given the observations (X1, . . . , X6)? What is the posterior mean and variance of P1?

(b) How might you choose the prior parameters α1, . . . , α6 to represent a strong prior belief
that the die is close to fair (meaning p1, . . . , p6 are all close to 1/6)?

(c) How might you choose an improper Dirichlet prior to represent no prior information? How
do the posterior mean estimates of p1, . . . , p6 under this improper prior compare to the MLE?

3. GLRT and the t-test. Let X1, . . . , Xn
IID∼ N (µ, σ2), where both µ and σ2 are unknown.

Consider the problem of testing

H0 : µ = 0

H1 : µ 6= 0

Show that the generalized likelihood ratio test statistic for this problem simplifies to

Λ(X1, . . . , Xn) =

( ∑n
i=1(Xi − X̄)2∑n

i=1(Xi − X̄)2 + nX̄2

)n/2
.

Letting S2
X = 1

n−1

∑n
i=1(Xi − X̄)2 and T =

√
nX̄/SX (the usual one-sample t-statistic for

this problem), show that Λ(X1, . . . , Xn) is a monotonically decreasing function of |T |, and
hence the generalized likelihood ratio test is equivalent to the two-sided t-test which rejects
for large values of |T |.

4. Migration rates. To study the rates of migration between 3 cities A, B, and C, the
locations of n people living in these cities at the start and end of a 10-year period were
recorded. Let N11 be the number of people who started and ended in city A, N12 be the
number of people who started in city A and ended in city B, etc. Let us model the vector of
9 counts (Nij)1≤i,j≤3 as Multinomial(n, (pij)1≤i,j≤3), where (pij)1≤i,j≤3 is a probability vector
with 9 entries summing to 1.

We wish to test the “equilibrium” null hypothesis that p12 = p21, p13 = p31, and p23 = p32.
Express the generalized likelihood ratio test statistic for this problem as a simple formula in
the observed counts (Nij)1≤i,j≤3 and n, and describe how you would carry out a level-α test
of this null hypothesis when n is large.
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