
STATS 200: Homework 8

Due Friday, December 9, at 5PM

1. Fitting a Bradley-Terry model. The file NBA record.csv contains the results of all
1230 NBA games from the 2015–2016 regular season. The 30 teams are encoded numeri-
cally from 1 to 30; the key for this encoding is provided in the file teams.txt. Each row of
NBA record.csv indicates the home team, away team, and outcome Y for one game, where
Y = 1 if the home team won and Y = 0 otherwise.

For parts (a) and (b), you may not use an existing software implementation of the Bradley-
Terry or logistic regression model; however, you may use any generic optimization or equation-
solving routine (or you may implement the Newton-Raphson iterations yourself, if you are
brave).

(a) Fit the Bradley-Terry model, with an intercept term α for the home-court advantage,
to this data set. What are the 8 teams (in ranked order) with the highest Bradley-Terry
scores? How much greater is the log-odds of winning for the home team than for the away
team?

One approach to do this in R is to use the generic optimization function optim. To do this,
first define a function

loglik = function(theta,Home,Away,Y) {

...

}

that returns the log-likelihood for the Bradley-Terry model given inputs θ = (α, β2, . . . , βk)
(constraining β1 ≡ 0), Home = (i1, . . . , in), Away = (j1, . . . , jn), and Y = (Y1, . . . , Yn),
where im and jm are the home and away teams for game m. To then read the data file and
maximize the log-likelihood:

table = read.csv(’NBA_record.csv’)

result = optim(theta0,loglik,Home=table$Home,Away=table$Away,Y=table$Y,

method=’BFGS’,control=list(’fnscale’=-1))

Here theta0 is any initialization for θ (for example the all 0’s vector). The method will
use the BFGS algorithm, and ’fnscale’=-1 indicates that it should perform maximization
rather than minimization.
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(b) Fit the Bradley-Terry model without an intercept term. (You may do this in R by
defining a new function loglik noalpha = function(theta,Home,Away,Y) where now θ =
(β2, . . . , βk), and using optim as before.) Evaluate the log-likelihoods at the full model and
sub-model MLEs, and carry out a generalized likelihood ratio test of the null hypothesis of
no home court advantage, H0 : α = 0. What is the p-value that you obtain for your test?

(c) For the mth game, suppose we define 30 covariates xm,1, . . . , xm,30 in the following way:
Let xm,1 = 1 always. Let xm,i = 1 if team i is the home team of this game and i 6= 1, and
let xm,j = −1 if team j is the away team of this game and j 6= 1. Let xm,k = 0 for all other
k. Explain why logistic regression for Ym using the covariates xm,1, . . . , xm,30 is equivalent
to the Bradley-Terry model, where we constrain the Bradley-Terry score of team 1 to be
β1 ≡ 0. If we were to run this logistic regression, what would be the interpretation of the
fitted coefficient for the first covariate xm,1? For the 10th covariate xm,10?

(d) Fit the logistic regression in part (c) using any standard regression software, and verify
that the fitted coefficients match (up to reasonable numerical accuracy) your estimated pa-
rameters from part (a).

To do this in R, you may construct a matrix X of size 1230 × 30 containing the covariates
as defined in part (c), and then fit the regression using

model = glm.fit(X,table$Y,family=binomial())

coefs = model$coefficients

2. A heteroskedastic linear model. Consider observed response variables Y1, . . . , Yn ∈ R
that depend linearly on a single covariate x1, . . . , xn as follows:

Yi = βxi + εi.

Here, the εi’s are independent Gaussian noise variables, but we do not assume they have the
same variance. Instead, they are distributed as εi ∼ N (0, σ2

i ) for possibly different variances
σ2
1, . . . , σ

2
n. The unknown parameter of interest is β.

(a) Suppose that the error variances σ2
1, . . . , σ

2
n are all known. Show that the MLE β̂ for

β, in this case, minimizes a certain weighted least-squares criterion, and derive an explicit
formula for β̂.

(b) Show that the estimate β̂ in part (a) is unbiased, and derive a formula for the variance
of β̂ in terms of σ2

1, . . . , σ
2
n and x1, . . . , xn.

(c) Compute the Fisher information IY(β) = −Eβ[l′′(β)] in this model (still assuming

σ2
1, . . . , σ

2
n are known constants). Show that the variance of β̂ that you derived in part

(b) is exactly equal to IY(β)−1.

In the remaining parts of this question, denote by β̃ the usual (unweighted) least-squares
estimator for β, which minimizes

∑
i(Yi − βxi)2. In practice we might not know the values
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of σ2
1, . . . , σ

2
n, so we might still estimate β using β̃.

(d) Derive an explicit formula for β̃, and show that it is also an unbiased estimate of β.

(e) Derive a formula for the variance of β̃ in terms of σ2
1, . . . , σ

2
n and x1, . . . , xn. Show that

when all error terms have the same variance σ2
0, this coincides with the general formula

σ2
0(XTX)−1 for the linear model, from Lecture 25.

(f) Using the Cauchy-Schwarz inequality (
∑

i a
2
i )(

∑
i b

2
i ) ≥ (

∑
i aibi)

2 for any positive num-
bers a1, . . . , an and b1, . . . , bn, compare your variance formulas from parts (b) and (e) and
show directly that the variance of β̃ is always at least the variance of β̂. Explain, using the
Cramer-Rao lower bound, why this is to be expected given your finding in part (c).

(g) Estimating each σ2
i by the squared residual (Yi − β̃xi)2, derive a plugin estimate for the

standard error of β̃ that is robust to possible differences in the variances σ2
1, . . . , σ

2
n.

(h) Perform a simulation that compares your standard error estimate in (g) to the usual
standard error estimate of β̃ obtained by linear regression software packages, as follows: Let
(x1, x2, . . . , x100) = (0.01, 0.02, . . . , 1) and (σ2

1, σ
2
2, . . . , σ

2
100) = (0.012, 0.022, . . . , 12). In each

of B = 10000 simulations, generate Yi = xi + εi for i = 1, . . . , 100, and fit the linear model
Y = x + ε using any standard linear regression package to obtain the estimate β̃ and an
estimated standard error for β̃. Compute also the estimated standard error of β̃ using your
method in part (g).

Report the true (empirical) standard deviation of β̃ across the B simulations, and plot two
histograms of the estimated standard errors using the two different methods. Summarize
briefly your findings.

In R, given data vectors x and Y, you may run the regression Y = x+ ε using the command

model = lm(Y ~ x + 0)

(The +0 means that the regression should not be fit with an intercept term.) The least-
squares estimate β̃ is obtained as

summary(model)[["coefficients"]][["x","Estimate"]]

and the estimated standard error of β̃ is obtained as

summary(model)[["coefficients"]][["x","Std. Error"]]
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