STATS 200: Homework &

Due Friday, December 9, at 5PM

1. Fitting a Bradley-Terry model. The file NBA _record.csv contains the results of all
1230 NBA games from the 20152016 regular season. The 30 teams are encoded numeri-
cally from 1 to 30; the key for this encoding is provided in the file teams.txt. Each row of
NBA_record.csv indicates the home team, away team, and outcome Y for one game, where
Y =1 if the home team won and Y = 0 otherwise.

For parts (a) and (b), you may not use an existing software implementation of the Bradley-
Terry or logistic regression model; however, you may use any generic optimization or equation-
solving routine (or you may implement the Newton-Raphson iterations yourself, if you are
brave).

(a) Fit the Bradley-Terry model, with an intercept term « for the home-court advantage,
to this data set. What are the 8 teams (in ranked order) with the highest Bradley-Terry
scores?” How much greater is the log-odds of winning for the home team than for the away
team?

One approach to do this in R is to use the generic optimization function optim. To do this,
first define a function

loglik = function(theta,Home,Away,Y) {

}

that returns the log-likelihood for the Bradley-Terry model given inputs 6 = («, s, ..., k)
(constraining 5, = 0), Home = (i1,...,i,), Away = (j1,...,Jn), and Y = (Y1,...,Y,),
where 1, and j,, are the home and away teams for game m. To then read the data file and
maximize the log-likelihood:

table = read.csv(’NBA_record.csv’)
result = optim(thetal,loglik,Home=table$Home, Away=table$Away,Y=table$Y,
method="BFGS’,control=1ist(’fnscale’=-1))

Here thetal is any initialization for 6 (for example the all 0’s vector). The method will
use the BFGS algorithm, and ’fnscale’=-1 indicates that it should perform maximization
rather than minimization.



(b) Fit the Bradley-Terry model without an intercept term. (You may do this in R by
defining a new function loglik noalpha = function(theta,Home,Away,Y) where now 6 =
(B2, ..., k), and using optim as before.) Evaluate the log-likelihoods at the full model and
sub-model MLEs, and carry out a generalized likelihood ratio test of the null hypothesis of
no home court advantage, Hy : « = 0. What is the p-value that you obtain for your test?

(c) For the mth game, suppose we define 30 covariates @, 1, ..., Tm30 in the following way:
Let z,,1 = 1 always. Let z,,,; = 1 if team ¢ is the home team of this game and 7 # 1, and
let z,,,; = —1 if team j is the away team of this game and j # 1. Let x,,; = 0 for all other
k. Explain why logistic regression for Y,, using the covariates x,,1,...,Zmn30 is equivalent
to the Bradley-Terry model, where we constrain the Bradley-Terry score of team 1 to be
By = 0. If we were to run this logistic regression, what would be the interpretation of the
fitted coefficient for the first covariate x,,;? For the 10th covariate x,, 107

(d) Fit the logistic regression in part (c¢) using any standard regression software, and verify
that the fitted coefficients match (up to reasonable numerical accuracy) your estimated pa-
rameters from part (a).

To do this in R, you may construct a matrix X of size 1230 x 30 containing the covariates
as defined in part (c), and then fit the regression using

model
coefs

glm.fit(X,table$Y,family=binomial ())
model$coefficients

2. A heteroskedastic linear model. Consider observed response variables Y7,...,Y, € R
that depend linearly on a single covariate x1, ..., x, as follows:

Y = Bx; +¢;.

Here, the ¢;’s are independent Gaussian noise variables, but we do not assume they have the
same variance. Instead, they are distributed as &; ~ N(0, 0?) for possibly different variances

o%,...,02. The unknown parameter of interest is f3.

(a) Suppose that the error variances o2,...,02 are all known. Show that the MLE /3 for
[, in this case, minimizes a certain weighted least-squares criterion, and derive an explicit

formula for §.

(b) Show that the estimate § in part (a) is unbiased, and derive a formula for the variance
of 8 in terms of 0%,...,0% and z1,...,7,.

(c) Compute the Fisher information Iy(8) = —Eg[l”(5)] in this model (still assuming
o?,...,0% are known constants). Show that the variance of 3 that you derived in part

(b) is exactly equal to Iy (3)~".

In the remaining parts of this question, denote by 3 the usual (unweighted) least-squares
estimator for £, which minimizes Y ,(Y; — Sz;)®. In practice we might not know the values
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n’

of 62,...,02, so we might still estimate 3 using 8.

(d) Derive an explicit formula for 3, and show that it is also an unbiased estimate of j3.

(e) Derive a formula for the variance of 3 in terms of 02,...,02 and 1, ..., x,. Show that
when all error terms have the same variance o7, this coincides with the general formula
02(XTX)~! for the linear model, from Lecture 25.

(f) Using the Cauchy-Schwarz inequality (32, a?)(>°,b2) > (37, a;b;)? for any positive num-
bers aq,...,a, and by, ..., b,, compare your variance formulas from parts (b) and (e) and
show directly that the variance of B is always at least the variance of B Explain, using the
Cramer-Rao lower bound, why this is to be expected given your finding in part (c).

(g) Estimating each o2 by the squared residual (Y; — fz;)?, derive a plugin estimate for the
standard error of B that is robust to possible differences in the variances 0%, ..., o2

(h) Perform a simulation that compares your standard error estimate in (g) to the usual
standard error estimate of 3 obtained by linear regression software packages, as follows: Let
(z1, %9, ..., 2100) = (0.01,0.02,...,1) and (0%,03,...,0%,) = (0.01%,0.02%,...,1?). In each
of B = 10000 simulations, generate Y; = x; + ¢; for i = 1,...,100, and fit the linear model
Y = x + ¢ using any standard linear regression package to obtain the estimate 3 and an
estimated standard error for 5. Compute also the estimated standard error of 5 using your
method in part (g).

Report the true (empirical) standard deviation of B across the B simulations, and plot two
histograms of the estimated standard errors using the two different methods. Summarize
briefly your findings.

In R, given data vectors x and Y, you may run the regression Y = x + ¢ using the command
model = 1m(Y ~ x + 0)

(The +0 means that the regression should not be fit with an intercept term.) The least-
squares estimate [ is obtained as

summary (model) [["coefficients"]] [["x","Estimate"]]
and the estimated standard error of B is obtained as

summary (model) [["coefficients"]] [["x","Std. Error"]]



