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Foundation Models
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What to Expect from Course

» Provide background and discussion of (some) of the latest
large-scale foundation models

- Discuss applications, exciting opportunities, and
challenges for adaptation to healthcare

» Educate in this rapidly moving area and help enable high-
quality research and applications




What to Expect from Students

» Active participation in course content - discussions,
readings, and assignment

- Working towards a high-quality tinal project

- Flexibility to adapt to a fast-changing field!!




To What Extent Do You Use FMs?

A. T have used FMs occasionally
B. Iuse FMs during my day-to-day activities
C. Iam a power-user of FMs

D. I exclusively vibe code



What are Your Common FM Uses?

A. Coding
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General writing

Image generation/manipulation
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(Rough) Course Outline — Part 1

Week 1

Mar 31:

Apr 02:

Week 2

Apr 07:

Apr 09:

Week 3

Apr 14:

Apr 16:

LB Course Overview & Introduction to Foundation Models

e LN Introduction to LLMs

Al Scientist Agents

Current Advances in LLMs and Agents

Evaluations of LLMs and agents

IR Generative Al for Drug Discovery




(Rough) Course Outline — Part 2

Week 4

Apr 21:

Apr 23:

Week 5

Apr 28:

Apr 30:

Week 6

May 05:

Self-Supervised Learning for Vision

HOMEWORK #1 DUE

Self-Supervised Vision-Language Models

ISl -8 Generative VLMs in Health

Foundation Models for Imaging

Foundation Model Adaptation and Evaluation

HOMEWORK #2 DUE




(Rough) Course Outline — Part 3

May 07:

Week 7

May 12:

May 14:

Week 8

May 19:

May 21:

Improving LLM Performance

Training and Deployment Considerations

Mixture of Expert Models

B0l 125 Deployment Considerations

HOMEWORK #3 DUE

W01 1[5 Inference Scaling and Reasoning




(Rough) Course Outline — Part 4

Week 9

May 28:

Week 10

Jun 2:

Jun 4:

Week 11

Jun 11:

ISR EMR Foundation Models

PROJECT PRESENTATIONS DUE

PROJECT REPORTS DUE

Bias and Health Equity

Final Presentations




Course Grading

» 10% Class participation

» 45% Homework (3 assignments)

» 45% Final Project



Classic ML
MO dels nput ML Model Output

Function Application

* Recognition

e  Structured e TLabel * (lustering . Detection * Customer service
« Time series +  Regression * C(lassification . Seomentation * Social Media
e Text e  Text * Prediction . Ca%p tioning * Marketing
e Imagce . * Regression . * (Code generation
. Aud%o o Kniige * Synthesis * Image/text/synthesis . Auton%ated reporting
. udio e Audio/Video/multimodal . X
e  Video . Video , * Domain-specific
. Table . Tabl synthesis
Domain Da € * Question answering
° - . omain-

a. a * Text generation
spec1f1c specific * Autocompletion

. Mult}-D  Translation

e  Multimodal e Summarization

* Sentiment analysis

* Navigation

* Search/IR

e Recommendation



Foundation
MO dels IHL FOK/IB(? 515 on Output

Input Output Function Tasks Application
e Trained on a * Different * Detined based * A single model can * Same model can serve
variety of types of on the scope of accomplish multiple multiple applications
data input output ability, range of tasks: « Customer service
based on uses, breadth of » Sentence completion * Code generation
downstream tasks or types of ¢ Sentiment )
use output and classification
input * Summarization
* Encoder * ...
* Decoder * Works for arbitrary
* Encoder- input

Decoder  Can be fine-tuned



Are these Foundation Models?

» Decision ITrees
» Clustering

» Support Vector
Machines

« Random Forests
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Are these Foundation Models?

» Multi-layer
perceptron

- RNN
- LSTM

The repeating module in an LSTM contains four interacting layers.

hdtest//colah.githubyie/posts/2015-08-Understanding-

H@%M@{)Ieaming.stanford.edu/tutorial/supervised/MuItiLayerNeuraINetwor
ks/




Are these Foundation Models?
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Are these Foundation Models?
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Foundation vs Traditional ML models

* Trained on broad unlabeled data fora  * 'Trained on specific datasets and
variety of tasks designed for particular tasks

* Very large number of parameters * Fewer parameters compared to

* Fine-tuning for adaptation foundation models.

* Self-supervision for labeling * Label supervision

* Reduced development time, less » Easy to implement, interpret, and
ongoing maintenance computationally efficient.

* Dataset bias * Risk of overfitting or underfitting

* lack of domain specificity, potential for <+ Limited generalization

misuse



Which model is more suitable?

»+ Recognition

« Detection  Traditional ML

* Deep Learning
* Foundational

° Synthesis model
e LLLM

e (Generative Al

+ Segmentation

« Summarization
« Search
- Sentiment analysis




Case study

- In a large hospital system, the new CIO has been tasked to
improve revenue cycle management by identifying cases
of additional billing:

« Which ML model to use?
« Is a model alone sufficient?



Evolution of ML models

Artificial Intelligence

Machine Learning

Deep Learning

Foundational Models

Traditional

https://www.linkedin.com/pulse/ai-alphabet-soup-from-buzzwords-brilliance-brian-
gruttadauria-fxtie/

Generative

Al



Benetfits of Modern Day FMs

» Can perform generative and discriminative tasks
» Can be conditioned in a variety of ways
» Can be aligned with human preferences

» Can be (easily) adapted



Opportunities
in Healthcare

- Vast interconnected
set of stakeholders

» Disparate but
complementary
needs/challenges

Care Providers

Pharma,
Med Device

Care Providers
Hospitals
Medical Groups

Hospice

\
4MMIT

202
Patients

Government/
Regulators

Clinics
Home Health/Care

SNF

R

Pharmacy

Employers

For illustrative purposes, we've simplified and
consolidated some of the primary healthcare
stakeholders/markets and the interactions
between them.




Opportunities in Healthcare

Omics

Metabolites,
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Acosta et al. "Multimodal biomedical AI”. Nature Medicine 2022.

Precision health

Digital
clinical trials

Hospital-at-
home

Pandemic
surveillance

Digital twins

Virtual health
coach




Opportunities in Healthcare

INTERACTIVE SYSTEMS :
: Pharma Revenue Cycle Benefits
Sieply Ciiain Manufacturing Mgmt Navigation Contract.Mgmt
MULTIMODAL TECHNOLOGIES
Data Privac Data Validation Reggratory Cybersecurity BORORIC
SIMULACRA Y Automation Y Operations
EVALUATION INFRASTRUCTURE Medical Medical Model Clinical Trial Clinical Trial
Writing Education Validation Design Execution
SENSORS
Decision Knowledge ) Evidence : :
: Care Delivery : Diagnostics
SPECIALTY FOUNDATION MODELS SURROT Synthesis Generation
STAKEHOLDERS: PROVIDERS, PAYERS, PHARMA, EMPLOYERS, PATIENTS HIGH STAKES

Cheatham M. "Bessemer Healthcare Al Areas of Focus” from Healthcare Al Thesis Update. 2024.



Challenges of Modern Day FMs

- Data requirements (pre- and post-training)
» Computational demands
- Inference efficiency/costs

+ Adequate evaluation



Challenges of Modern Day FMs

Y Chatbot Arena LLM Leaderboard: Community-driven Evaluation for Best LLM and Al chatbots

® Language B8 Overview #> Price Analysis WebDev Arena 99 Vision R Text-to-Image & Copilot Arena Arena-Hard-Auto

Total #models: 220. Total #votes: 2,816,680. Last updated: 2025-03-25.

Code to recreate leaderboard tables and plots in this . You can contribute your vote at

Category Apply filter Overall Questions

Overall Style Control Show Deprecated

#models: 220 (100%) #votes: 2,816,680 (100%)

Rank Arena

Rank* (UB) A Model 95% CI 4 Votes A4 Organization License
(StyleCtrl) Score

1 1443 +11/-8 3474 Google Proprietary
2 1408 +11/-12 2676 OpenAI Proprietary
1404 +6/-6 10397 XAI Proprietary

1398 +6/-7 10907 OpenAI Proprietary

1381 +4/-5 22987 Google Proprietary

Chiang et al. "Chatbot arena: an open platform for evaluating LLMs by human preference”. ICML 2024.




Challenges of Modern Day FMs
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Chiang et al. "Chatbot arena: an open platform for evaluating
LLMs by human preference”. ICML 2024. Cost ($/IM Tokens)



Challenges of Modern Day FMs
T

Scenarios
Supporting M
edCalc-Bench Exact Match
Diagnostic Decisions
Clinical Decision 9
support P|anning Treatments MTSamples BertScore-F1

Documenting Patient

DischargeMe BertScore-F1
Clinical Note Visits g
Generation 2
Documenting Care Note Extract BertScore-F1
Plans
Providing Patient S
Patient Edbcaion Heaoticas Medication QA BertScore-F1
Communication
and Education Patient-Provider MedDialog BertScore-F1
Messaging
Medical Condu':etl:gal;g:rame PubMed Exact Match
Research
Assistance Analyzing Clinical ¢
R rch Data EHR-SQL EHRSQLReAnNns

MedHELM



