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The different notions of segmentation

- Computer vision Bottom-up? Supervised?
- Image partitioning Or top-down? Or unsupervised?
into objects and
background

Input Bottom-up Top-down
+ Medical imaging & el IS , :
» Anatomy \ |

segmentation &

« Anomaly
segmentation

(a)

https://www.csd.uwo.ca/~oveksler/Courses/Fall2007/840/Student
Papers/LevinWeissEccv06.pdf

(<)



The different notions of segmentation

- Computer vision Semantic segmentation
- Image partitioning
into objects and
background

+ Medical imaging
- Anatomy
segmentation

« Anomaly
segmentation

« Labels each pixel by class
 E.g. FCNet, DeeplLab, PSPNet

https://medium.com/@abhishekjainindore24/semantic-vs-instance-vs-
panoptic-segmentation-b1f5023da3 9f



+  Fully-supervised method
+ Used in many other networks for the

- Using purely convolutional setup

Semantic segmentation example: FCN

forward /inference

segmentation head backward/learning

https://arxiv.org/abs/1411.4038

Fully Convolutional Networks for
Semantic Segmentation



The different notions of segmentation

- Computer vision
- Image partitioning
into objects and

background

« Medical imaging
« Anatomy
segmentation

« Anomaly
segmentation

Instance segmentation

« [Each region has a distinct label
« Combine object detection and semantic

segmentation
« E.g. Mask R-CNN, Yolo-8

https://medium.com/@abhishekjainindore24/semantic-vs-instance-vs-
panoptic-segmentation-b1f5023da3 9f



Instance segmentation example: Mask RCNN
» Up to 1500 class labels can be detected and labeled
g *'
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ResNet Feature Map Output Mask
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https://arxiv.org/abs/1703.06870, K.He et al. Mask R-CNN 42786 citations!

https://www.ultralytics.com/blog/what-is-mask-r-cnn-and-how-doe s-it-work



https://arxiv.org/abs/1703.06870

The different notions of segmentation

- Computer vision panoptic segmentation
- Image partitioning
into objects and
background

+ Medical imaging
- Anatomy
segmentation -
- Anomaly « Labels each pixel by class and also identifies
segmentation different instances of the same class
« E.qg. Efficient PS, Panoptic DeepLab, RS-DINO,
HyperDETR, DinoV2, FCN+MaskRCN

https://medium.com/@abhishekjainindore24/semantic-vs-instance-vs-
panoptic-segmentation-b1f5023da3 9f
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Panoptic segmentation(DETR)

Uses the transformer approach for
capturing spatial relationship
between regions ! - :
Uses feature encoding Classification Detection Instance Semantic Panoptic
Class and regional predictions segmentation  segmentation segmentation
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End-to-End Obiect Detection with Transformers. ECCV’2020


https://arxiv.org/pdf/2005.12872

Basic architectures for segmentation FM

- Based on two major architectures:
- CNN
« Transformers
- Different combinations of encoders and decoders
« U-net : Convolutional encoder and decoder
« TransU-net: Transformer encoder and CNN decoder
- SETR: Vision transformer and CNN decoder
- Segformer: transformer encoder and decoder
- CLIPSeg: CLIP encoder and transformer decoder

» Go from limited object labels to open vocabulary segmentation

 Mostly still supervised, but newer unsupervised open set models also
coming back



U-net - A classic CNN-style segmentation model

Extensively used in medical

imaging e
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Ronnenberger: U-Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI 2015 109949 citations!


https://arxiv.org/abs/1505.04597

U-net applications

- Both medical and non-medical applications




U-Net 1ssues

* Detections are not smooth

« Maintaining continuity is difficult

* Fragmentation can occur

« Small tumors and anatomical regions
« Stable contour detection

Frame 385 Frame 385




Making segmentation model foundational

 Train with a variety of datasets

O.rgan' Specialized
+ Adapt transformer or CNN-based encoders moge Moty [7]_Coeron ﬂ SR | imaee
and decoders [l seence et
+ An early example of a foundational model for
medical image segmentation — based on V-net on ) 2™
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Harouni et al., “Universal multimodal deep network for
classification and segmentation of medical images,” in ISBI 2018.


https://ieeexplore.ieee.org/document/8363710

Segmentation models derived from VLM models

» Use joint visual-textual information to aid segmentation
 Use CLIP underneath for the encoding

» Built separate decoders to aid in segmentation
« CNN-based
« Transformed-based decoders

- Segmentation at the level of bounding boxes
* RegionCLIP
- VILD
- GLIP

- Segmentation as full regions
- CLIPSeg



Using VLM for generalized instance segmentation

Cropped image regions recognized by CLIP Image classification (ImageNet)

* Use region crops

i Region classification (LVIS)
from RPN i o __I_A-c-curacy (%)
+ Initial CLIP image- |
to-text to label i
* What if we do | allN

Image Region

region detection

and CLIP on ; — ﬁ Image-text
regions fails to | ——— >~ matching
. . . i i i (CLIP)
recognize objects A boy is flying a kite.”
~
“A photo of one cruise.” Region-text
“A bad photo of a bike” | ~ Mmatching
(Ours)
“* photo of a boy.”

RegionCLIP — Contrastively learned region-text alignment



VLM - Visual Grounding

1. Image-text Pretraining (CLIP)

2. Region-text Pretraining (ours)

3. Transfer learning for detection (ours)
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RegionCLIP — Contrastively learned region-text alignment



VILD architecture

+ Combines pre-trained FM (CLIP) with MaskRCNN-style RPN and zero-shot
learning methods

- Distill the knowledge from the alignment of region embedding to image
embeddings of cropped regions during training.

Seen
classe
4Unseen
classes

Image Image Class name

Features encoding g encoding Cat

??
?

Xiuye Gu et al, "Open vocabulary object detection vis vision and language knowledge distillation,” ICLR22



VilD - Visual Grounding
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VLM — Phrase Grounding
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- Given an image and a corresponding caption, the Phrase Grounding task aims to ground each
entity mentioned by a noun phrase in the caption to a region in the image.

« GLIP — grounded language pre-training


https://arxiv.org/pdf/2112.03857

CLIPSeg
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* Uses the PhrasCut dataset of regional masks derived from

VisualGenome
* Combined CLIP with a lighweight decoder

CLIPSeg: Image segmentation using text and image prompts


https://arxiv.org/abs/2112.10003

ClipSeg

- Skip connections to preserve the visual context from 3 of the
layers of the VIT to the decoder as in U-net

 The decoder incoming dimension is 64

support image+mask engineered visual prompt
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CLIPSeg results
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'victoria street', 'manchester road', 'street level', 'foxwell av', '6
av', 'east street', 'street with vehicles', 'bus-entry door', 'bus’s
front', 'shopfronts', 'commercial street', 'bus rack’, 'bus front',
'street exit', '8 av', 'estate agents', 'bus lane', '35 av', 'avenue
name', 'bus marquis', 'trolleys', "bus' front", 'avenue bapp',
'row of shops', 'boutiques', 'e newton st', 'bus street', 'bus
station’, 'bus pole', 'edge bus', 'pape av.' (C)
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Segment Anything (SAM)

» A foundation model for image segmentation.
« A promptable model and pre-train it on a broad dataset using a task that
enables powerful generalization

valid mask valid mask annotate
t | l

lightweight mask decoder model data
T T— train <—|
model
i image Segment Anything 1B (SA-1B):
— — encoder

prompt * 1+ billion masks = e

s ° u cat with i - * 11 million images

° black ears * privacy respecting

T . T * licensed images
segmentation prompt prompt image

(a) Task: promptable segmentation (b) Model: Segment Anything Model (SAM) (c) Data: data engine (top) & dataset (bottom)

Different kinds of prompts to aid in segmentation



SAM components

« Image Encoder:

« Encoder portion of the Masked Auto-encoder which is a pre-trained Vision Transformer (ViT) with
adaptations to process high resolution inputs,

« input resolution of 1024x1024 obtained by rescaling the image and padding the shorter side. The image
embedding is therefore 64x64x256.

« Prompt encoder:
« Produces a 256-dimensional vector

* Points

Point is represented as a sum of positional encoding of the points’s location and one of the two learned
embeddings to indicate either a foreground point or background point.

Bounding boxes:
Boxes are represented by an embedding pair of corners.

Text:
CLIP text-encoding
« Masks:

Downscaled versions of masked images CNN-style and flattened to 256-dimensional vectors



Segment Anything — Mask Decoder

Image embeddings and
prompt embeddings are
mapped to the final mask

uses prompt self-attention
and cross-attention in two
directions (prompt-to-image
embedding and vice-versa) to
update all embeddings.

MLP maps the output token
to a dynamic linear classifier,

which then computes the
mask foreground probability
at each image location.

image
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output tokens
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image to token attn.
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x2

conv.
trans.
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per mask
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token =9
per mask
mlp
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output
token
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mask decoder

mlp

masks
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scores



SAM results




Extends to video sequences

by retaining previous frame

information

image
encoder

memory
attention

—

?

nromnt encader

video & prompts in one or multiple frames

(skipped) ~ points

object segmentation throughout the video
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* 642.6 K masklets
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How well does SAM do on medical images?




Foundatlonal models for segmentatio  MedsAM
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Ma et al. Segment Anything in medical images, Nature Communications 2024



MedSAM generalization

a Performance Distribution of Internal Validation Tasks b Performance Correspondence of Internal Validation Tasks
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Are FMs ready for high-precision segmentation?

+ Needed for accurate sizing of the stents
« Based on normal frames identification
« Estimates the maximum and minimum diameter

+ Major and minor diameter errors within:

0.25/0.5/0.75mmfor 50/90/95% of all N1 frames.
0.5/0.75mm for 50/70% of frames for N2 frames

« N2 normal are mainly used for vessel compression detection and
not stent sizing

« Simple U-net will not suffice as single regions cannot be ensured
« Contours may not closely follow the lumen boundaries

% within 0.25/0.5/0.75mm
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Geo-UNet Architecture

16 16168

32 32 gy 32

64 64 @ 64
64

Key:

@ Concatenation

®  Element-wise multiplication
Skip connection

88
i Output
Polar to
Cartesian
[ L Dice+Hausdorff ]
s@88 2 l
Channel-wise

Softmax

L]men
CDFeLU(-)

in Y. Chen et al, “Geo-UNet: A geometrically constrained neural framework for clinical grade lumen segmentation in intravascular
ultrasound,” in Proc. Machine Learning for Medical Imaging (MLMI), MICCAI 2024



Results

Geo-Unet++ results

Near perfect

Segmentation in a

Hard case in the

Hard case with

. case where nearby presence of stents  confluence
segmentation :
vessel is present
Cartesian Polar
Geo-UNet++ MedSAM BoundaryReg Dice & Haus. Dice & Haus.
i &> - S Frame 124 ¢ rame 124 it SER
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N2

N2

Geo-UNet++

MedSAM
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Cartesian
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S:

Polar
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Results

Methodology Test Dice |% Frames w. Maj. Dia. err.|% Frames w. Min. Dia. err.
(avg/std) | within 0.25/0.50/0.75mm | within 0.25/0.50/0.75mm
Against Baselines (N1 frames)
Geo-UNet++ | 0.95/0.045 66/84,/90 73/89/94
Geo-UNet  |0.95/0.034 69/84/90 69,/85/91
MedSAM [10] 0.31/0.087 0/0/0 0/0/0
BoundaryReg [4] | 0.94/0.043 60/78/86 70/86/91
Cart. Dice & Haus. | 0.93/0.051 61/77/83 62/79/87
Polar Dice & Haus. | 0.94/0.038 66,/80/87 67/84/90
Against Baselines (N2 frames)
Geo-UNet++ |0.88/0.094 41/59/69 60/80/87
Geo-UNet 0.87/0.10 47/64/73 57/76/85
MedSAM [10] 0.23/0.085 0/0/0 0/0/0
BoundaryReg [4] | 0.87/0.093 36/54/65 55/74/84
Cart. Dice & Haus. | 0.83/0.12 32/44/52 44/63/74
Polar Dice & Haus. | 0.86,/0.12 40/58/69 55/74/83
Against Ablations (N1 frames)
Geo-UNet  |0.95/0.034 69/84/90 69/85/91
w/o CDFeLU | 0.94/0.035 69/82/88 65/83/90
w/o pixel-wise pred.| 0.95/0.039 67/81/87 69/85/91
Against Ablations (N2 frames)
Geo-UNet 0.87/0.10 47/64/73 57/76/85
w/o CDFeLU 0.86/0.10 45/63/72 53/71/81
w/o pixel-wise pred.|0.88/0.092 46/62/71 57/76/85




Instructional tuning of segmentation models

- Based on U-net style convolutional architecture

- Uses multi-scale cross-block features between instructional labeling sets and given
image

- No retraining needed or fine-tuning needed!

+ Trained on Megamedical dataset: 53 datasets, 23 medical domains, 16 modalities

37
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Butai et al. Universal medical image segmentation, ICCV’2023

| Channel-wise Concat


https://openaccess.thecvf.com/content/ICCV2023/papers/Butoi_UniverSeg_Universal_Medical_Image_Segmentation_ICCV_2023_paper.pdf

Meta learning in UniverSeg UniSeg

Traditional Approach UniverSeg Approach
1. Design and train a task-specific model. With a trained UniverSeg model, predict new images for the new
task from a few labeled pairs without retraining.

Query Image

Support Set

WS
3%

37
Butoi et al. Universeg: Universal medical image segmentation. ICCV’23



Combining U-net and CLIP for anatomy and tumor
segmentation
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Slides from MICCAI 2024 tutorial

Liu et al. CLIP-Driven universal model for organ segmentation and tumor detection. ICCV’23
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Foundational models for segmentatio CLIP-Driven

Main idea

Text branch
(generates text embedding for class k) Wg

39

Liu et al. CLIP-Driven universal model for organ segmentation and tumor detection. ICCV’23



Foundational models for segmentatio

Main idea

CLIP-Driven

g
%

Text branch
(generates text embedding for class k) Wg

Visual branch-encoder
(generates visual embedding for image x) f

Liu et al. CLIP-Driven universal model for organ segmentation and tumor detection. ICCV’23
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Foundational models for segmentatio

Main idea

Text branch
(generates text embedding for class k) Wg

Visual branch-encoder
(generates visual embedding for image x) f

Text-based controller MLP
(generates class parameters)

6 = MLP(W;: & f)
6y = {Bkngkzr'ﬂka}

Liu et al. CLIP-Driven universal model for organ segmentation and tumor detection. ICCV’23

CLIP-Driven
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Foundational models for segmentatio CLIP-Driven

Main idea A =
\\‘ - .\‘ A “ao-! -/ '''''' -
Text branch o ST 7%

(generates text embedding for class k) Wg

Visual branch-encoder
(generates visual embedding for image x) f

Text-based controller MLP 0, = MLP(wy, & f)
(generates class parameters) 0x = {01, , 00,01}

Visual branch-decoder o It represents foreground
(generates visual embedding for image x) Pk = sigmoid(((F * O, ) * Ok,) * Ox,)  class k vs background
42

Liu et al. CLIP-Driven universal model for organ segmentation and tumor detection. ICCV’23



Foundational models for segmentatio CLIP-Driven

Main idea

Text branch
(generates text embedding for class k) Wg

Visual branch-encoder
(generates visual embedding for image x) f

Text-based controller MLP 0, = MLP(wy, & f)
(generates class parameters) 0r = {1, ,601,,01.)

Visual branch-decoder o It represents foreground
(generates visual embedding for image X) P} = sigmoid(((F * O, ) * Ok,) * Ok,)  class k vs background
Training loss Binary cross-entropy per class (and terms masked for those classes not present)
K
L= 1, - BCE;

— 43
Liu et al. CLIP-Driven universal model for organ segmentation and tumor detection. ICCV’23 k=1



Summary

Early approaches to segmentation were unsupervised and didn’t scale
Supervised approaches had limited labels issues

Foundational models generalized across datasets and open vocabularies
Key architectures are still based on CNN or transformers

Active field of research in developed generalized foundation models for
segmentation with extensions to video sequences

Gap seen with applications to medical imaging leading to some rich
innovations for medical imaging adaptations

Unsupervised segmentation approaches may still be relevant

o  STEGO: Unsupervised Semantic Segmentation by Distilling Feature Correspondences, ICLR'2022 ->
Learns with no labels
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