
Tanveer Syeda-Mahmood

Improving LLM Performance

BIODS 271 / CS 277

Improving Performance of Foundational Models
• Prompt engineering

• Ensures prompts optimized to help the model understand the intent and context of the

request.

• RAG

• Anchors the generation on factual and time relevant information, along

with information source transparency.

• Fine-tuning

• SFT

• Training on high-quality, curated datasets to improve task-specific

performance.

• Reinforcement learning

• Using reward models to improve performance

• Synthetic data generation

• High quality synthetic data generation

• InstructLab:

• Mix curated examples with synthetic data generation for fine-tuning

• Most of these are well-developed for LLMs, still emerging for VLM, LVLMs

Elements of a prompt
A prompt contains any of the following elements:

Instruction - a specific task or instruction you want the model to

perform

Context - external information or additional context that can steer the

model to better responses

Input Data - the input or question that we are interested to find a

response for

• Output Indicator - the type or format of the output.

Prompt engineering

• Zero-shot prompting

• Prompt chaining

• Chain of thought

• Object-guided prompting

• Meta prompting

Prompts do matter:

• E.g. Different results with slightly different prompt
• A photo of a plane
• A photo of a plane parked at the gate

• A photo of a plane parked at the gate or flying
in the sky

Be Specific: Prompt should be specific

Indicate Intent: Make sure your intent is clear

Show Examples: use them for formatting and

inferring commonalities

Given Clear Instructions: The instructions shouldn’t

be ambiguous

Indicate Desired Output: Indicate the format of the

output

The art of prompting

Efficient Prompting Methods for Large Language Models: A Survey
Efficient Prompting Methods for Large Language Models: A Survey

https://arxiv.org/html/2404.01077v1

Few-shot prompting
• Is a type of "in-context learning" or "learning by example."

• Pattern recognition:

• identifying patterns in how inputs are transformed into outputs.

• Task inference:

• The nature of the task being asked to perform

• Generalization:

• Generalize from given examples to new inputs

• Application:

• Apply the learned pattern to new input

• What are some pitfalls?

• What if there isn’t enough variety?

• What if there is too much variety?

Few shot example:
• Classify the sentiment of the third movie review. Use the

information from the first two examples:

• Review: "This movie was a waste of time.

• "Sentiment: NegativeReview:

• "I couldn't stop laughing throughout the film!
• "Sentiment: PositiveReview:

• "The special effects were amazing, but the plot was confusing.

• "Sentiment:”

https://www.datacamp.com/tutorial/few-shot-prompting

Provide a possible diagnosis and explain your reasoning:
Symptoms: Fever, cough, fatigue

Diagnosis: Common cold

Explanation: The combination of fever, cough, and fatigue is

typical of a common cold. No severe symptoms are present,

suggesting a mild viral infection.
Symptoms: Chest pain, shortness of breath, dizziness

Diagnosis: Possible heart attack

Explanation: The combination of chest pain, shortness of

breath, and dizziness are warning signs of a possible heart

attack. Immediate medical attention is required.
Symptoms: Headache, sensitivity to light, nausea

Diagnosis:

Explanation:

Chain-of-thought prompting
• Tackle address complex problems by breaking them into simpler, intermediate steps

and encouraging the model to “think” before answering

Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

https://arxiv.org/pdf/2201.11903

Object-guided prompting

https://medium.com/data-science/prompting-with-vision-language-models-bdabe00452b7

system_prompt="""You are a helpful assistant that can analyze images

and provide captions. You are provided with images that also contain
bounding box annotations of the important objects in them, along with

their labels.

Analyze the overall image and the provided bounding box information
and provide an appropriate caption for the image.""",

• Combined open vocabulary
tagging with object detection
to generate a more focused
caption

Meta-prompting

• Focuses on the structure rather than infer from the answer

unlike COT

Meta Prompting for AI Systems

https://arxiv.org/pdf/2311.11482

Understanding the LLM text generation process

• Transformer decoder

• Next token selector

• Beam search

• Deterministic

• Stochastic

• Random

• Temperature-based

• Top-k

• Top-p

A Thorough Examination of Decoding Methods in the Era of LLMs

Softmax

https://arxiv.org/pdf/2402.06925

Exercise: Guess prompting type

https://arxiv.org/abs/2005.14165

Here are the rules for question and answer generation. 1) The question should not be a

multiple choice question and answer. 2) The answers should be in a single paragraph (no

bullet points). 3) The questions should be tagged as Question: and the answers should be

tagged as Answer: 4) Do not generate any other text before and after the questions and

answers. 5) If you are unable to generate question and answers your response should be -

Unable to generate questions and answers. 6) Do not repeat the same question. Using these

rules, generate 5 questions and answers based on the following text:

Retrieval augmented generation
• A way to improve the performance of LLM

• Could be used during pre-training or fine-tuning but mostly used during

inference

• Practical approach to improve the model response with latest onsite

knowledge

• Minimizes hallucinations with provided knowledge

• Time-relevant responses

• Increases transparency and gives traceable reasoning

• Cost-effective way to deploy models

• Pivotal technology for chatbots and practical applications.

• Widely implemented in commercial applications and popularized vector

databases Retrieval-Augmented Generation for Large Language
Models: A Survey, Jan 2024

https://arxiv.org/abs/2312.10997

RAG – Key idea
• Given a query to an LLM

• Search/retrieve relevant documents

• Construct prompts with the

relevant documents

• LLM to generate revised response

• How to determine relevancy?

• How does the new

information integrate into

LLM?

• How to evaluate the

improvement?

Naïve RAG
• Indexing

• Text conversion

• Chunking documents

• Encoding documents

• Index generation (k-NN), e.g. Faiss index

• Retrieval

• Cosine similarity retrieval by encoding query

• Generation

• Responses to the information contained within

the provided documents

• In cases of ongoing dialogues, any existing

conversational history can be integrated into the
prompt,

• enabling the model to engage in multi-turn dialog

• Problems:

• Low precision and recall

• Irrelevant context in responses

• Augmentation from the retrieved

chunks tricky due to redundancies

and repetition

• Novel content generation may not be

possible

Search/Retrieval methods for RAG

• Unsupervised approaches

• Sparse retrieval

• Dense retrieval

• Sparse vector retrieval

• Supervised approaches

• Neural IR

• Re-ranking models

Lexical or Sparse Retrieval Methods - Unsupervised

• Based on traditional document retrieval

approaches

• Breaks up a document and query into tokens

• Match is determined using TF/IDF rules

• Term Frequency (TF)

• How often a term occurs in a document

• Inverse Document Frequency (IDF)

• How common is such occurrence across

documents

• BM25 is a popular sparse retrieval method

• Uses TF/IDF

• Document Length Normalization

• Measure should be robust to document lengths

Sparse retrieval methods:
• Allow exact matching – both a

boon and a curse
• Efficient inverted indexing

Dense or Semantic retrieval - Unsupervised

• Given a set of documents

• Extract chunks from documents

• Vectorize the chunks using an embedding

• Given a query:

• Vectorize the query using the same embedding

• Find the closest match to the query using distance or similarity metrics:

• Inner product

• Cosine similarity

• L2 distance

• Softmax over relevant scores to convert to probability

• When the documents grow large, the vectors could grow to very large vector

stores

• Compression

• Approximate nearest neighbor search. Through indexing

Large scale vector compression

• Vector quantization

• Lossy compression

• Data represented by the nearest
neighbor codeword

• Error can be reduced by increasing

codewords
• Works for low-dimensional vectors

• Reduces search accuracy by 20-30%

• Product Quantization

• Works for high dimensional

vectors

• Divided into multiple low

dimensional segments

• vector quantization applied for

each segment independently

• Compression errors still depend

on the distances between

segment vectors and their

nearest neighbor codewords

V=3072 #vector dimension

Vs=6 #segment dimension

S=V/Vs #Number of segments

P=32 # bit precision

C=256 #Number of clusters per segment
Pc=8 #bit size needed to represent cluster ID

N=10**10 #Number of vectors =10 billion

Compression ratios a factor of 15 to 25!

Approximate nearest neighbor search

• K-NN algorithms used to reduce search time

• Search accuracy is affected

• Faiss is a popular indexing library supported by

many vector db

• Distance metrics include:

• L2, cosine similarity

• Several indexing algorithms – an active field of

research

• IVF

• IVF_PQ

• HNSW

• Disk ANN

https://www.pinecone.io/learn/series/faiss/product-quantization/

SortPQ – Sorting transformation –balancing search accuracy and compression ratios

• Vector distance can be reduced by permutation or sorting transformation

• Among all permutation transformations, sorting transformation optimizes

following distance/similarity measure for vector data

• Minimize L2-norm

• Maximize cosine similarity and Pearson correlation

π𝑥 is a permutation for x

π𝑥
∗ , π𝑦

∗ = 𝑎𝑟𝑔𝑚𝑖𝑛π𝑥,π𝑦 π𝑥 𝑥 − π𝑦 𝑦

Bringing vectors close by finding their commonality

5

2

3

2

3

5

Index

0

1

2

(0,2)(1,0),(2,2)

π𝑦
∗

Sorted
vector

Unsorted
vector

(0,0) (1,0)

(0,1) (1,1)

(1,1,0)

(0,1,0)
(1,0,0)

(0,0,1)

(1,1,1)

(1,0,1)

(0,1,1)

(0,0,0)

1M SIFT vectors

https://ieeexplore.ieee.org/document/10825761

Sparse learned embeddings for retrieval

SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval, SIGIR 2021

https://europe.naverlabs.com/blog/splade-a-sparse-bi-

encoder-bert-based-model-achieves-effective-and-

efficient-first-stage-ranking/https://www.pinecone.io/learn/splade/

https://arxiv.org/abs/2109.10086

SPLADE model

Uses the MLM head of transformer to predict
the in-content term expansions

https://www.pinecone.io/learn/splade/

SPLADE model

Uses the MLM head of transformer to predict the in-content
term expansions
Vocabulary-size vector for each position in the MLM head.

Output logits cover the entire vocabulary

https://www.pinecone.io/learn/splade/

SPLADE model

The MLM head gives us a probability distribution for each token, whether or not they have been masked. These

distributions are aggregated to give the importance estimation.

• The number of non-zero values in

SPLADE query and document
vectors is typically greater than in
traditional sparse vectors

• Sparse retrieval systems are not
optimized for this.

• The distribution of non-zero values
deviates from the traditional
distribution expected by the

sparse retrieval systems, again
causing slowdowns.

Hybrid search methods

• Combine lexical and semantic searches

• Reciprocal rank fusion a popular fusion approach

 RRF(d) = Σ(r ∈ R) 1 / (k + r(d))

• Where:

- d is a document

- R is the set of rankers (retrievers)

- k is a constant (typically 60)

- r(d) is the rank of document d in ranker r
https://deval-shah.github.io/visualizations/rrf/

Advanced RAG Methods
• Indexing

• Prefiltering text, Decide what to tokenize

• Adding metadata, Better chunking

• Retrieval

• Fine tuning embedding (pairs of questions and answers are used to teach the retrieval engine).

• E.g. BGE model on enterprise knowledge

• Sparse, Dense, and Multivector models

• E.g. COLBERT, SpladeV2

• Dynamic embedding

• E.g. Open AI’s embeddings-ada-02, adapts to the context in which words are used

• Post-retrieval augmentation

• Re-ranking

• E.g. Langchain (document diversity, selection of documents)

• Perplexity-based filtering (mutual information)

Neural IR approaches
• Supervised approaches

• Training data has pairs of documents and queries and ranked by

relevance reflected in the loss function

• Index time, project the documents using the learned representation

• At search time, project query and find nearest matches

• Learn a representation of query and document such that the best

matching documents have a higher similarity

• Adapt transformer models like BERT to develop the

embeddings

• Much more compute-intensive than unsupervised methods

• Many neural IR approaches can be used for re-ranking and

search as well. Contextualized Late Interaction over BERT, SIGIR 2020

https://arxiv.org/abs/2004.12832

Neural IR approaches

Query and document
embeddings separately
computed and
compared at search
time using cosine
similarity

An interaction matrix that

reflects the similarity
between

every pair of words across q

and d fed to a classifier for
relevance. The similarity

matrix is fed to classifiers

Use a transformer to

match and decode to
a similarity value COLBERT

The supervised approach uses IR data such as labeled query-document pairs, to
learn a representation that is optimized for ranking and retrieval

Transformer
layers

Contextualized Late Interaction over BERT, SIGIR 2020

https://arxiv.org/abs/2004.12832

ColBERT

• Contextualized late interaction over BERT

• Only the similarity scores are retained, not the term encodings
that matched- Could have two different embedding collide

• Cost of storing the term embeddings of all documents – Huge
storage cost!

Contextualized Late Interaction over BERT, SIGIR 2020

https://arxiv.org/abs/2004.12832

RAG for pre-training and fine-tuning

• RAG in pre-training or fine-tuning:

• Use external knowledge as a non-parametric memory in addition

to parametric seq2seq models.

• Benefits:

• Results in smaller model sizes

• Better explainability for model predictions

• Better adaptability to new information without re-training

REALM

Unsupervised pre-training. Supervised fine-tuning.

Perplexity score can be used as a loss
function for training

REALM: Retrieval-augmented language model pre-training

REALM: Retrieval-augmented language model pre-training, SIGIR 2020

Language model pre-training algorithm

Learned neural document retriever using an
unsupervised fill-in-the-blank training objective.

https://arxiv.org/abs/2002.08909

RAG – Parametric + Non-parametric memories

• Combines a knowledge retrieval based on vector similarity search
• Once the documents are retrieved, fed along with the prompt to a decoder
• Trained in a supervised manner for downstream seq2seq translation

Non-parametric memory Parametric memory

Retrieval-Augmented Generation for Knowledge-Intensive NLP Task,

NeurIPS 2020

DPR BART

https://arxiv.org/abs/2005.11401

Multimodal RAG for pre-training or fine-tuning

• Uses image and text information to

retrieve relevant documents

• The knowledge to answer questions may

lie within images

• Pre-training or fine-tuning with non-

parametric multimodal memories

• Generates more visually grounded

output

MuRAG: Multimodal Retrieval-Augmented Generator for Open Question Answering over Images and Text, EMNLP 2022

https://aclanthology.org/2022.emnlp-main.375.pdf

MURAG – Multimodal RAG
https://arxiv.org/abs/2210.02928

MuRAG: Multimodal Retrieval-Augmented Generator for Open Question Answering over Images and Text, EMNLP 2022

• During pre-training: Train an

encoder to produce relevant

captions from a textual memory

bank.

• During RAG: Use the same encoder

for encoding image-text pairs in a

multimodal memory bank.

• Input is a textual prompt, the

retrieved documents are

multimodal, which are then fed to

the generator to generate text

https://aclanthology.org/2022.emnlp-main.375.pdf

Evaluation Benchmarks

• Bier Benchmark

• 18 datasets, 9 tasks

• The MTEB benchmark (Multi-Task Evaluation Benchmark)

• 56 datasets distributed among 8 distinct tasks.

• 2000+ outcomes on the leaderboard.

• Evaluation metrics

• NDCG (normalized discounted cumulative gain),

• MRR(mean reciprocal rank)

• It focuses on the position of the first relevant item in the ranked list

• Weighting is stricter

• MAP

• Works for binary relevance

• Precision, Recall, Accuracy

• Recall@K is another popular metric

• NDCG allows for fair comparisons between lists of varying lengths and relevance distribution

• NDCG considers the entire ranking order and assigns higher weights to relevant items at higher positions

• Both binary and numerical scores are handled

Factors affecting RAG performance
• Extraction accuracy of the ingestion pipeline (structural shredders, chunkers, summarizers)

• How it got represented (a function of embedding choices and semantic expansions)

• What representation capture semantics of documents?

• What embedding spaces bring queries and documents closer?

• How it was searched (lexical, semantic, fusion, re-ranking)

• How it was aggregated and rolled up for the specific use case (chunk, page, document level roll-

up)

• How the query was analyzed (semantic enrichment of the query)

• Query rewriting

• Prompt engineering to prime the LLM

• Whether RAG is used only during inference or at pre-training or fine-tuning as well

RAG improvements

• Self-Query Retrieval:

• Self-Reflection Loops:

• Introduce feedback loops where the LLM evaluates its own responses and uses the feedback to refine future retrievals and gene rations.

• This process, also known as Self-RAG, helps to improve the accuracy and coherence of the generated text. iterative prompting and correction

• Modular RAG:

• Aims to build a highly customizable and versatile RAG system.

• It incorporates various modules for different tasks, such as search, retrieval, and generation, allowing for flexibility and adaptation to different use cases.

• RAG Fusion:

• Combines the power of RAG with Reciprocal Rank Fusion (RRF).

• It generates multiple queries, re-ranks the retrieved documents using RRF, and fuses them to create a more comprehensive and relevant knowledge base for the LLM.

• Agentic RAG:

• Leverages the capabilities of LLMs as agents, granting them access to various tools and information sources. LLM-based query routing to relevant knowledge sources

• The retrieval component becomes agentic, enabling the LLM to actively query, gather, and process information to generate more accurate and comprehensive responses.

https://www.google.com/search?client=firefox-b-1-d&channel=entpr&cs=0&sca_esv=e4a529db535589d2&q=Self-Query+Retrieval&sa=X&ved=2ahUKEwiHu8TF3Y-NAxXbMtAFHXtJM2YQxccNegQIEBAC&mstk=AUtExfDhgbseewpvQ5UNbJaC9kxzzMOA5dk7zeQUw1bHDeSHPmH-YLrHMvs7W8ZGGjIE3K_8F-czRzvXKEacA5DYdgIlAwZCJD1JvdtkcQKbTlL_uuCTr30oT01OvCgUja3Yd8LfDYkmIRTYPe1Sn0e7IDh0_XQX1_6l8vt2gk-ZTVqC1Yc&csui=3
https://www.google.com/search?client=firefox-b-1-d&channel=entpr&cs=0&sca_esv=e4a529db535589d2&q=Self-Reflection+Loops&sa=X&ved=2ahUKEwiHu8TF3Y-NAxXbMtAFHXtJM2YQxccNegQIORAC&mstk=AUtExfDhgbseewpvQ5UNbJaC9kxzzMOA5dk7zeQUw1bHDeSHPmH-YLrHMvs7W8ZGGjIE3K_8F-czRzvXKEacA5DYdgIlAwZCJD1JvdtkcQKbTlL_uuCTr30oT01OvCgUja3Yd8LfDYkmIRTYPe1Sn0e7IDh0_XQX1_6l8vt2gk-ZTVqC1Yc&csui=3
https://www.google.com/search?client=firefox-b-1-d&channel=entpr&cs=0&sca_esv=e4a529db535589d2&q=Modular+RAG&sa=X&ved=2ahUKEwiHu8TF3Y-NAxXbMtAFHXtJM2YQxccNegQISBAC&mstk=AUtExfDhgbseewpvQ5UNbJaC9kxzzMOA5dk7zeQUw1bHDeSHPmH-YLrHMvs7W8ZGGjIE3K_8F-czRzvXKEacA5DYdgIlAwZCJD1JvdtkcQKbTlL_uuCTr30oT01OvCgUja3Yd8LfDYkmIRTYPe1Sn0e7IDh0_XQX1_6l8vt2gk-ZTVqC1Yc&csui=3
https://www.google.com/search?client=firefox-b-1-d&channel=entpr&cs=0&sca_esv=e4a529db535589d2&q=RAG+Fusion&sa=X&ved=2ahUKEwiHu8TF3Y-NAxXbMtAFHXtJM2YQxccNegQIUxAC&mstk=AUtExfDhgbseewpvQ5UNbJaC9kxzzMOA5dk7zeQUw1bHDeSHPmH-YLrHMvs7W8ZGGjIE3K_8F-czRzvXKEacA5DYdgIlAwZCJD1JvdtkcQKbTlL_uuCTr30oT01OvCgUja3Yd8LfDYkmIRTYPe1Sn0e7IDh0_XQX1_6l8vt2gk-ZTVqC1Yc&csui=3
https://www.google.com/search?client=firefox-b-1-d&channel=entpr&cs=0&sca_esv=e4a529db535589d2&q=Reciprocal+Rank+Fusion&sa=X&ved=2ahUKEwiHu8TF3Y-NAxXbMtAFHXtJM2YQxccNegQIVhAB&mstk=AUtExfDhgbseewpvQ5UNbJaC9kxzzMOA5dk7zeQUw1bHDeSHPmH-YLrHMvs7W8ZGGjIE3K_8F-czRzvXKEacA5DYdgIlAwZCJD1JvdtkcQKbTlL_uuCTr30oT01OvCgUja3Yd8LfDYkmIRTYPe1Sn0e7IDh0_XQX1_6l8vt2gk-ZTVqC1Yc&csui=3
https://www.google.com/search?client=firefox-b-1-d&channel=entpr&cs=0&sca_esv=e4a529db535589d2&q=Agentic+RAG&sa=X&ved=2ahUKEwiHu8TF3Y-NAxXbMtAFHXtJM2YQxccNegQIXhAC&mstk=AUtExfDhgbseewpvQ5UNbJaC9kxzzMOA5dk7zeQUw1bHDeSHPmH-YLrHMvs7W8ZGGjIE3K_8F-czRzvXKEacA5DYdgIlAwZCJD1JvdtkcQKbTlL_uuCTr30oT01OvCgUja3Yd8LfDYkmIRTYPe1Sn0e7IDh0_XQX1_6l8vt2gk-ZTVqC1Yc&csui=3

	Slide 1
	Slide 2: Improving Performance of Foundational Models
	Slide 3: Elements of a prompt
	Slide 4: Prompt engineering
	Slide 5: Few-shot prompting
	Slide 6: Chain-of-thought prompting
	Slide 7: Object-guided prompting
	Slide 8: Meta-prompting
	Slide 9: Understanding the LLM text generation process
	Slide 10: Exercise: Guess prompting type
	Slide 11: Retrieval augmented generation
	Slide 12: RAG – Key idea
	Slide 13: Naïve RAG
	Slide 14: Search/Retrieval methods for RAG
	Slide 15: Lexical or Sparse Retrieval Methods - Unsupervised
	Slide 16: Dense or Semantic retrieval - Unsupervised
	Slide 17: Large scale vector compression
	Slide 18: Approximate nearest neighbor search
	Slide 19: SortPQ – Sorting transformation –balancing search accuracy and compression ratios
	Slide 20: Sparse learned embeddings for retrieval
	Slide 21: SPLADE model
	Slide 22: SPLADE model
	Slide 23: SPLADE model
	Slide 24: Hybrid search methods
	Slide 25: Advanced RAG Methods
	Slide 26: Neural IR approaches
	Slide 27: Neural IR approaches
	Slide 28: ColBERT
	Slide 29: RAG for pre-training and fine-tuning
	Slide 30: REALM
	Slide 31: RAG – Parametric + Non-parametric memories
	Slide 32: Multimodal RAG for pre-training or fine-tuning
	Slide 33: MURAG – Multimodal RAG
	Slide 34: Evaluation Benchmarks
	Slide 35: Factors affecting RAG performance
	Slide 36: RAG improvements

