

Foundation Models for Electronic Health Records

BIODS 271: Foundation Models for Healthcare

May 28, 2025

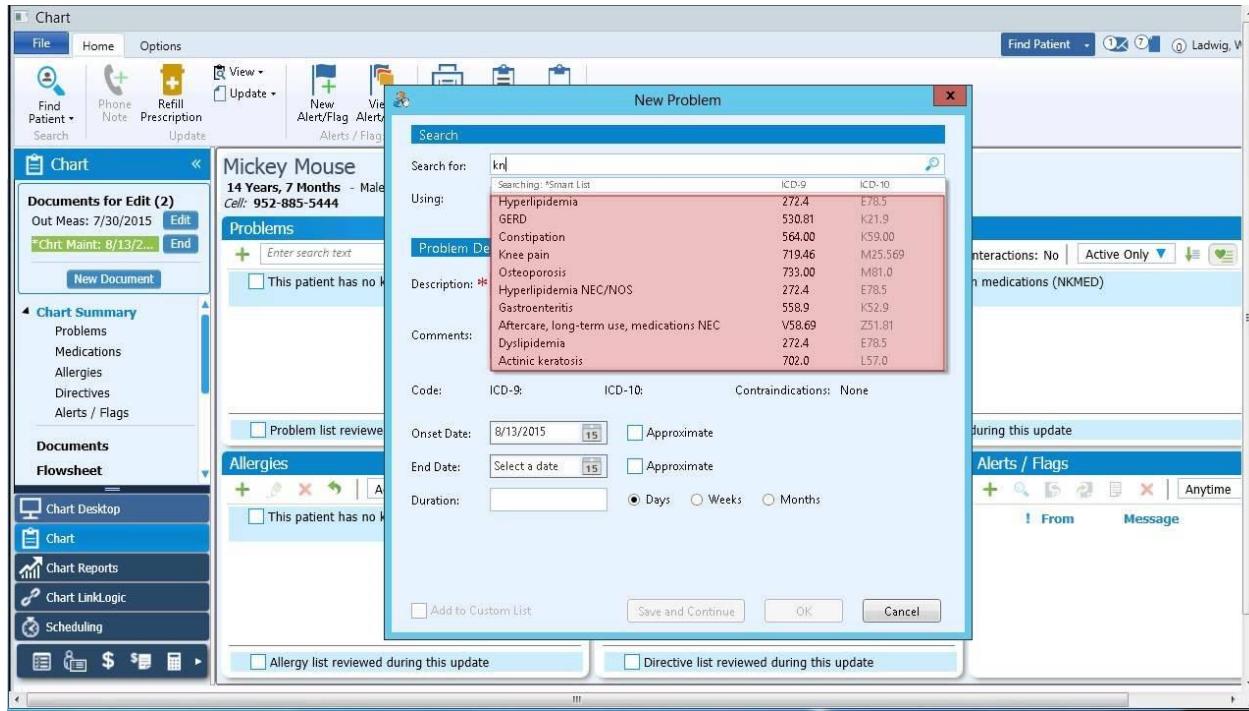
Jason Fries, PhD Research Scientist, Shah Lab
Center for Biomedical Informatics Research

Outline

- **Overview: EHR Data & Tasks**
 - Electronic Health Records (EHRs)
 - AI for Healthcare Tasks
- **Modeling: FMs for Structured EHRs**
 - Formulating Self-Supervision
 - Pretraining Objectives
- **Evaluation**
- **Future: Research Opportunities**

Overview: EHR Data & Tasks

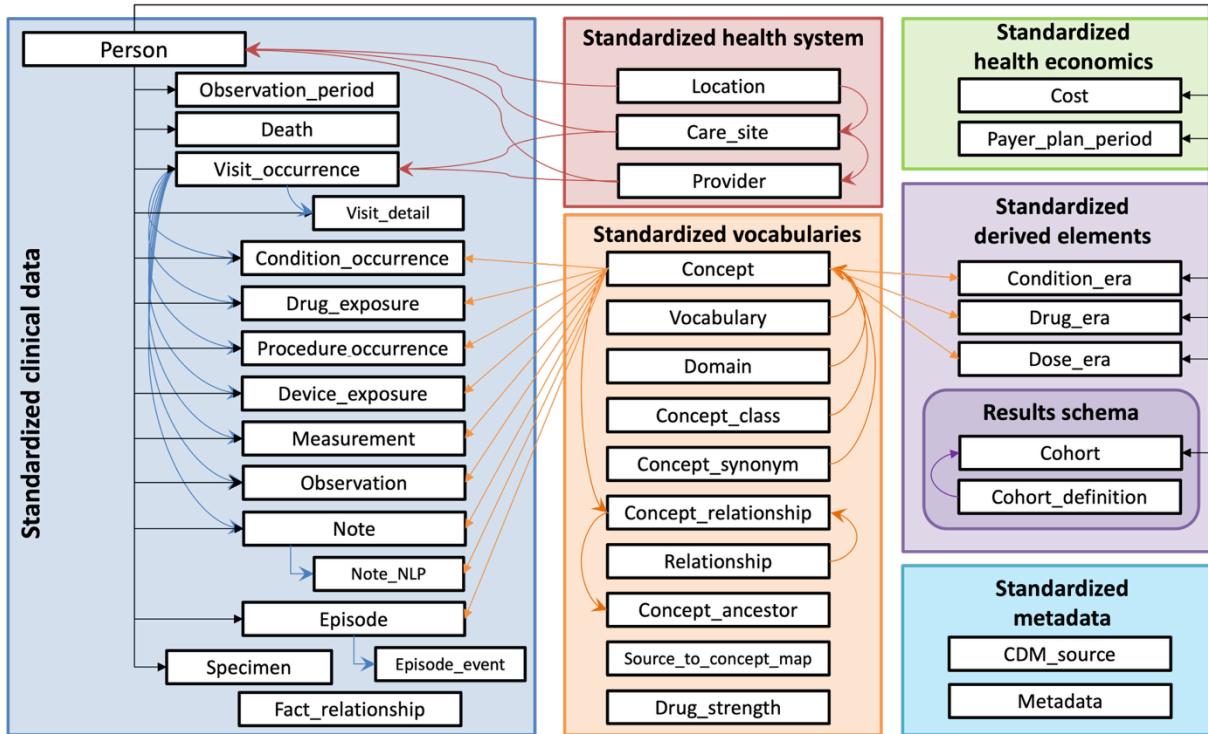
Electronic Health Records (EHR)



Healthcare View

- GUI-based
- Data portal for a patients
- Focus on a single patient at a time

Electronic Health Records (EHR)



Data Scientist View

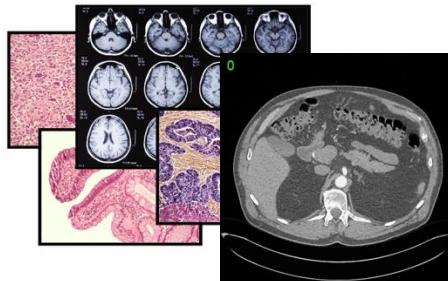
- Relational databases
- Some data model (Epic, OMOP, i2b2)
- Apply functions to all patients

Healthcare Data is Inherently Multimodal

Labs	Vitals	Medication List
Notes	Past Medical History	
Problem List	Social History	
...		
Care Plan	Treatment Plan	

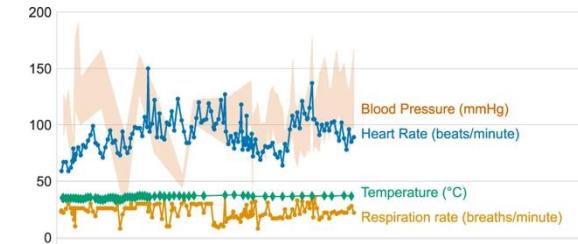
Tabular Data

STRUCTURED DATA



HISTORY OF PRESENT ILLNESS:
60 yo male with infected R hip (MRS)
LTHA November 2004 demonstrates
HISTORICAL >2 YEARS
No lucencies were observed around
NEGATED
Implant is being evaluated for possit

UNSTRUCTURED DATA



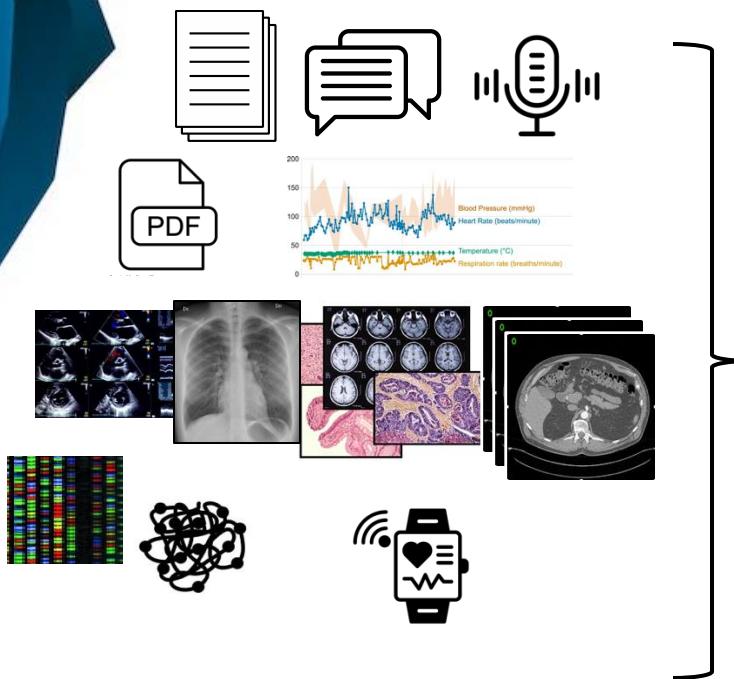
 Audio /Conversations

 Video Genomics



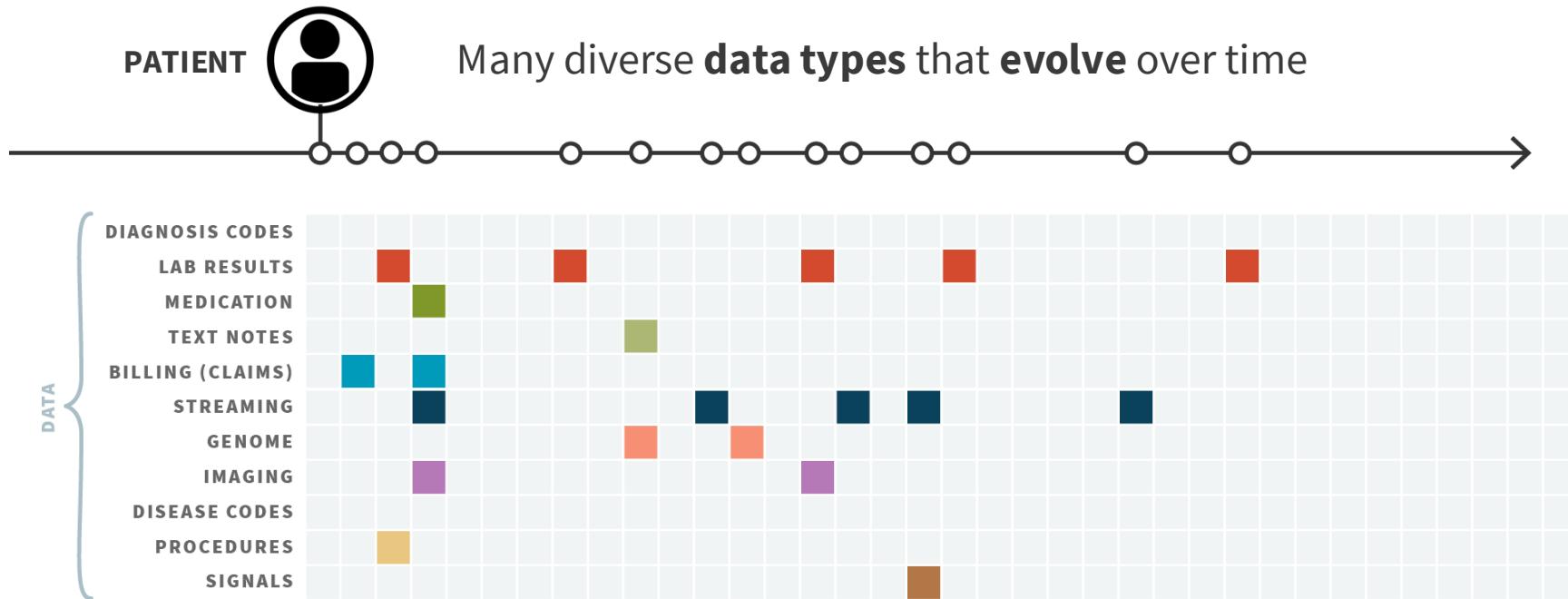
Hospital data is growing at a rate of **36% per year**

World Economic Forum, Dec. 2019



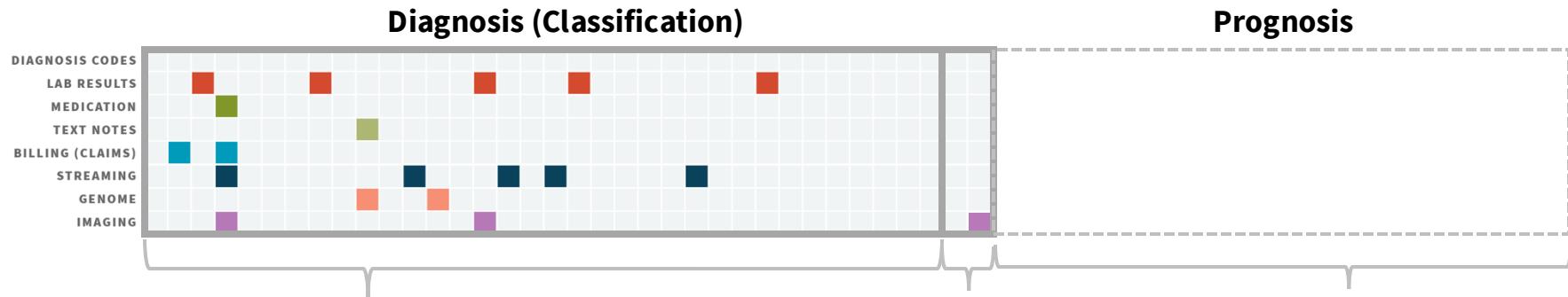
Hard to use for medical decision making

Electronic Health Records (EHRs) are Multimodal Timelines



Longitudinal EHRs provide a **holistic view of multimodal data**

AI for Healthcare Requires Temporal Reasoning



What Occurred in the Past?

- Chart summarization
- Clinical trial recruitment

What is Occurring Now?

- Identify blood clots in lung CT scans
- Identify cancerous cells in pathology slides

Predict Future Risks & Intervention Benefits

- What is the likelihood that this patient will develop lung cancer?

Example ML Applications

Clinicians

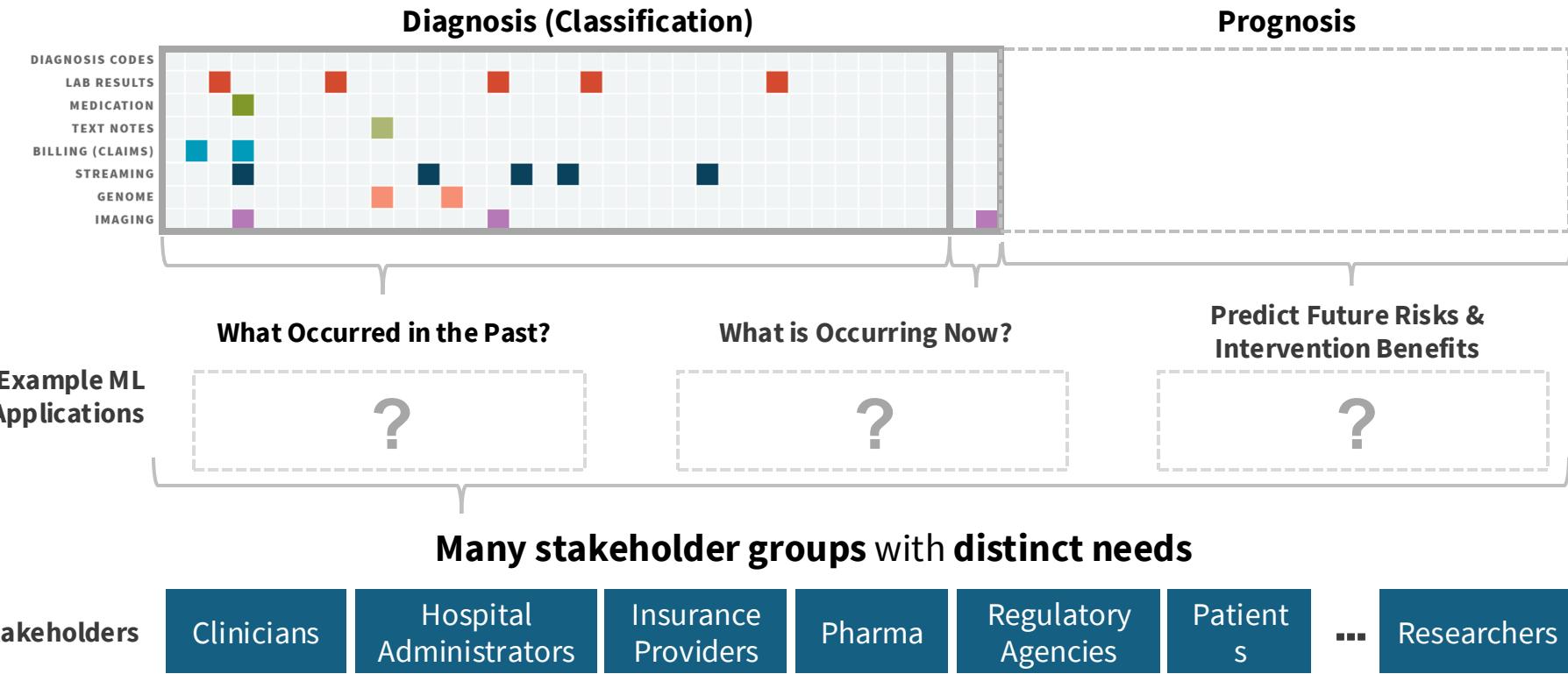
Whether to Treat

How to Treat

subject to

Policy	Capacity to Act
	Intervention Properties

Foundation Models Are Essential for AI in Healthcare



How Can AI Improve Healthcare?

Atherosclerotic cardiovascular disease risk assessment: An American Society for Preventive Cardiology clinical practice statement

Nathan D. Wong ^{a,*}, Matthew J. Budoff ^b, Keith Ferdinand ^c, Ian M. Graham ^d, Erin D. Michos ^e,
Tina Reddy ^c, Michael D. Shapiro ^f, Peter P. Toth ^{e,g}

nature medicine

Article

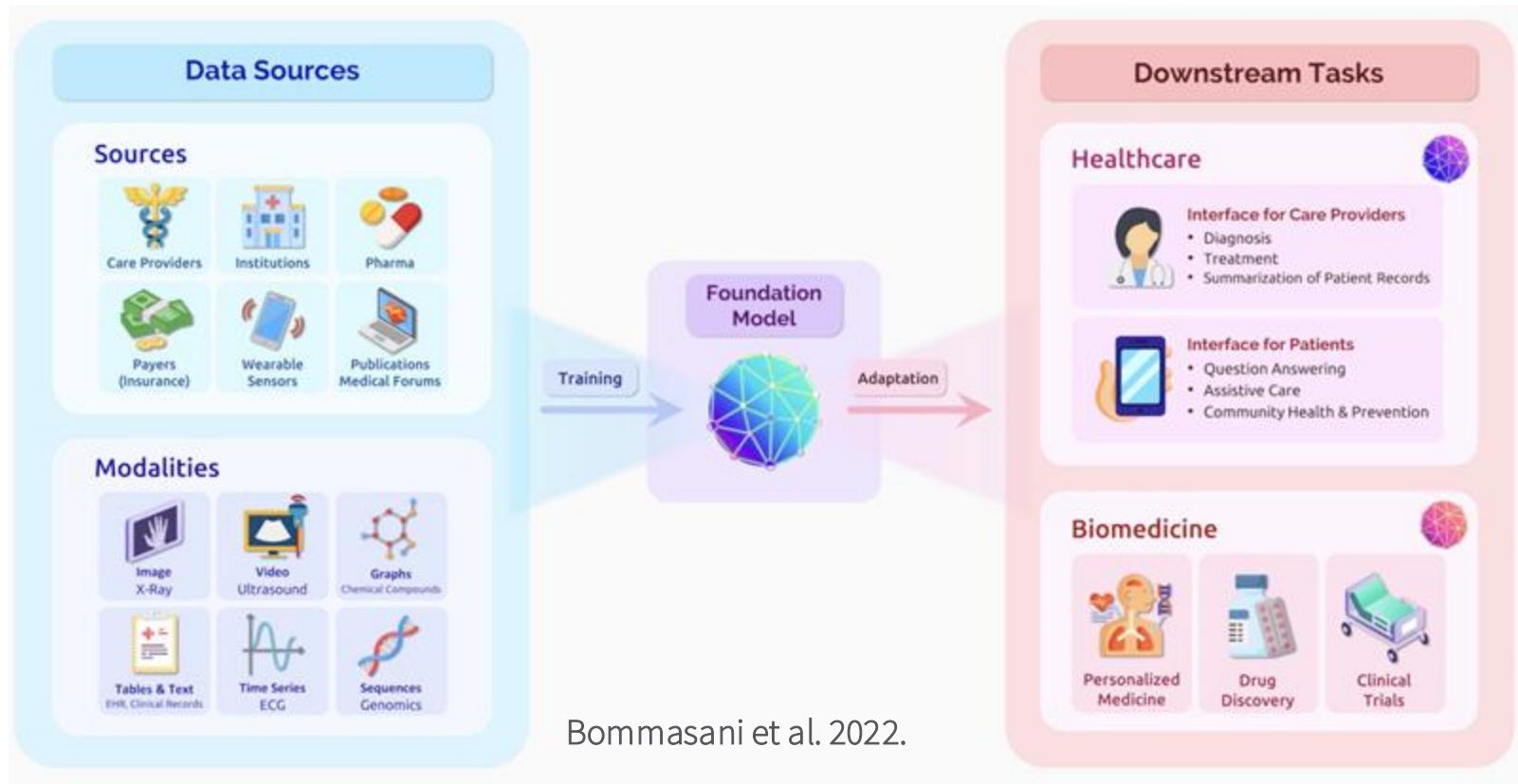
<https://doi.org/10.1038/s41591-023-02332-5>

A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories

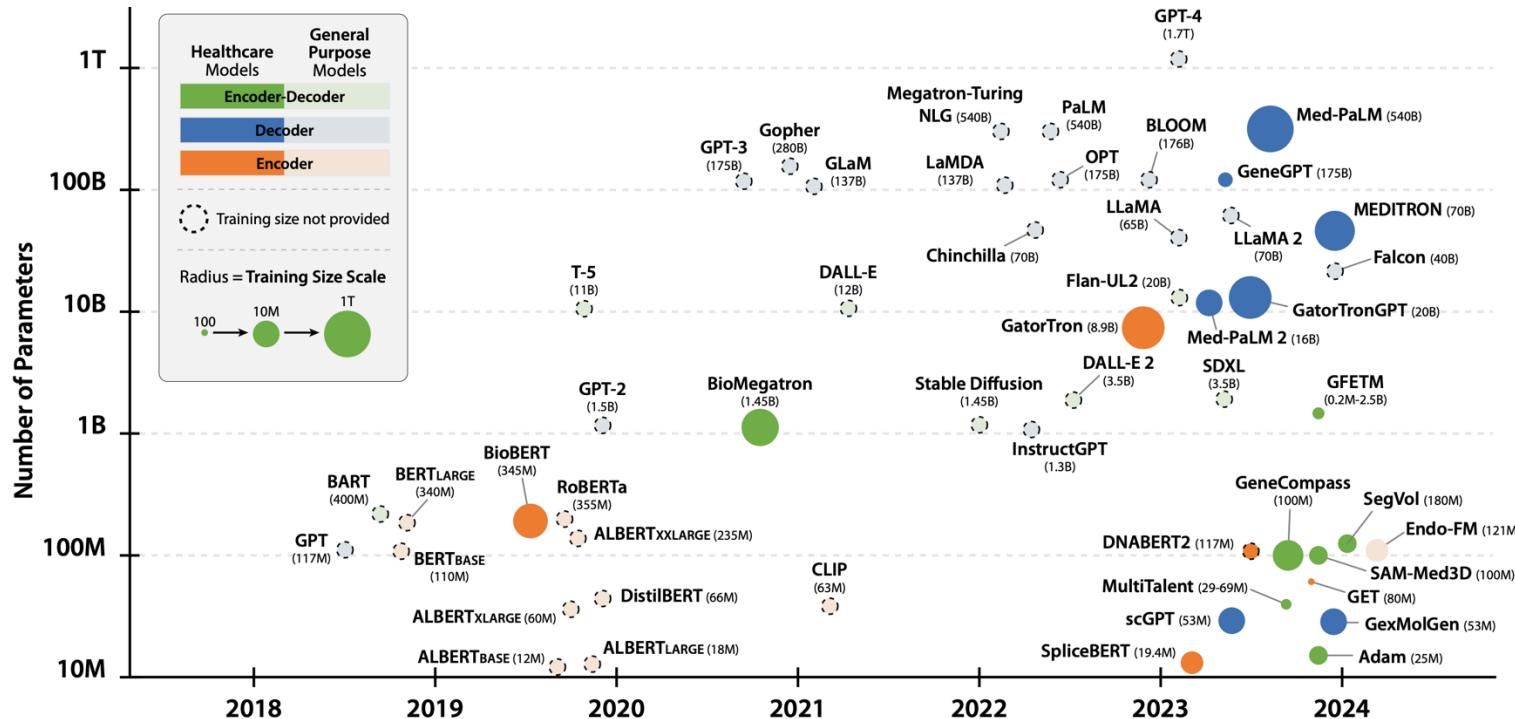
A Sketch of Healthcare Tasks

- **Improved patient outcomes**
 - Treatment selection
 - Disease diagnosis (e.g. early detection of cancer)
 - Risk stratification (e.g. mortality, cancer progression)
 - Abnormal test result prediction (e.g. lab values)
- **More efficient hospital operations**
 - Predictions for quality metrics (e.g. 30-day readmission likelihood)
 - Resource allocation (e.g. anticipating ICU transfers)
 - Billing (e.g. identify mis-coding of patient records)
- **Research**
 - Causal inference (e.g. drug trials and observational studies)
 - Identify off-label drug benefits

Foundation Models and AI's “Industrial Age”



Opportunity for AI to reimagine how we interact and understand medical data



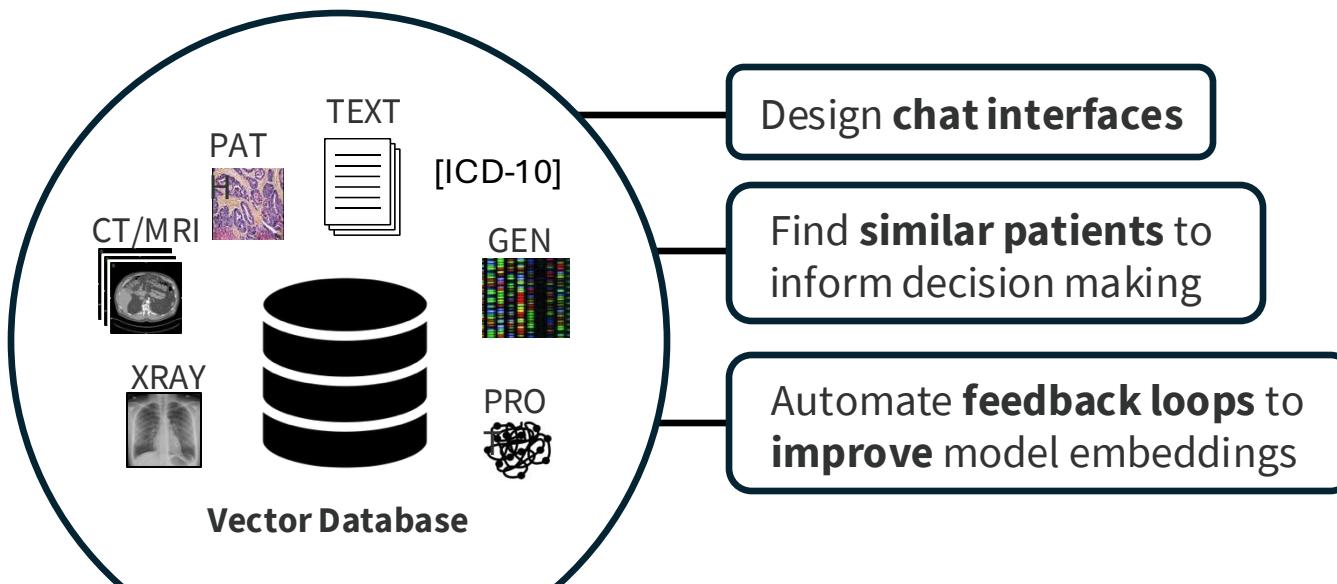
Khan et al., "A Comprehensive Survey of Foundation Models in Medicine," 2025.

The Future

We must build systems for patient timeline data that are **fast**, **multimodal**, and **interactive**

“I can’t just go to the medical records department to have them pull 500 charts on a certain type of patient.”

[Byrne Lee](#), MD, Clinical Professor,
Surgical Oncology, Stanford Health Care

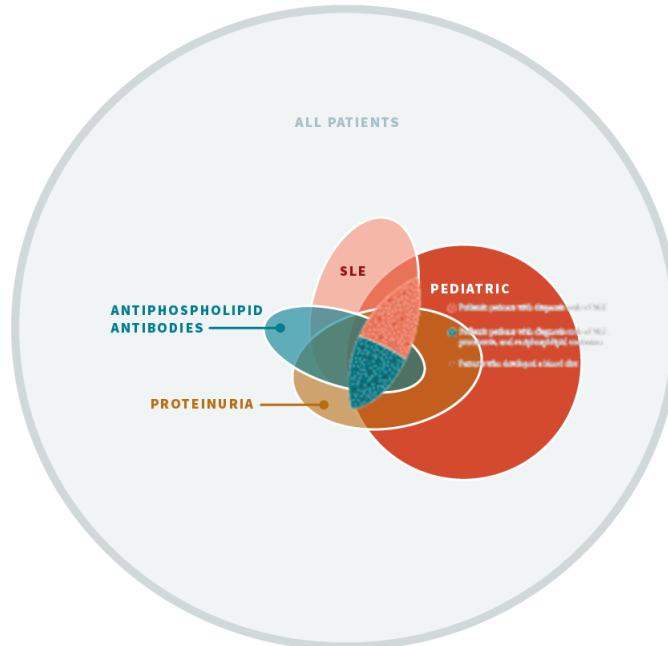


Modeling: Pretraining Objectives

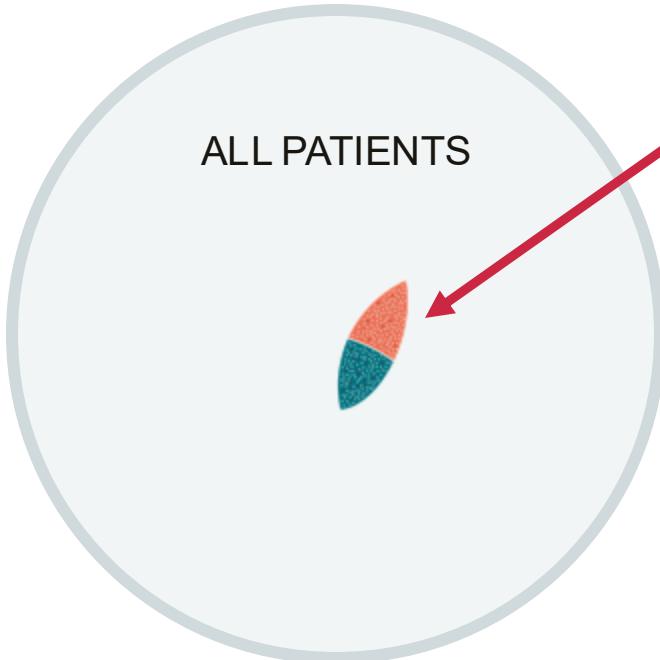
Classic Approach to Building and Patient Model

MEET LAURA

A teenager with systemic lupus erythematosus (SLE), proteinuria, pancreatitis and positive for antiphospholipid antibodies



Classic Approaches Often Fail Due to Limited Data

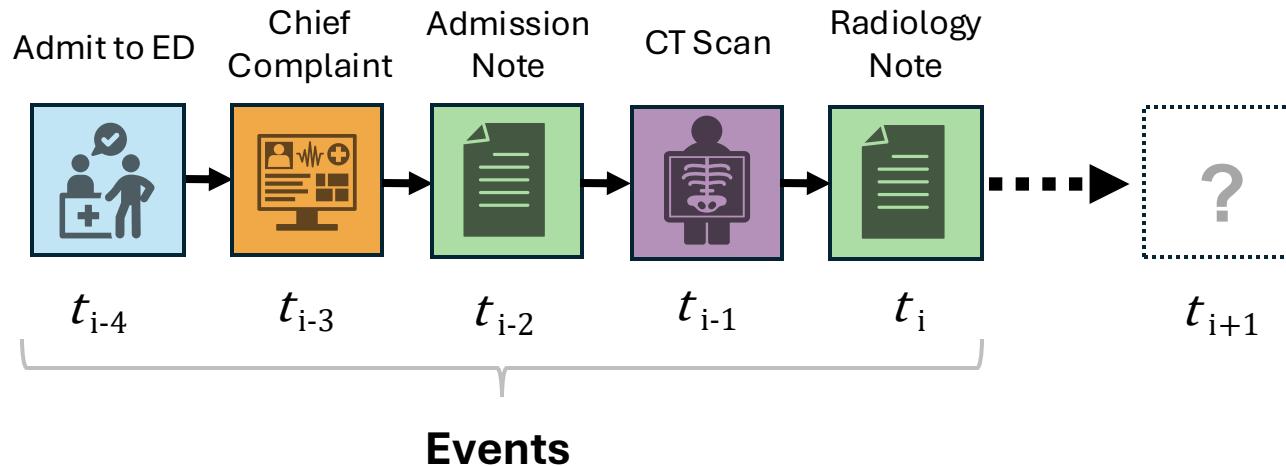


Classic medical ML approach is to
train on a small **target cohort**

...but this doesn't take advantage
of the structure present in the
entire patient population

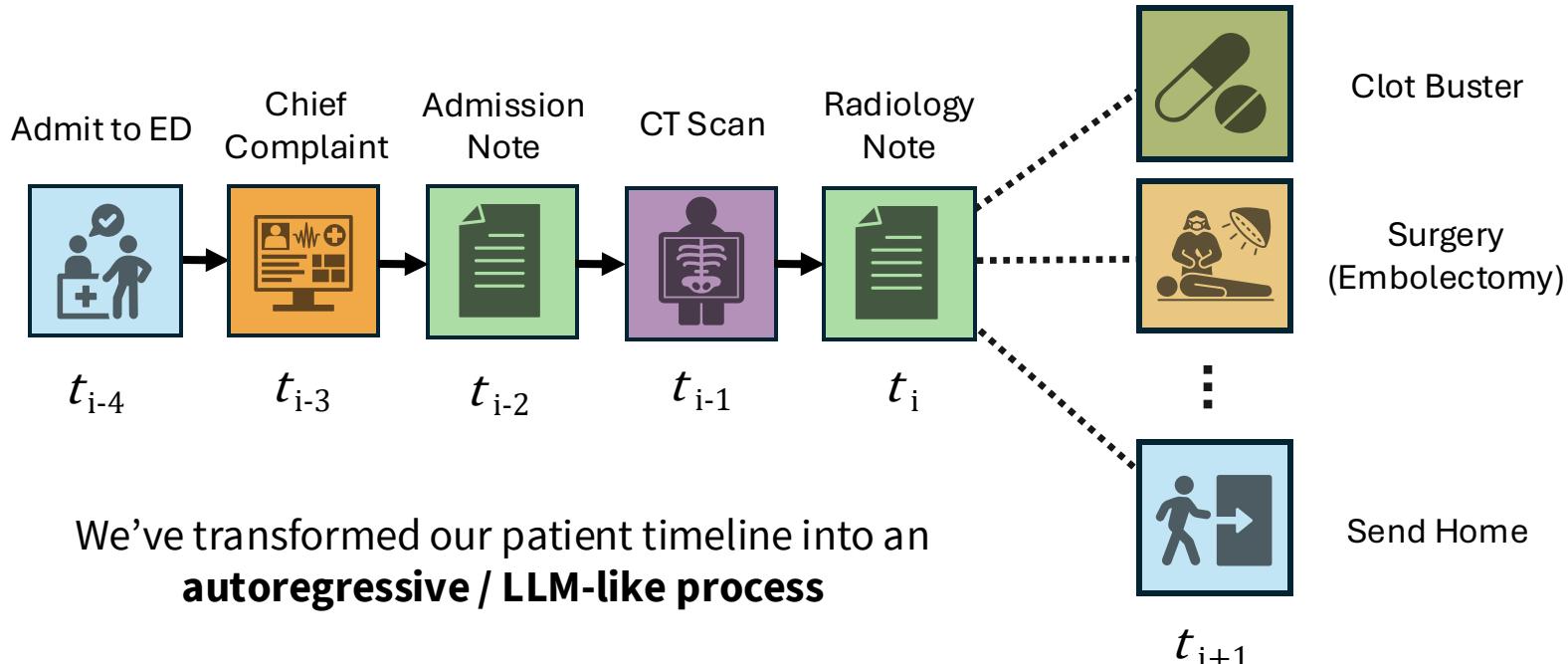
Modeling Patient Timelines for AI

PATIENT CASE: Patient **presents to ED** with sudden onset **shortness of breath, pleuritic chest pain, and tachycardia**. Concern for **pulmonary embolism**.



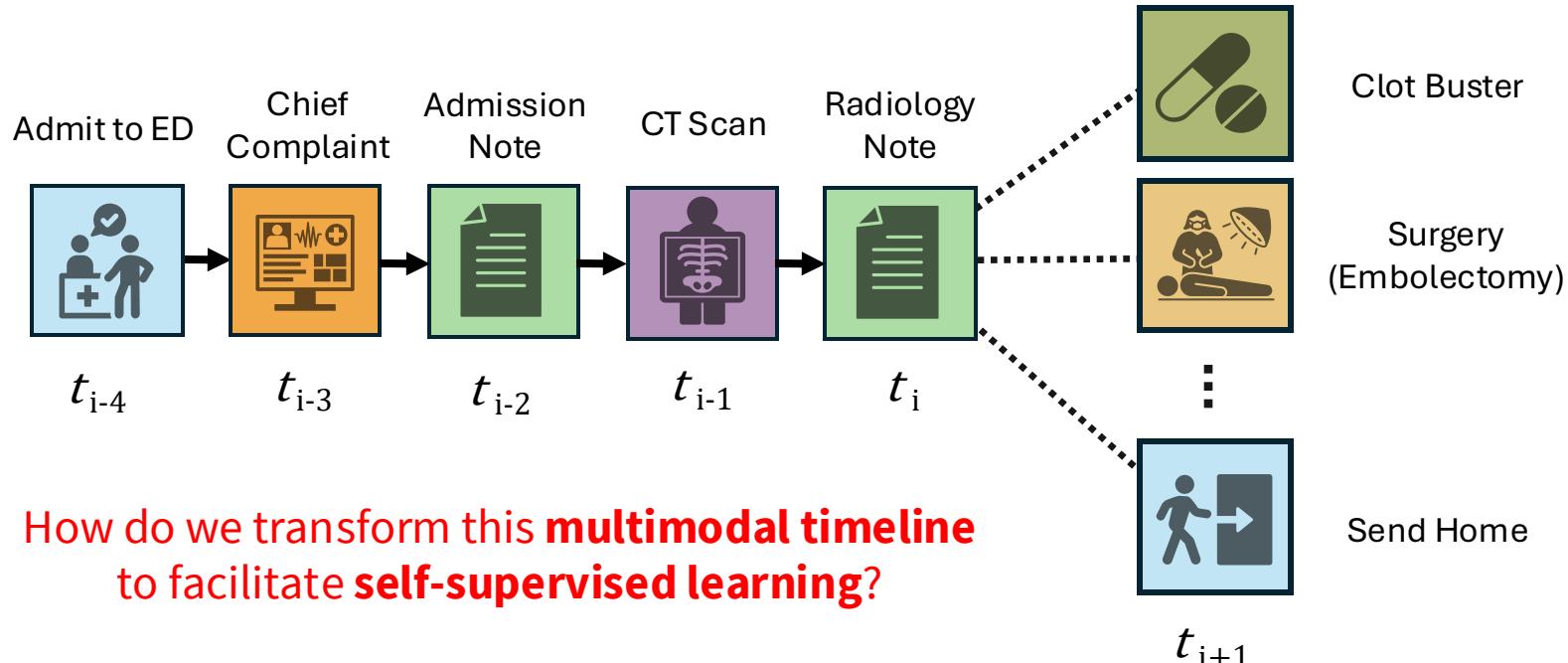
Modeling Patient Timelines for AI

PATIENT CASE: Patient **PRESENTS TO ED** with sudden onset **shortness of breath, pleuritic chest pain, and tachycardia**. Concern for **pulmonary embolism**.



Modeling Patient Timelines for AI

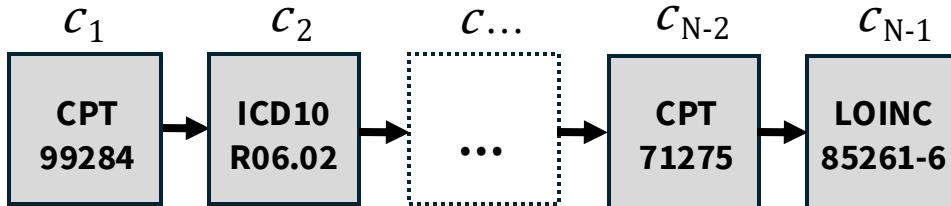
Hypothesis: A model that accurately **predicts future health states**, based on patient history, **encompasses many proposed use cases of medical AI**



Modeling Structured EHR Timelines

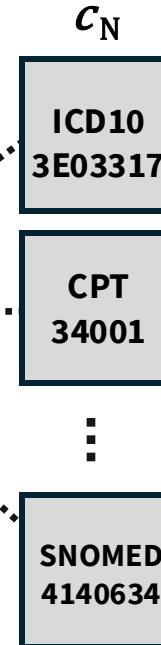
Map events to ontologies to define a “language” based on medical codes

event := $c_i \in \text{Vocabulary}$



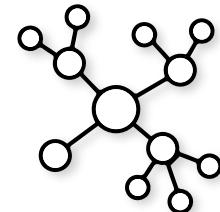
$$P(c_1, c_2, \dots, c_N) = \prod_{i=1}^N P(c_i \mid c_1, \dots, c_{i-1})$$

“Next Code” Pretraining



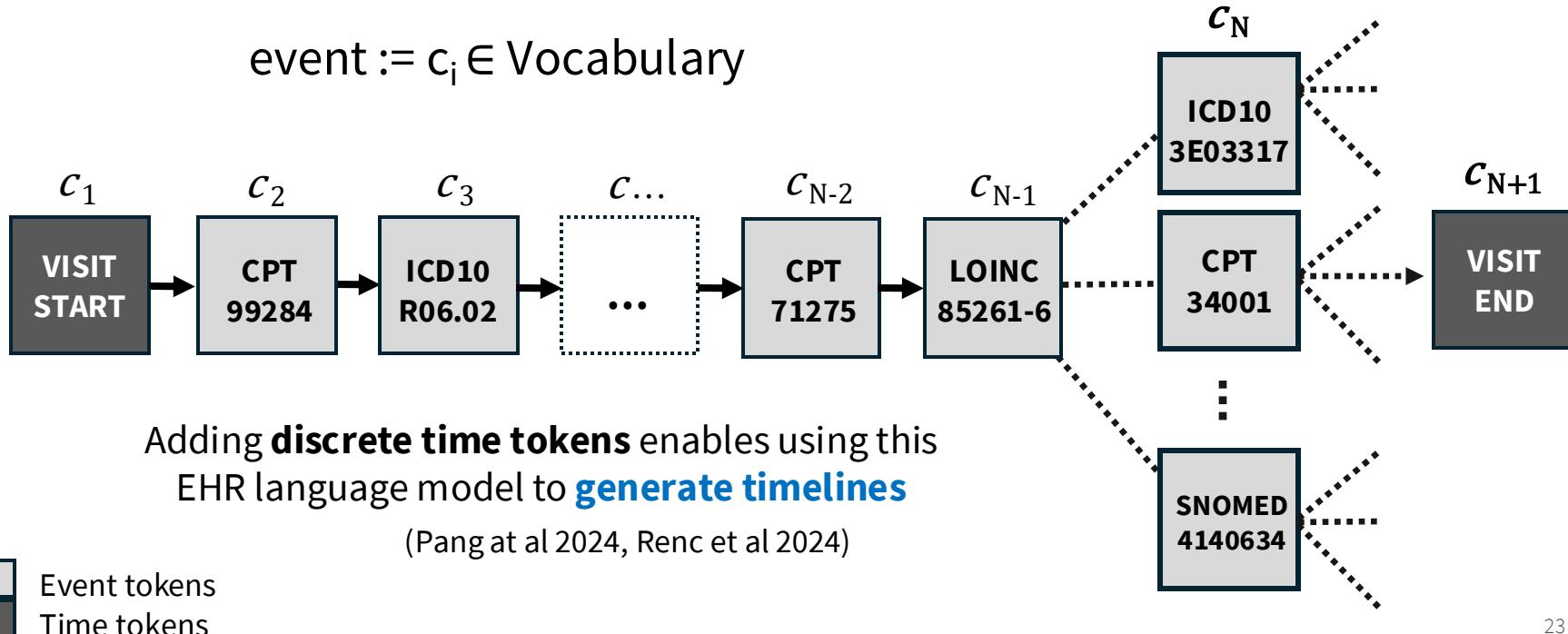
Ontology Mapping

Admit to ED → CPT 99284
Shortness of Breath → ICD10 R06.02
Chest Pain → ICD10 R07.1
Tachycardia → ICD10 R00.0
Admission Note → LOINC 47039-3
CT Scan → CPT 71275
Radiology Note → LOINC 85261-6
Thrombolytic → ICD10 3E03317
Embolectomy → CPT 34001
Discharge to Home → SNOMED 4140634



Modeling Structured EHR Timelines

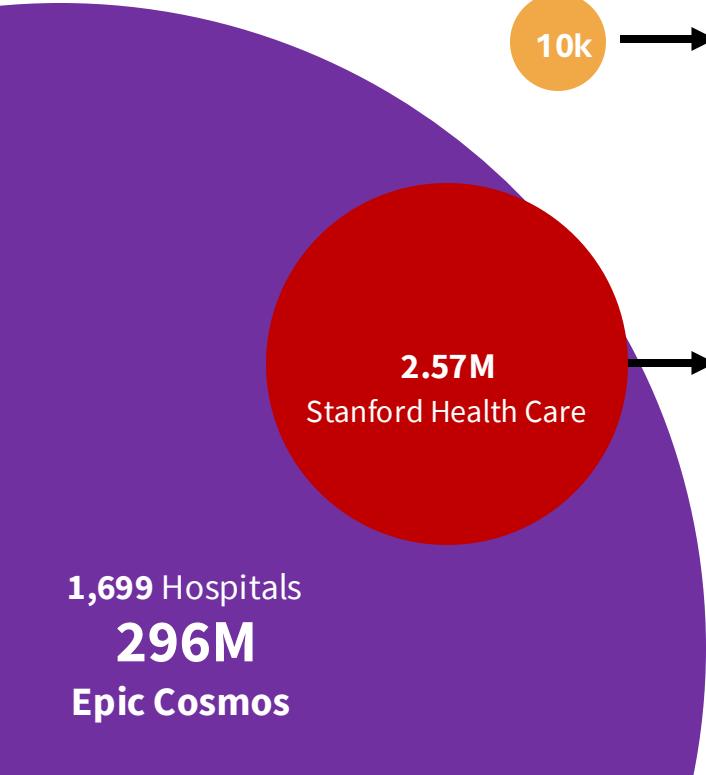
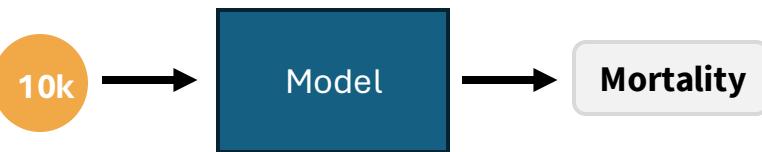
Map events to ontologies to define a “language” based on medical codes



Event tokens
Time tokens

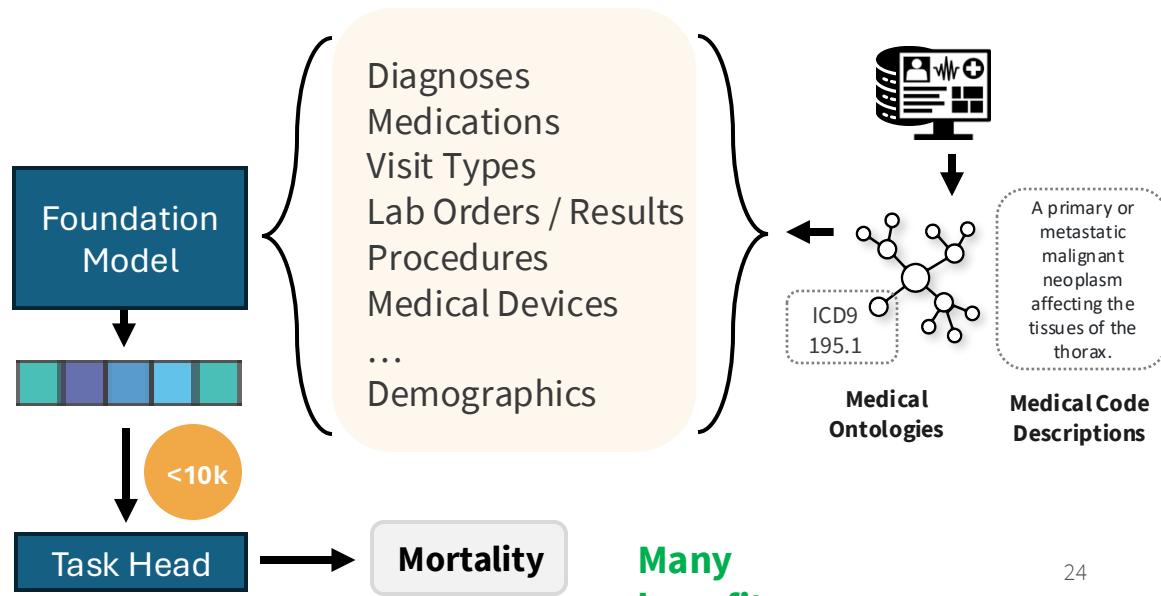
Self-Supervised Training of an EHR Foundation Model

PATIENT POPULATION



TASKS

- **Data-hungry**
- **Brittle**



Self-Supervised Pretraining Objectives for Structured Event Data

BERT-Style (Masked Language Modeling)

- BEHRT (Li et al. 2020)
- MedBERT (Rasmy et al. 2021)
- CEHR-BERT (Pang et al 2021)
- ClaimPT (Zeng et al. 2022)
- *et alia*

GPT-Style (Autoregressive)

- CLMBR (Steinberg et al. 2020)
- TransformEHR (Yang et al. 2023)
- CEHR-GPT (Pang et al 2024)
- ETHOS (Renc et al. 2024)

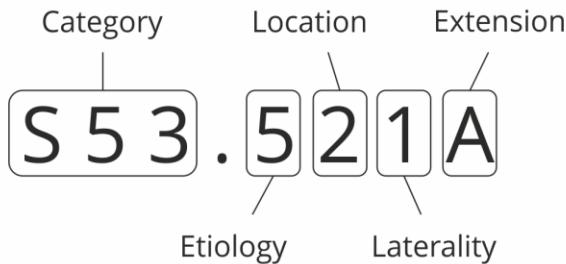
Time-to-Event

- MOTOR (Steinberg et al. 2024)

Won't talk about masked language modeling
Will focus on structured (medical code) models

Structured Data: Medical Vocabularies

ANATOMY OF AN ICD-10 CODE



ICD-10 code for torus fracture of lower right end of right radius, initial encounter for closed fracture

<https://blogs.halodoc.io/>

- Controlled Vocabularies
- **Knowledge Graphs**

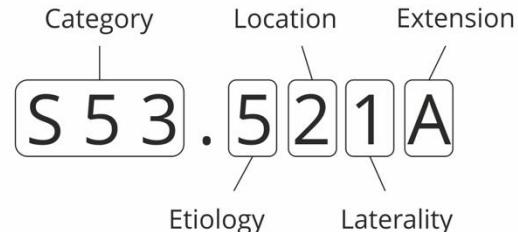
$code_i \in \text{Vocabulary}$

Category or Name	LOINC® from Regenstrief	
— {component} 103832		
— Laboratory 63121		
+ Microbiology and Antimicrobial susceptibility 5731		
+ Skin challenge 47		
— Chemistry and Chemistry - challenge 14248		
+ Chemistry - non-challenge 10420		
— Chemistry - routine challenge 27		
+ 17-Hydroxypregnolone 2		
+ Cortisol 7		
+ Dehydroepiandrosterone 1		
— Glucose 17		
— Glucose Blood Chemistry - routine challenge 3		
Glucose p meal Bld-mCnc	Glucose^post meal	
Deprecated Glucose pre-meal Bld-mCnc	Glucose^pre-meal	
Glucose pre-meal Bld-mCnc	Glucose^pre-meal	

More Like NLP Now, but Key Differences!

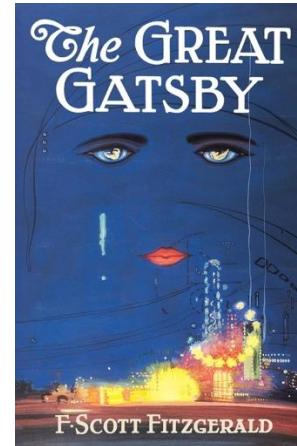
Tokenization / Vocabulary

	NLP	EHR	
Vocabulary Size	50k	250k+	
Subwords	Yes	No	
Tokens Semantics	Flat	<i>Hierarchical, Complex Dependencies</i>	



Sequence Properties

	NLP	EHR
Sequence Length	32k	250k+
Ordering	Total	Partial
Time Intervals	None	Discontinuous
Sampling Fidelity	All	<i>Sparse/Errors</i>

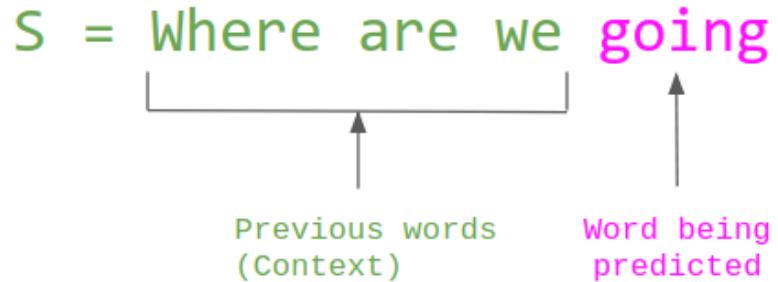


50% Patients
>= 68k tokens

GPT-Style (Autoregressive)

- CLMBR (Steinberg et al. 2020)
- TransformEHR (Yang et al. 2023)
- CEHR-GPT (Pang et al 2024)
- ETHOS (Renc et al. 2024)

Self-Supervised Pretraining in Natural Language

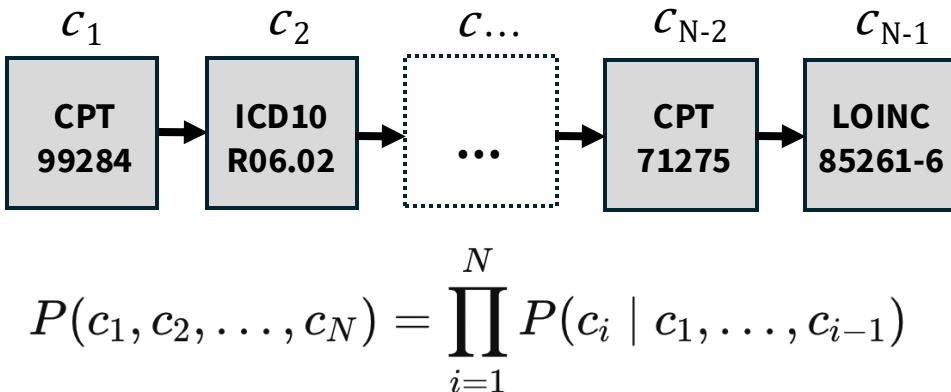


$$P(S) = P(\text{Where}) \times P(\text{are} \mid \text{Where}) \times P(\text{we} \mid \text{Where are}) \times P(\text{going} \mid \text{Where are we})$$

$$\begin{aligned} P(w_1, w_2, \dots, w_n) &= p(w_1)p(w_2|w_1)p(w_3|w_1, w_2)\dots p(w_n|w_1, w_2, \dots, w_{n-1}) \\ &= \prod_{i=1}^n p(w_i|w_1, \dots, w_{i-1}) \end{aligned}$$

Next Code Pretraining

event := $c_i \in \text{Vocabulary}$



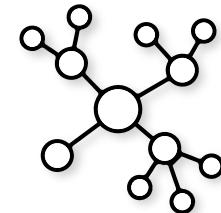
c_N Ontology Mapping

ICD10
3E03317

CPT
34001

SNOMED
4140634

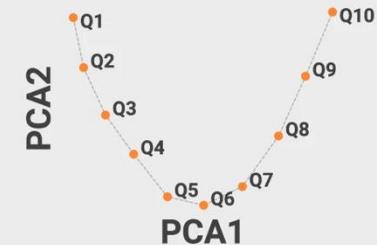
Admit to ED → CPT 99284
Shortness of Breath → ICD10 R06.02
Chest Pain → ICD10 R07.1
Tachycardia → ICD10 R00.0
Admission Note → LOINC 47039-3
CT Scan → CPT 71275
Radiology Note → LOINC 85261-6
Thrombolytic → ICD10 3E03317
Embolectomy → CPT 34001
Discharge to Home → SNOMED
4140634



Tokenization

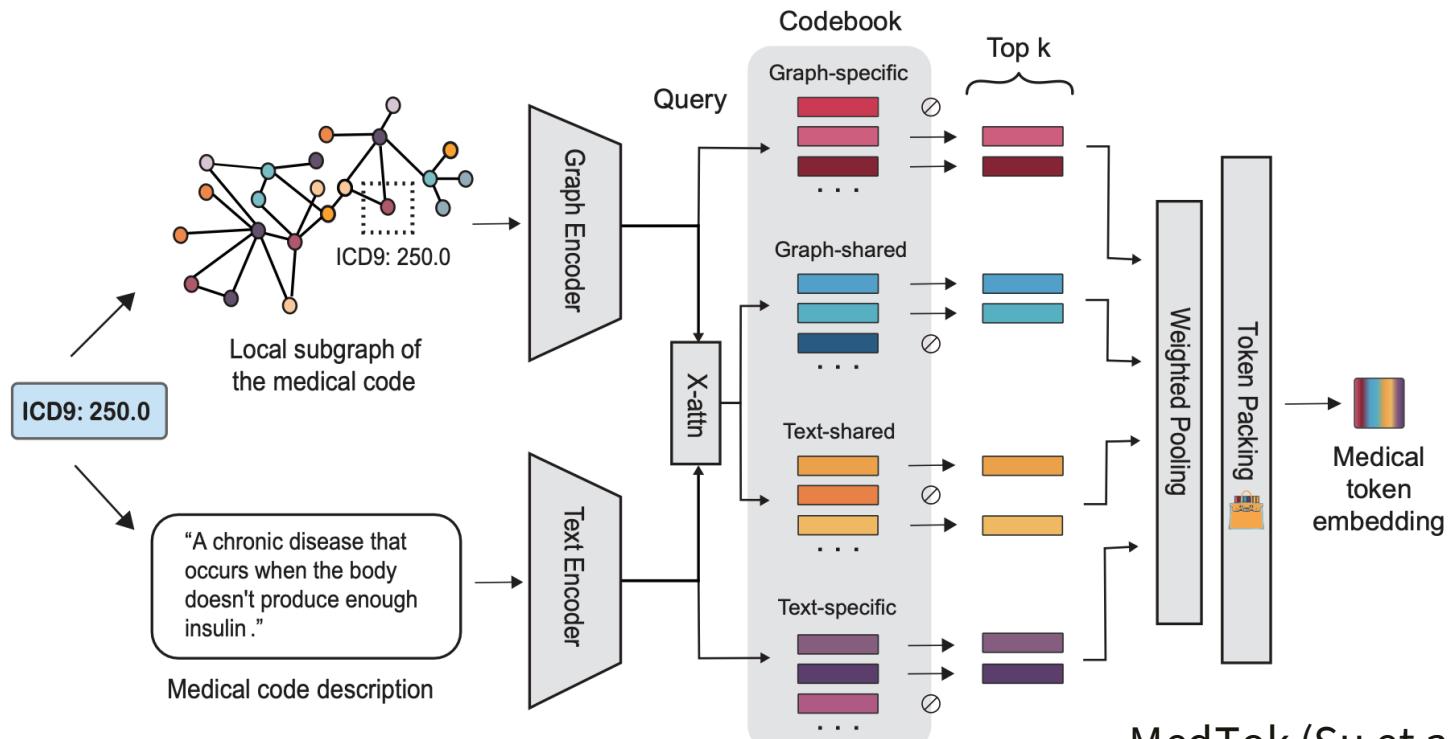


b Quantile embeddings



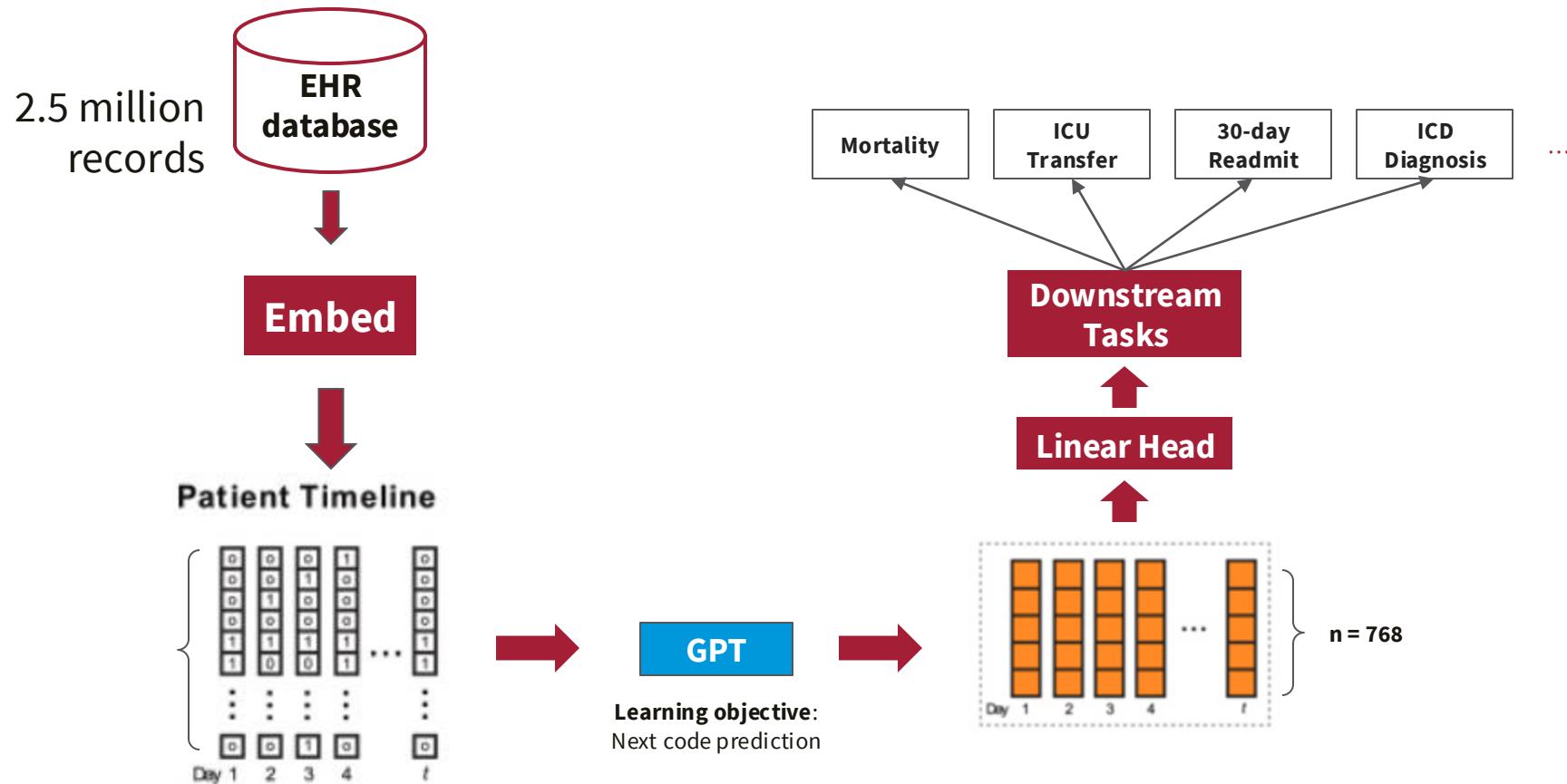
c Time token embeddings

Generalized Tokenizer



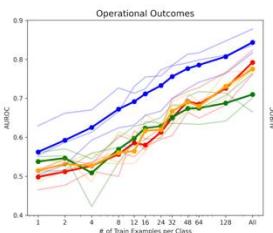
MedTok (Su et al. 2025)
Drop-in Replacement

GPT-based Approach



Validating Benefits of EHR Foundation Models

Data Efficiency



SOTA **few-shot learning** overall performance

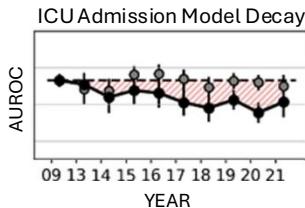
(Wornow et al. 2023)

(Steinberg et al. 2020)

Publication Venue

- Medical / Informatics
- Computer Science

Robustness



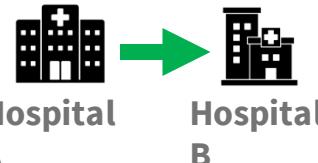
Improved robustness to **temporal distribution shifts**

(Guo et al. 2023)

Improved performance across key **subgroups** (pediatrics)

(Lemmon et al. 2023)

Cross-Site Adaptability



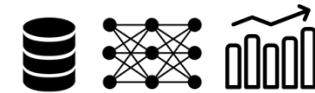
Hospital A Hospital B

Transfer **pretrained models** across hospitals

Require **up to 90% less** pretraining data

(Guo et al. 2024)

Reproducible EHR Benchmarking



First **externally verifiable** evaluation of **EHR foundation models** on longitudinal data

(Wornow et al. 2025)

(Arnrich et al. 2024)

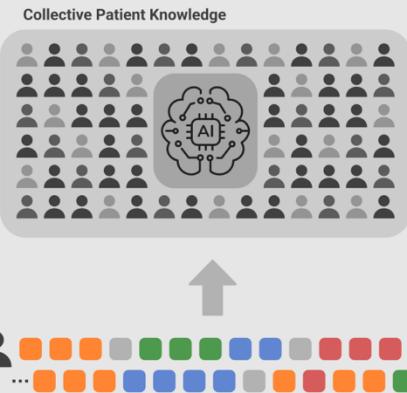
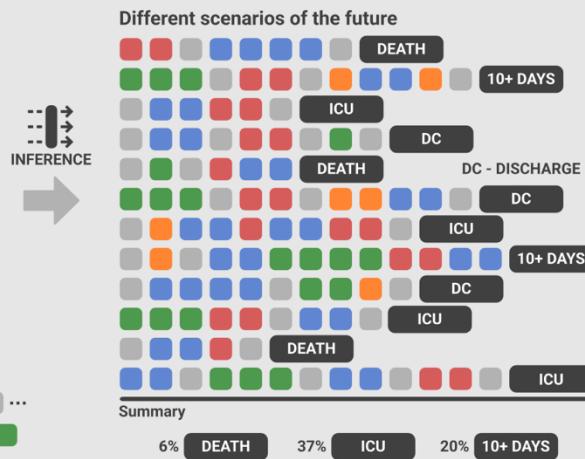
(Steinberg et al. 2024)

(Wornow et al. 2023)

(Huang et al. 2023)

Zero-Shot Patient Classification

2. Generation of Future Health



3. Processing of Generated Future

ETHOS samples from model generations to estimate future event risk

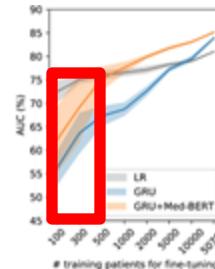
Time-to-Event Modeling

Data (Label) Efficiency of EHR Foundation Models

Label Efficiency: How many **labeled examples** are needed to train a high-performing model?

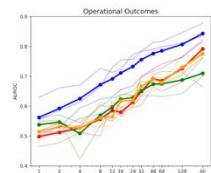
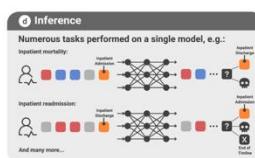
BERT-Style (Masked Language Modeling)

- BEHRT (Li et al. 2020)
- MedBERT (Rasmy et al. 2021)
- CEHR-BERT (Pang et al 2021)
- ClaimPT (Zeng et al. 2022)
- *et alia*



GPT-Style (Autoregressive)

- CLMBR (Steinberg et al. 2020)
- TransformEHR (Yang et al. 2023)
- CEHR-GPT (Pang et al 2024)
- ETHOS (Renc et al. 2024)



MedBERT

- Trained on **28M patients**
- Performance with **< 500 examples** worse than **logistic regression**

CLMBR

- Trained on **2.57M patients** (3.5B tokens)
- SOTA **few-shot** learning using **embeddings**

ETHOS

- Trained on **200k patients** (MIMIC-VI)
- **Zero-shot** abilities using **generation**

Autoregressive Modeling at Smaller Scales

Autoregressive LLMs can capture long-distance dependencies given **sufficient data and parameters**

Natural Language
 $\geq 7\text{B}$ parameters
 $\geq 500\text{B-1T}$ tokens

EHR
143M parameters
3.5B tokens

285x
less data

Can we train a **small, data-constrained** EHR foundation model to learn embeddings that capture more information about the future?

Key Concepts in Time-to-Event Modeling

Model the **time until an event occurs** (e.g., death) while accounting for **censoring**

Censoring

Event times are **not fully observed by end of a study period**

$$\begin{array}{c} (X_i, T_i) \\ \text{D} \end{array} \quad \text{BIASE} \quad (X_i, T_i, \delta_i) \quad \delta_i = \begin{cases} 1 & \text{event observed} \\ 0 & \text{censored} \end{cases}$$

Survival Function

The probability that an event has not occurred as of time t

$$S(t) = \Pr(T > t)$$

Hazard Rate Function

Instantaneous risk of an event at time t , given survival up to t

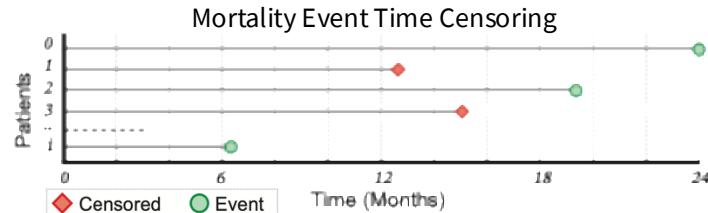
$$h(t) = \lim_{\Delta t \rightarrow 0} \frac{\Pr(t \leq T < t + \Delta t \mid T \geq t)}{\Delta t}$$

Event's "speed" at each moment

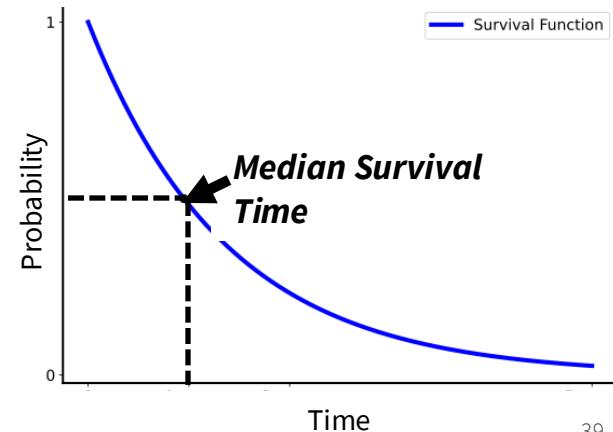
Learn a patient representation $R_i = f_\theta(X_i)$ for estimating **personalized hazard rates**

$$S(t) = \exp \left(- \int_0^t h(u) du \right)$$

Survival depends on cumulative hazard over time



Survival Curve



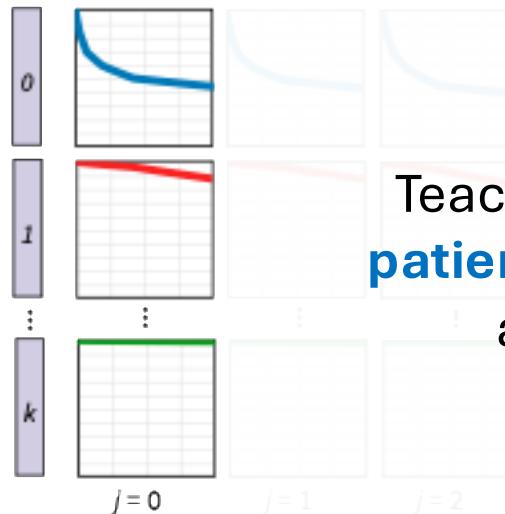
Intuition Behind the Pretraining Objective

Hypothesis: Multi-task learning (MTL) will capture generalizable TTE features

Select k TTE
pretraining tasks

$k \leq$
16,392

Event j



Teach our model to predict
patient survival trajectories
at a massive scale

Shared Decoder

Timeline Input

Intuition Behind the Pretraining Objective

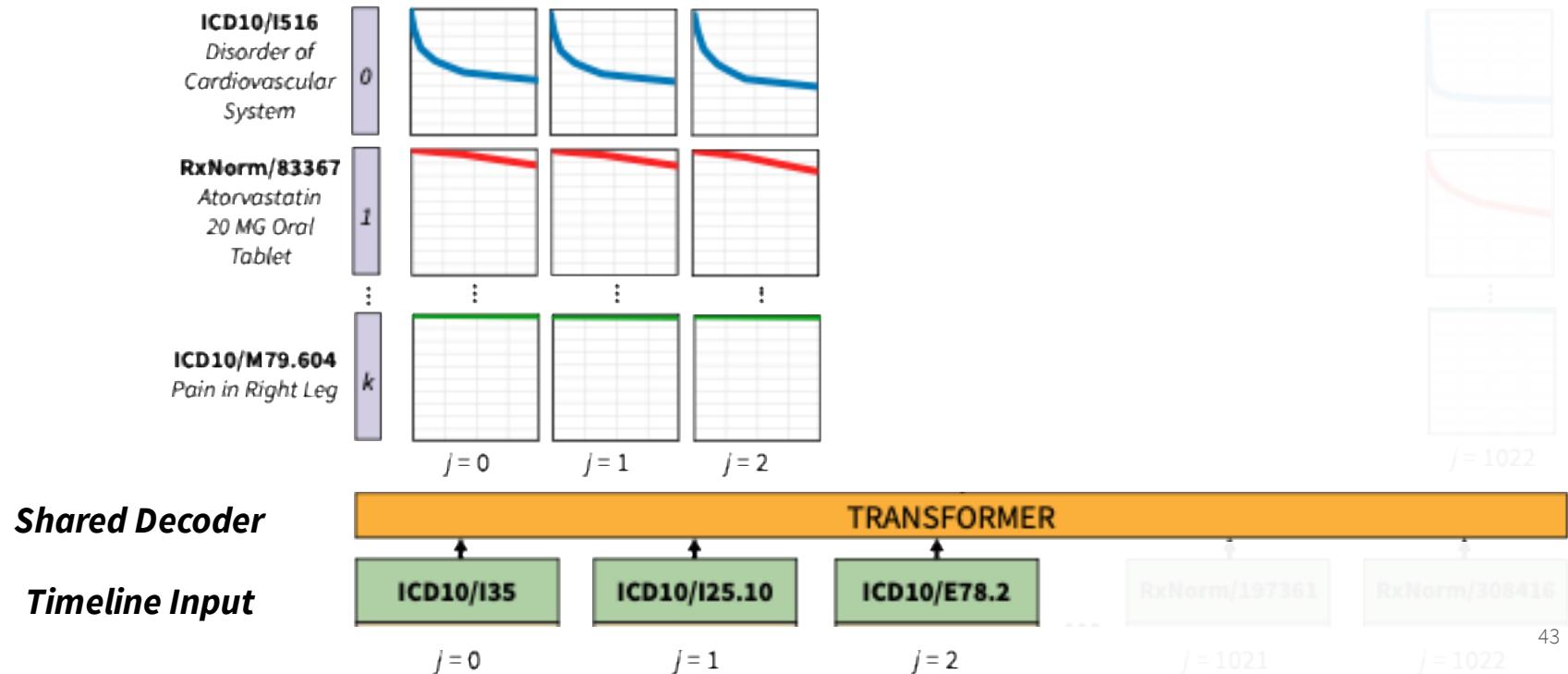
Hypothesis: Multi-task learning (MTL) will capture generalizable TTE features

Intuition Behind the Pretraining Objective

Hypothesis: Multi-task learning (MTL) will capture generalizable TTE features

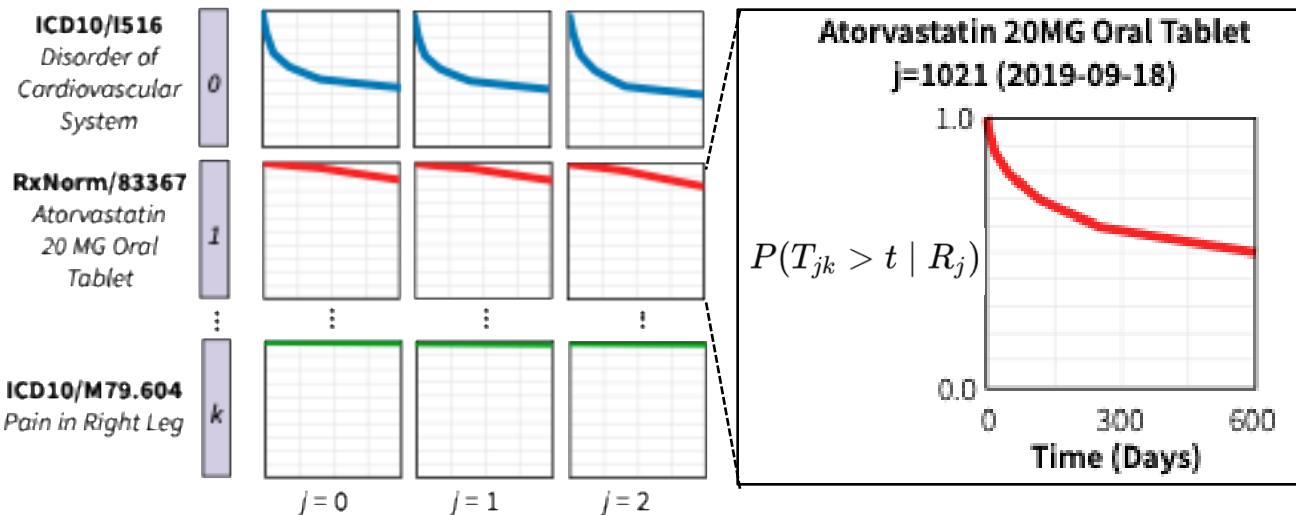
Intuition Behind the Pretraining Objective

Hypothesis: Multi-task learning (MTL) will capture generalizable TTE features



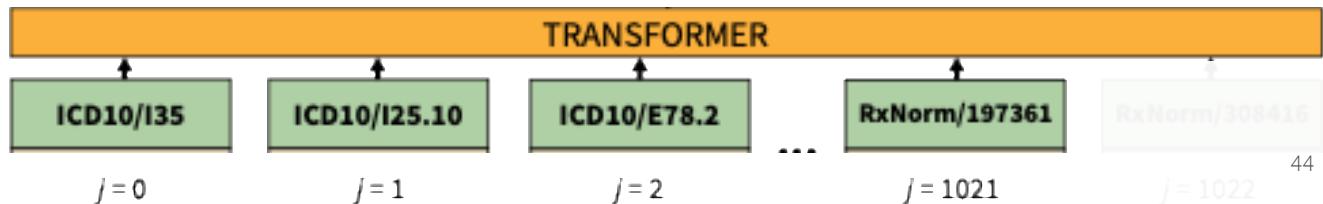
Intuition Behind the Pretraining Objective

Hypothesis: Multi-task learning (MTL) will capture generalizable TTE features



Shared Decoder

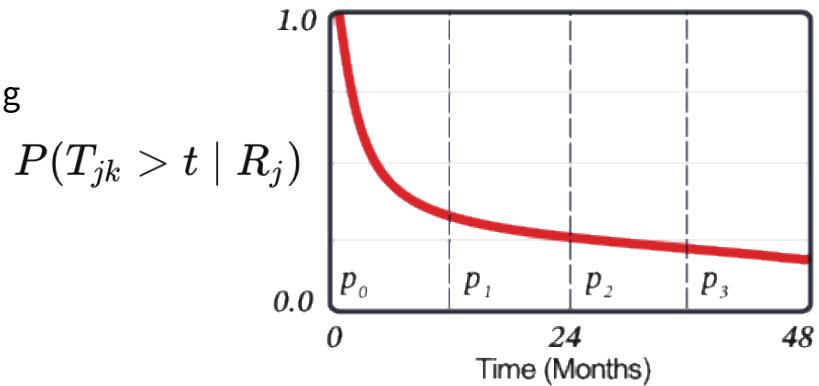
Timeline Input



Pretraining Objective

Deep Piecewise Exponential Model

- Partition time into **pieces** for more expressive risk modeling
- For **piece** p , interval start and end time: $[S_p, E_p)$
- Hazard rate** is constant within this interval



For a patient with **event j, task k, and piece p**

Piecewise Hazard Function
$$h_{jk}(t) = \sum_{p=1}^P I(S_p \leq t < E_p) \lambda_{jkp}$$
 t is within piece p hazard rate for piece p

Survival Function
$$S_{jk}(t) = \prod_{p=1}^P \exp(-\lambda_{jkp} (\min(t, E_p) - S_p) I(t \geq S_p))$$

Hazard Rate
$$\lambda_{jkp} = \exp(W_p R_j \cdot \hat{\beta}_k)$$

Annotations for the hazard rate equation:

- A blue bracket under $W_p R_j$ is labeled "patient representation as of j".
- A blue bracket under $\hat{\beta}_k$ is labeled "time-independent task embedding".
- A blue bracket under the entire term $W_p R_j \cdot \hat{\beta}_k$ is labeled "piece-specific linear projection".
- A blue box labeled "TRANSFORMER f_θ " is connected to the bracket under $W_p R_j$.

Pretraining Objective

Loss Function

Minimize the negative log-likelihood of the observed event times across all tasks and time pieces

$$\min_{\Theta} \mathcal{L}(\Theta) = - \sum_{j,k} \sum_{p=1}^P [\delta_{jkp} (\log \lambda_{jkp} - \lambda_{jkp} U_{jkp}) + (1 - \delta_{jkp}) (-\lambda_{jkp} U_{jkp})]$$

*all events
and tasks* *event happens in piece p* *no event in piece p*

U represents the amount of time an event is at risk within a given time interval

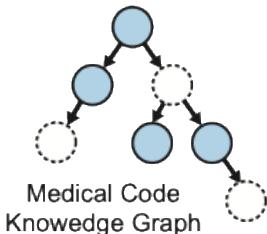
Datasets & Tasks

Datasets

STANFORD STARR-OMOP (EHR)

2.7M Patients
3.5B Events

Pretraining Tasks



Entropy-Ranked Vertex Cover for Task Selection

Intuition: We pick k tasks that **maximize diversity** by selecting nodes whose values are **least predictable** given their parents

$$k \leq 16,392$$

Evaluation Tasks

Celiac Disease

Stroke

Pancreatic Cancer

NAFLD

Heart Attack

Lupus

ICD-10

Rule-based labeling

We remove these tasks from the pretraining set

NLP-based

Measures generalization to labels not derived from codes

13 Chest X-ray Findings

Results: MOTOR vs. Baselines

MOTOR-Scratch (no pretraining) largely
underperforms compared to baselines

Method	Dataset	Celiac	HA	Lupus	NAFLD	Cancer	Stroke
Cox PH	EHR-OMOP	0.689	0.761	0.770	0.726	0.793	0.779
DeepSurv	-	0.704	0.823	0.790	0.800	0.811	0.830
DSM	-	0.707	0.828	0.784	0.805	0.809	0.835
DeepHit	-	0.695	0.826	0.807	0.805	0.809	0.833
RSF	-	0.729	0.836	0.787	0.802	0.824	0.840
MOTOR-Scratch	-	0.696	0.795	0.803	0.821	0.777	0.831

Results: MOTOR vs. Baselines

But with **pretraining...**

MOTOR-Probe & **MOTOR-Finetune** outperform **SOTA** on all tasks

Avg improvement: **+4.6%**

Method	Dataset	Celiac	HA	Lupus	NAFLD	Cancer	Stroke
Cox PH	EHR-OMOP	0.689	0.761	0.770	0.726	0.793	0.779
DeepSurv	-	0.704	0.823	0.790	0.800	0.811	0.830
DSM	-	0.707	0.828	0.784	0.805	0.809	0.835
DeepHit	-	0.695	0.826	0.807	0.805	0.809	0.833
RSF	-	0.729	0.836	0.787	0.802	0.824	0.840
MOTOR-Scratch	-	0.696	0.795	0.803	0.821	0.777	0.831
MOTOR-Probe	-	0.802	0.884	0.850	0.859	0.865	0.874
MOTOR-Finetune	-	0.802	0.887	0.863	0.864	0.865	0.875

Results: Autoregressive vs. TTE Pretraining

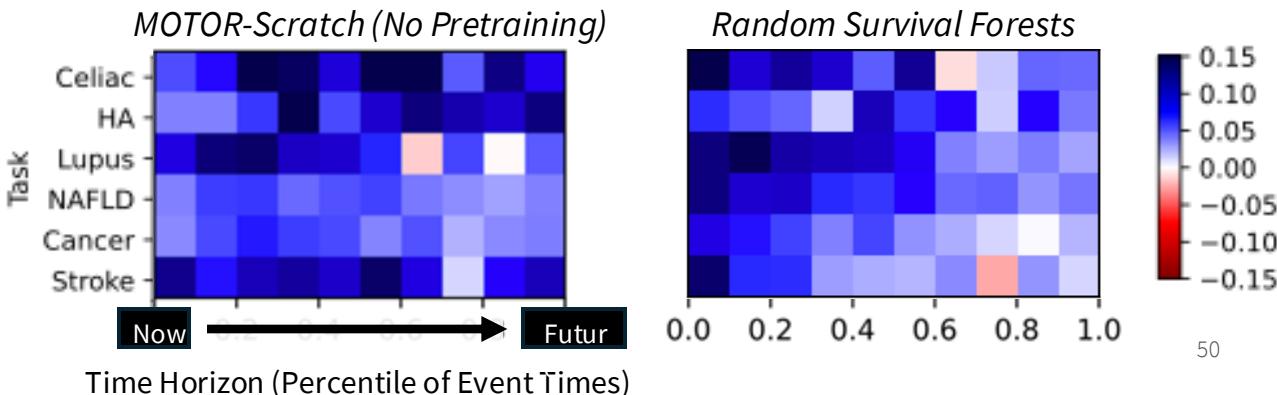
Overall Performance

Objective	Celiac	HA	Lupus	NAFLD	Cancer	Stroke
RSF	0.729	0.836	0.787	0.802	0.824	0.840
Next Code	<u>0.774</u>	<u>0.862</u>	<u>0.842</u>	<u>0.860</u>	<u>0.860</u>	<u>0.857</u>
Time-to-Event	0.802	0.887	0.863	0.864	0.865	0.875

Autoregressive beats SOTA (RSF)
...but **TTE beats autoregressive by**
~2%

Performance Comparison over Long Time Horizons

Performance Deltas of MOTOR with TTE Pretraining Versus:



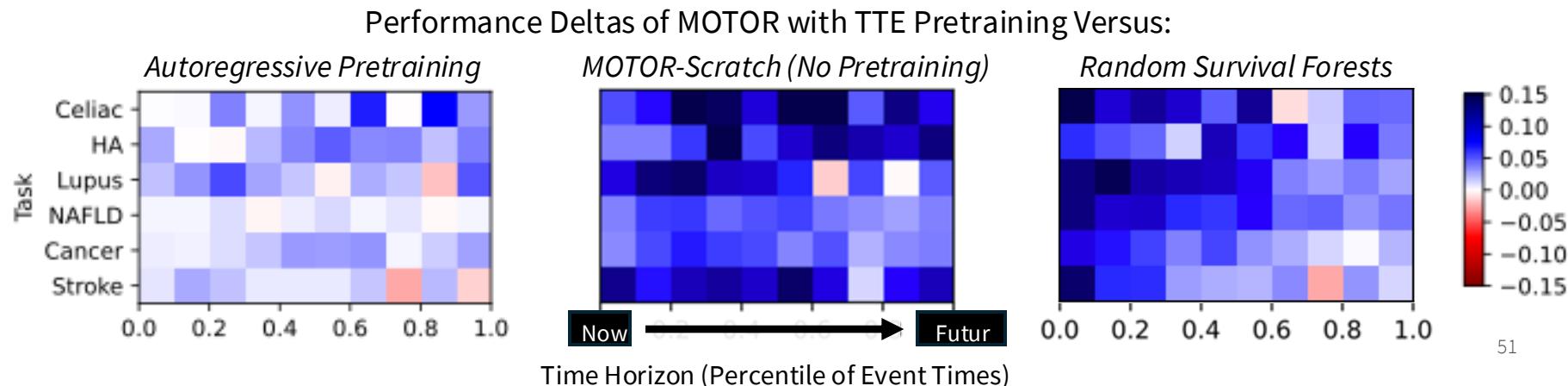
Results: Autoregressive vs. TTE Pretraining

Overall Performance

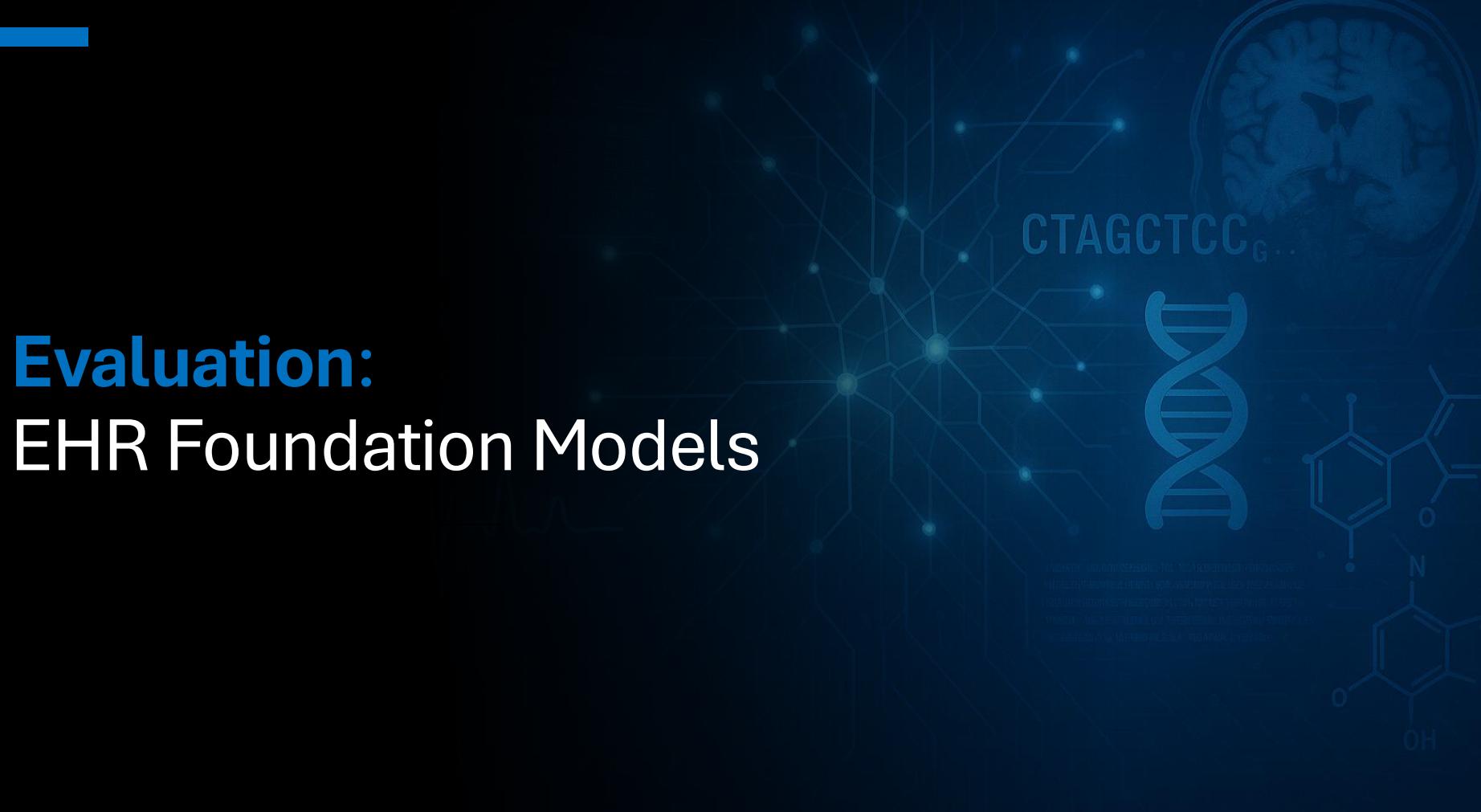
Objective	Celiac	HA	Lupus	NAFLD	Cancer	Stroke
RSF	0.729	0.836	0.787	0.802	0.824	0.840
Next Code	<u>0.774</u>	<u>0.862</u>	<u>0.842</u>	<u>0.860</u>	<u>0.860</u>	<u>0.857</u>
Time-to-Event	0.802	0.887	0.863	0.864	0.865	0.875

Autoregressive beats SOTA (RSF)
...but **TTE beats autoregressive by**
~2%

Performance Comparison over Long Time Horizons



Evaluation: EHR Foundation Models



Reproducibility in Healthcare AI

SCIENCE TRANSLATIONAL MEDICINE | PERSPECTIVE

BIOMEDICAL POLICY

Reproducibility in machine learning for health research: Still a ways to go

Matthew B. A. McDermott^{1*†}, Shirley Wang^{2,3†}, Nikki Marinsek⁴, Rajesh Ranganath⁵,
Luca Foschini⁴, Marzyeh Ghassemi^{2,6,7}

Longstanding
Reproducibility
Challenges

REVIEW

Global healthcare fairness: We should be sharing more, not less, data

Kenneth P. Seastedt^{1*}, Patrick Schwab², Zach O'Brien³, Edith Wakida⁴,
Karen Herrera⁵, Portia Grace F. Marcelo⁶, Louis Agha-Mir-Salim^{7,8}, Xavier
Borrat Frigola^{8,9}, Emily Boardman Ndulue¹⁰, Alvin Marcelo¹¹, Leo
Anthony Celi^{8,12,13}

PLOS DIGITAL HEALTH

Medical data are noisy, **replete
with errors, biases, missingness**

Most AI is **trained and
tested on cleaned data**

Multiple Choice vs. Longitudinal Patient Timelines

MedQA

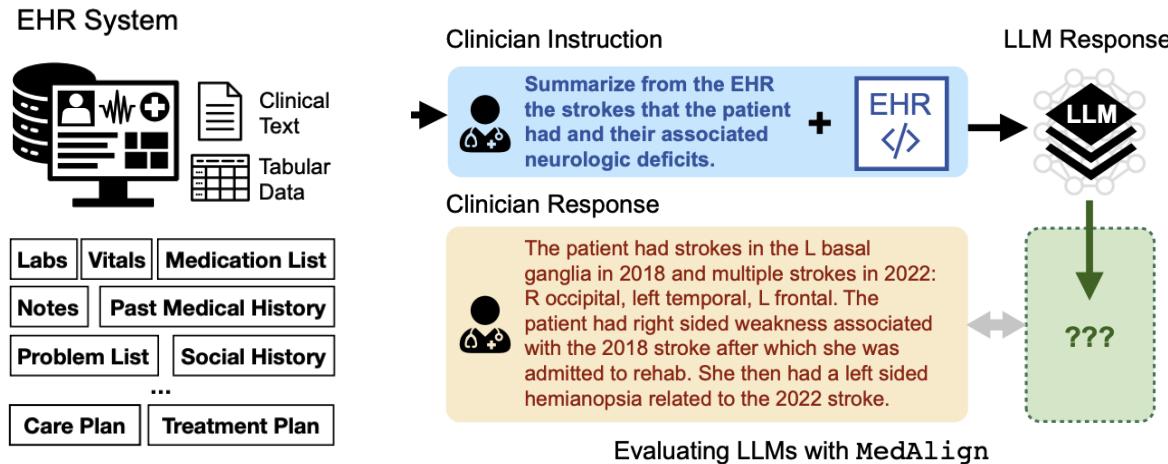
Question: A 35-year-old man is brought to the emergency department by a friend 30 minutes after the sudden onset of right-sided weakness and difficulty speaking. [...] Which of the following is the most appropriate next step in diagnosis?

- (A) Echocardiography with bubble study
- (B) Adenosine stress test
- (C) Cardiac catheterization
- (D) Cardiac MRI with gadolinium
- (E) CT angiography


```
<record>
  <visit type="Emergency Room Visit" start="10/08/2018 20:00">
    <day start="10/08/2018 20:00">
      <person>
        Birth:7/19/1966
        Rad
        Gen
        Eth
        Age
        Age
      </person>
      <condition>
        <code>[LOINC/LP21258-6] Oxygen saturation 96 %</code>
      </condition>
      <note type="emergency department note" start="10/08/2018 08:10 PM">
        Emergency Department Provider Note Name: Jessica Jones, MD MRN: [1234555]
        ED Arrival: 10/08/2018 Room #: 17B History and Physical Triage: 52 year old woman
        with unknown past medical history presenting with right sided weakness since about
        2 hours ago. Last known normal 5:45pm. She said she was feeling well and then suddenly
        noticed that her right arm and leg went limp. She denies taking any blood thinners,
        and has had no recent surgeries. NIHSS currently graded at an 8: 4 no movement in R
        arm and 4 no movement in R leg CT head is negative for any bleed or any early ischemic
        changes. INR is 1.0, Plt 133. Discussed with patient the severity of symptoms and the
        concern that they are caused by a stroke, and that IV tPA is the best medication to
        reduce the risk of long term deficits. Patient is agreeable and IV tPA was given at
        8:20pm. Initially SBP 210/100, labetalol 5mg IV x1 given and came down to 180/90.
        IV tPA given after this point. Patient will need to be admitted to the ICU, with close
        neurological monitoring. Plan for head CT 24 hours post IV tPA administration, stroke
        workup including LDL, HbA1c, echo, tele monitoring. Local neurology consult in AM.
      </note>
      <measurement start="10/08/2018 08:15 PM">
        <code>[LOINC/70182-1] NIHSS 8 </code>
      </measurement>
    </day>
  </visit>
</record>
```

Longitudinal Patient Timelines

Instruction Tuning: Aligning with Clinical Needs



MedAlign: A Clinician-Generated Benchmark Dataset for Instruction Following with Electronic Medical Records [1]

- **15 clinicians / 7 specialties**
- 983 instructions, 303 responses
- Assess **real information needs**

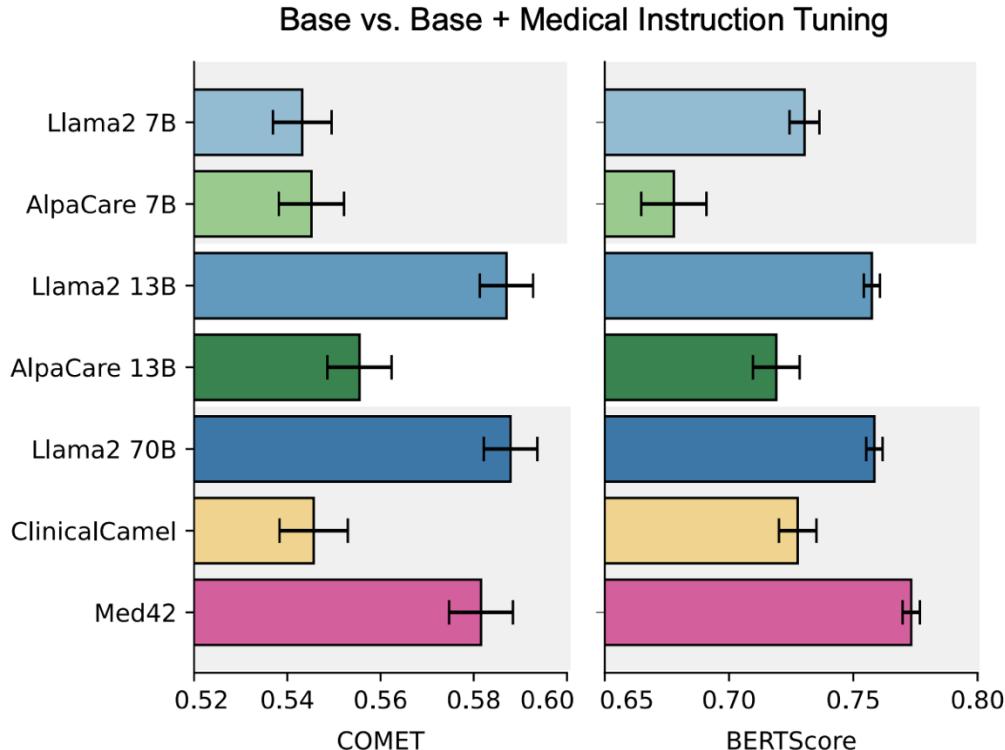
[1] Fleming et al. "A Clinician-Generated Benchmark Dataset for Instruction Following with Electronic Medical Records". AAAI. 2024.

Instruction Tuning: Aligning with Clinical Needs

Model	Context	Correct ↑	WR ↑	Rank ↓
GPT-4 (MR)	32768†	65.0%	0.658	2.80
GPT-4	32768	60.1%	0.676	2.75
GPT-4	2048*	51.8%	0.598	3.11
Vicuña-13B	2048	35.0%	0.401	3.92
Vicuña-7B	2048	33.3%	0.398	3.93
MPT-7B-Instruct	2048	31.7%	0.269	4.49

GPT-4 **35% Error Rate**

Instruction Tuning in Medical LLMs



Current short instruction tuning tasks for medicine (e.g., MedQA) **actually hurt performance on MedAlign**

A Single Benchmark Does NOT Tell the Whole Story!

Longitudinal, Multimodal EHR Dataset Releases

Dataset	Task	Technical Challenge	Example	Tabular	Images	Notes
EHRSHOT	Risk Stratification	Few-Shot Learning	<i>What is the likelihood that this patient gets a diagnosis of pancreatic cancer within the next year?</i>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
INSPECT	Time-to-Event Modeling	Multimodal Learning	<i>When is chronic pulmonary hypertension most likely to develop</i>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
MedAlign	Instruction Following	Long-Context Learning & Temporal Reasoning	<i>From this EHR, summarize the patient's history of strokes and the resulting neurologic deficits.</i>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>

26k Patients

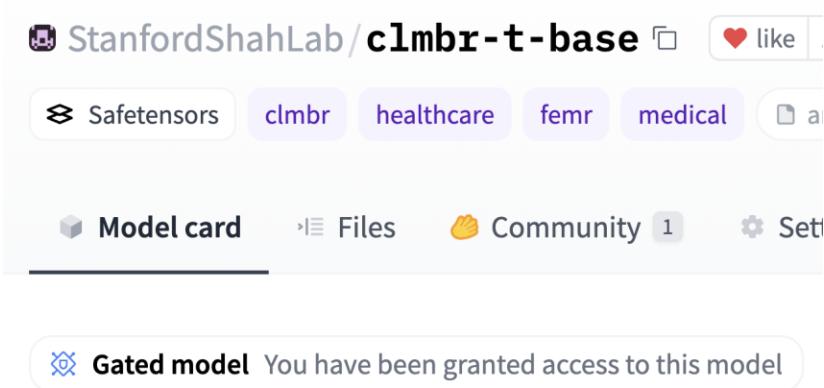
295M

442k Visits

 REDIVIS

<https://redivis.com/ShahLab>

Enabling Open Science



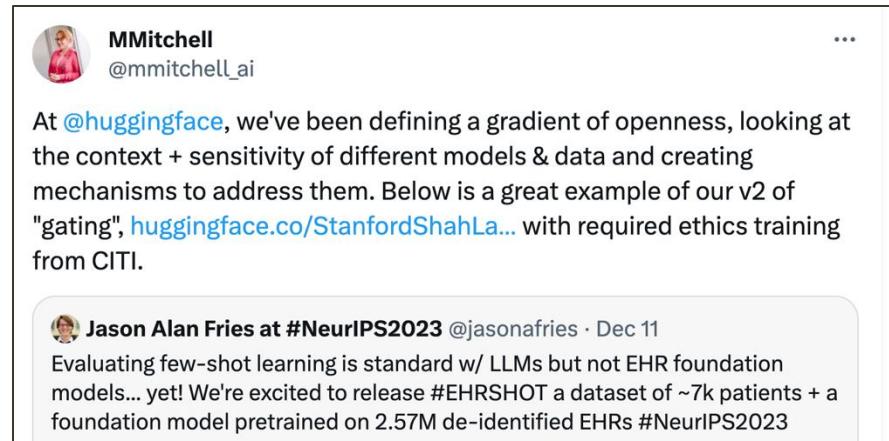
StanfordShahLab/clmbr-t-base

Model card

Gated model You have been granted access to this model

First EHR model hub release!

- Gated model on Hugging Face
- Requires **CITI ethics training**
- **Non-commercial use only**



MMitchell
@mmitchell_ai

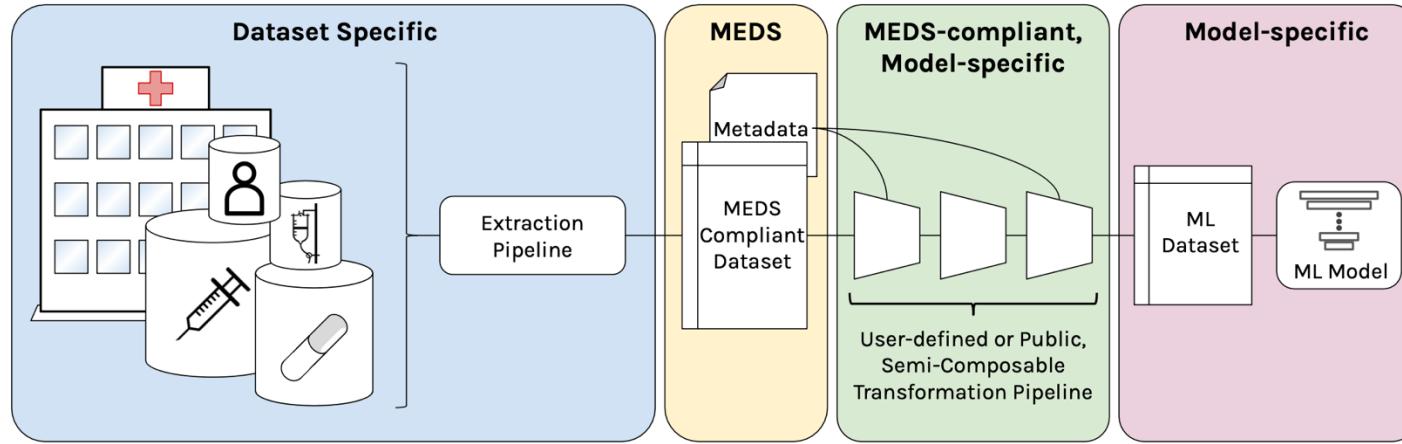
At [@huggingface](#), we've been defining a gradient of openness, looking at the context + sensitivity of different models & data and creating mechanisms to address them. Below is a great example of our v2 of "gating", [huggingface.co/StanfordShahLa...](#) with required ethics training from CITI.

Jason Alan Fries at #NeurIPS2023 @jasonafries · Dec 11

Evaluating few-shot learning is standard w/ LLMs but not EHR foundation models... yet! We're excited to release #EHRSHOT a dataset of ~7k patients + a foundation model pretrained on 2.57M de-identified EHRs #NeurIPS2023

Margaret Mitchell
Chief AI Ethics Scientist, Hugging Face

Medical Event Data Standard (MEDS)



Open Data Schema for Health AI Practitioners

Bert Arnrich, Edward Choi, Jason A. Fries, Matthew B. A. McDermott, Jungwoo Oh, Tom J Pollard, Nigam Shah, Ethan Steinberg, Michael Wornow, Robin van de Water

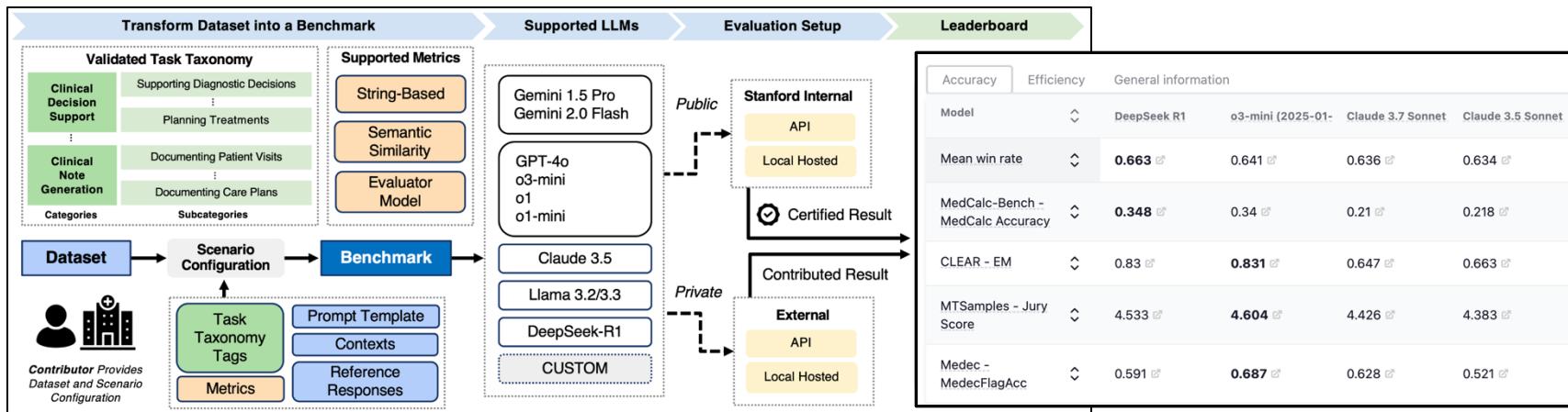
<https://github.com/Medical-Event-Data-Standard/meds>

Opportunities: Datasets & Benchmarks

Stanford MedHELM

Community evaluation framework for benchmarking healthcare LLMs

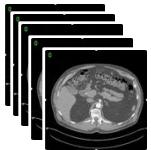
<https://medhelm.stanford.edu/>



Future: Research Opportunities

Multimodal Time-to-Event Pretraining

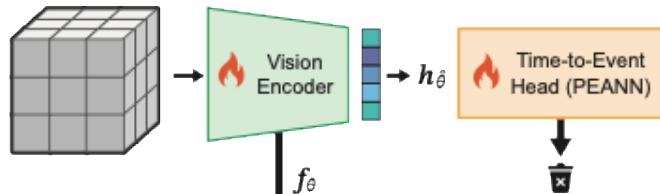
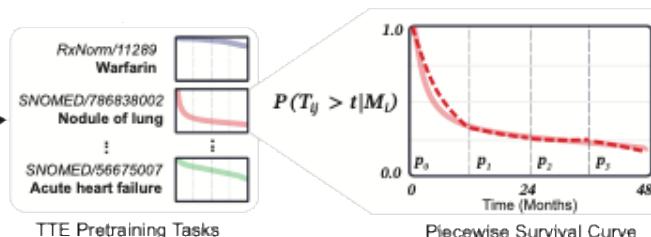
Pulmonary Embolisms



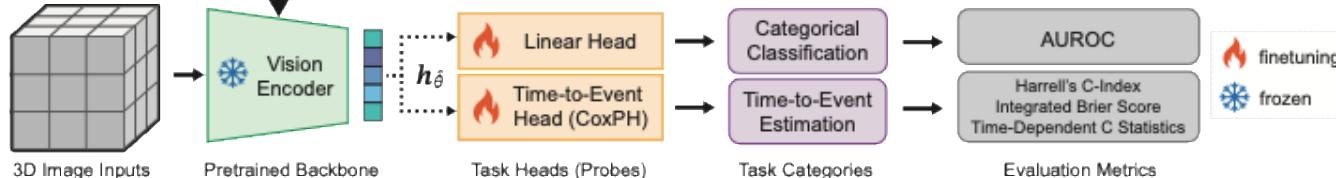
18,945 CT Scans
(4.2 Million 2D images)

- Same pretraining setup as MOTOR
- **Single time point** (not dynamic)
- Pretraining a 3D image encoder

TIME-TO-EVENT PRETRAINING

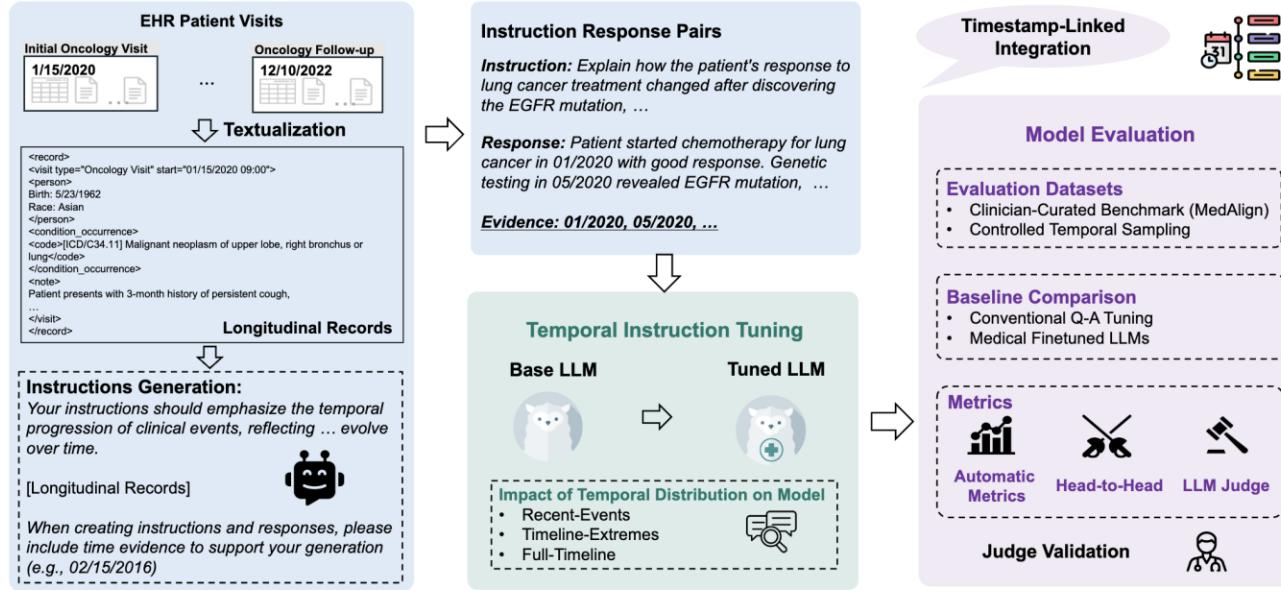


TASK ADAPTATION



Time-to-Event Pretraining for 3D Medical Imaging
Huo et al. ICLR 2025.

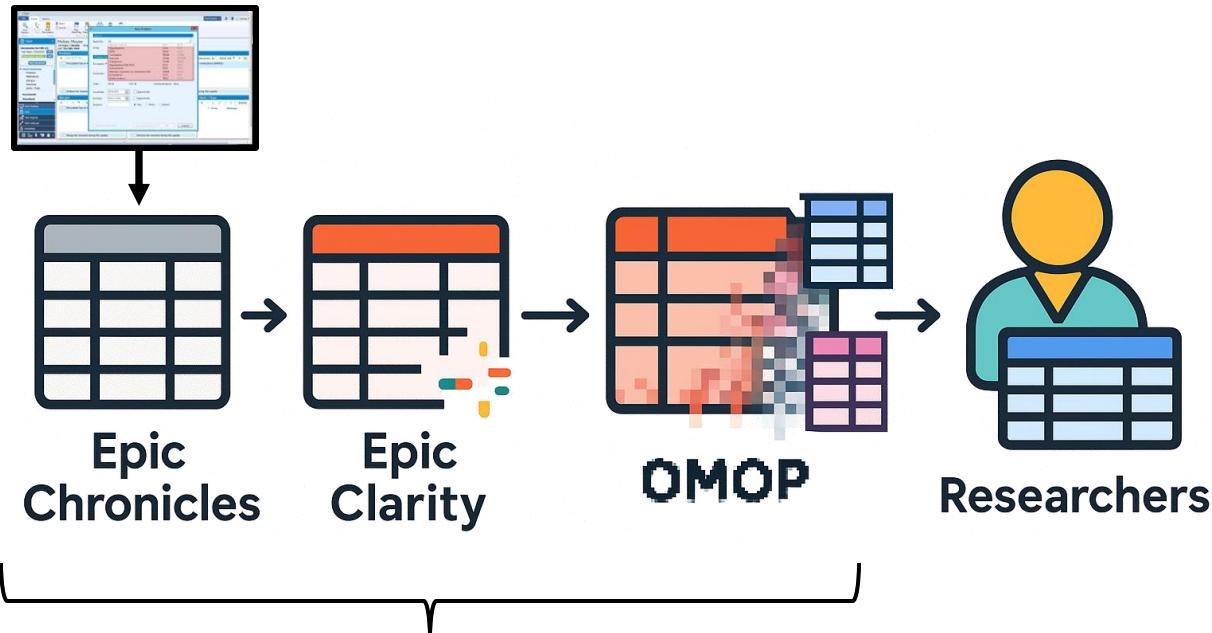
Synthetic Data Generation



Use Real EHRs to Generate Synthetic Post-Training Data

TIMER: Temporal Instruction Modeling and Evaluation for Longitudinal Clinical Records
Cui et al. 2025. Preprint

Data-Centric AI: Data Quality



Researcher View

EHR data is typically
transformed in
hidden ways

Epic
Chronicles

Epic
Clarity

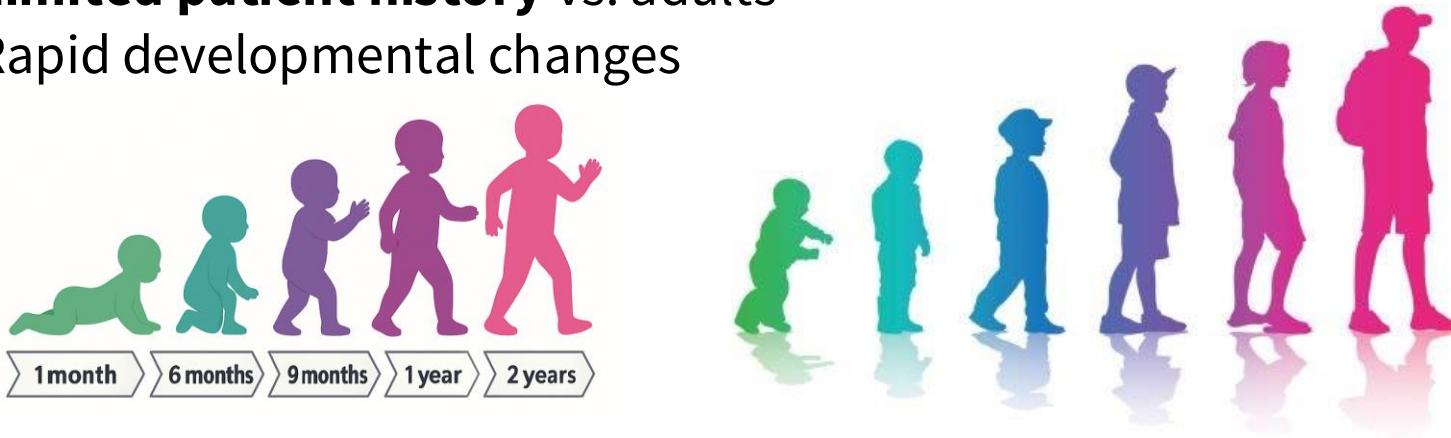
OMOP

Researchers

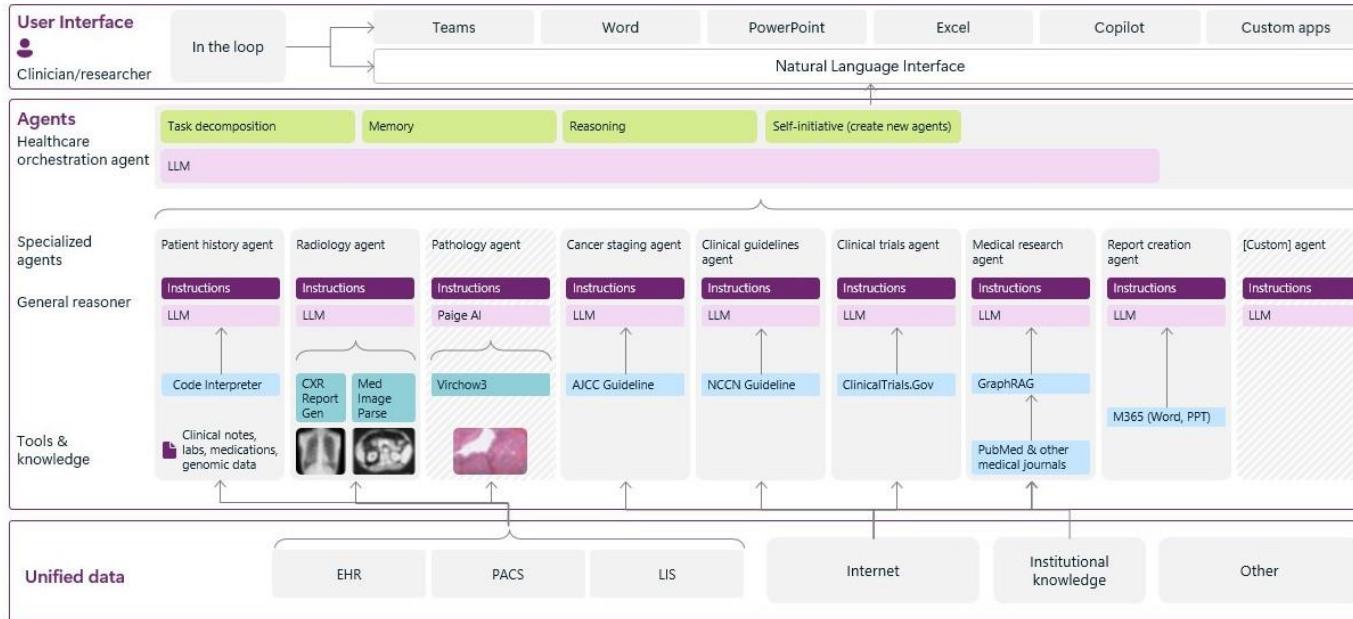
Unknown/Unobserved Transformations

Data-Centric AI: Training Mixtures

- **Exclusion biases in training data**
- General **data scarcity** (e.g., rare diseases)
- **Limited EHR datasets and benchmarks** for pediatric populations
- Unique data processing challenges
 - Example: Child and mother combined in a single patient record
- **Limited patient history** vs. adults
- Rapid developmental changes



Human-AI Teaming & Agentic Systems



Collaboration with Microsoft + Agent Orchestrator Platform

Thank You!

jason-fries@stanford.edu

Appendix

BERT-Style (Masked Language Modeling)

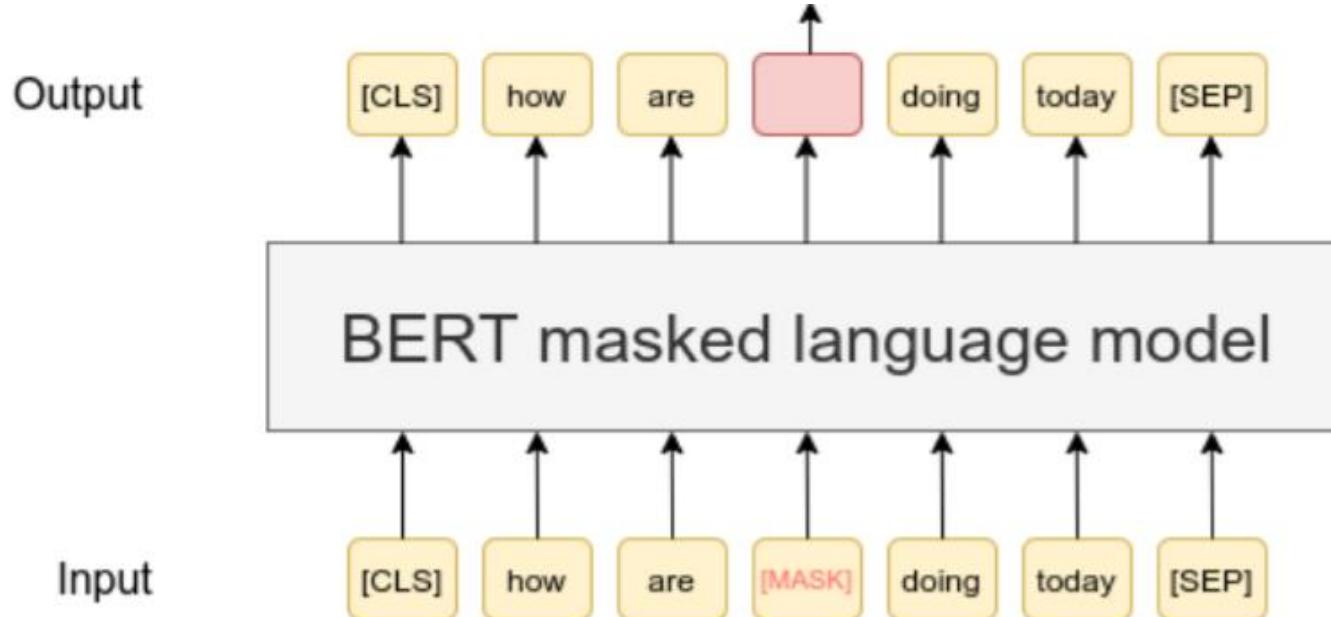
BEHRT (Li et al. 2020)

MedBERT (Rasmy et al. 2021)

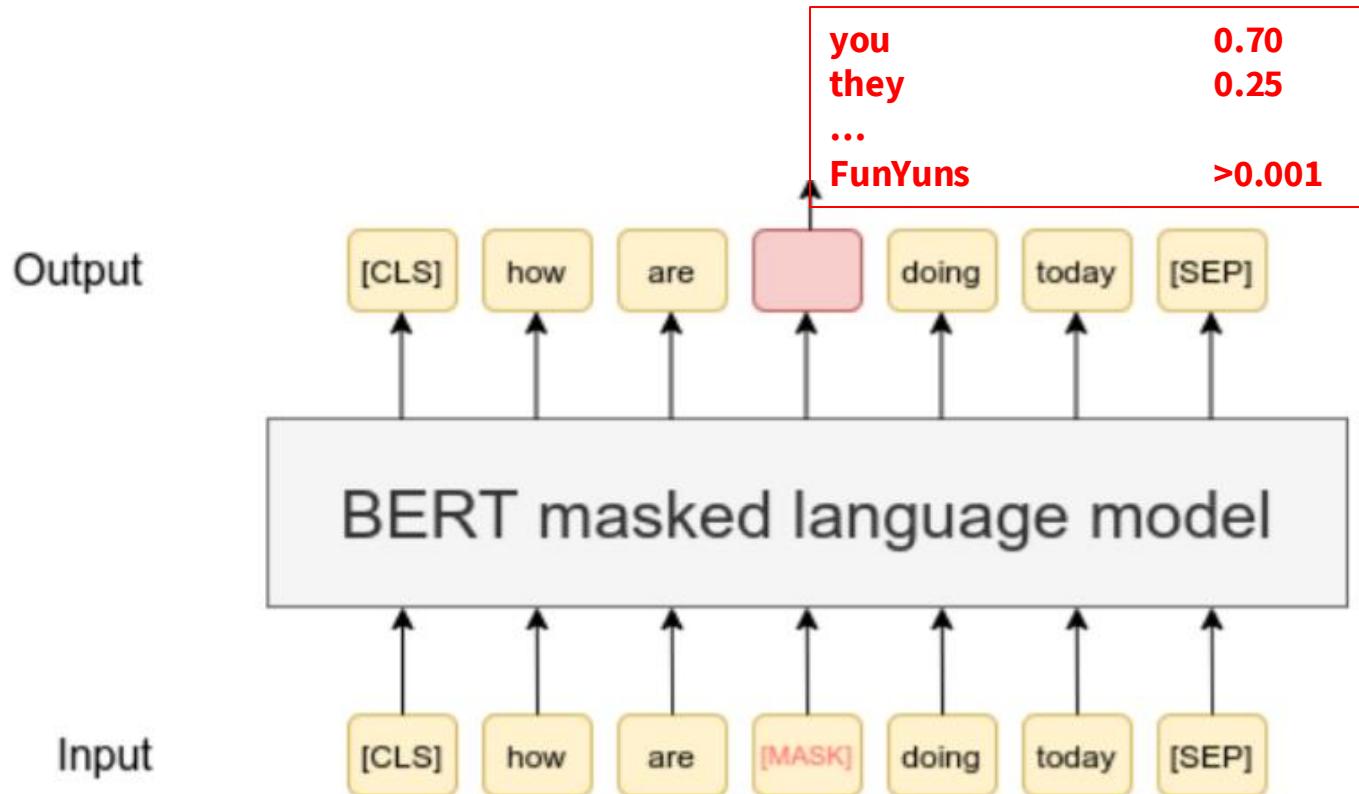
ClaimPT (Zeng et al. 2022)

Corruption-based (Masking) Pretraining Objective

- **Mask tokens (15%)**
- **Train Model to Predict [MASK]'ed tokens**

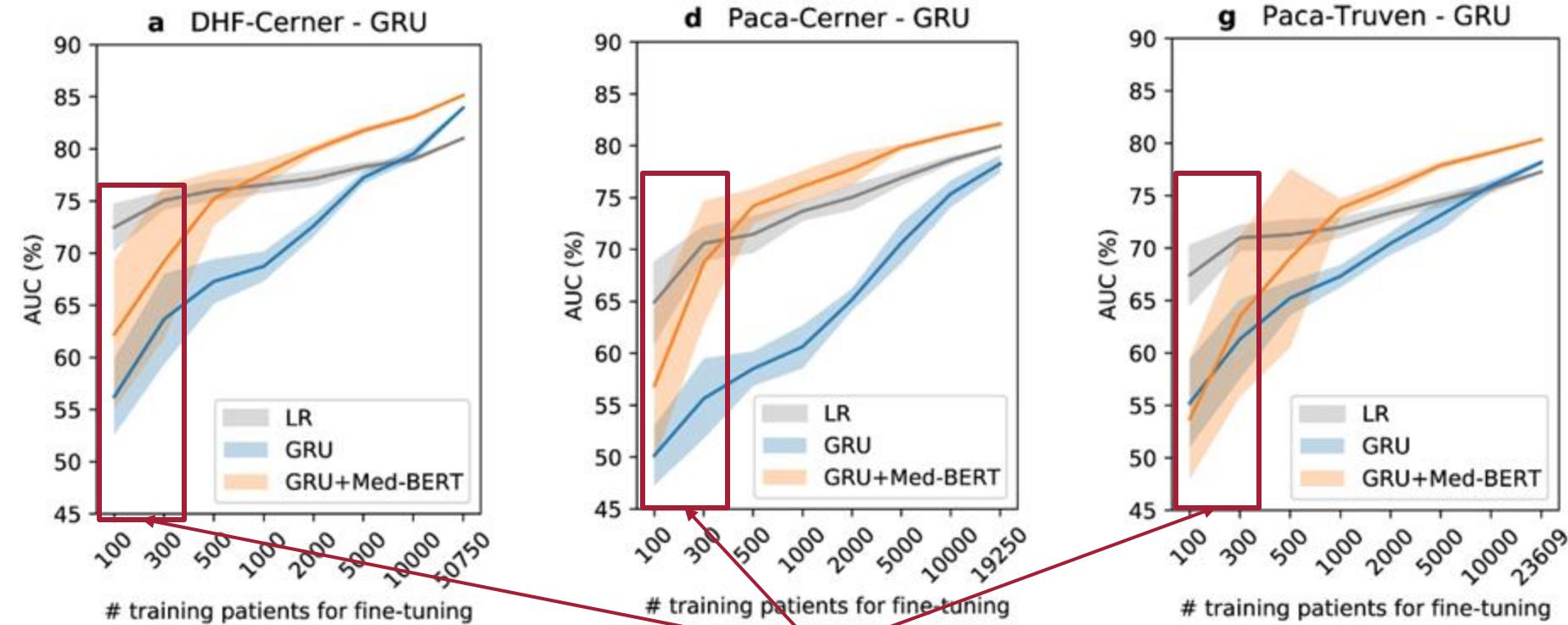


Corruption-based (Masking) Pretraining Objective



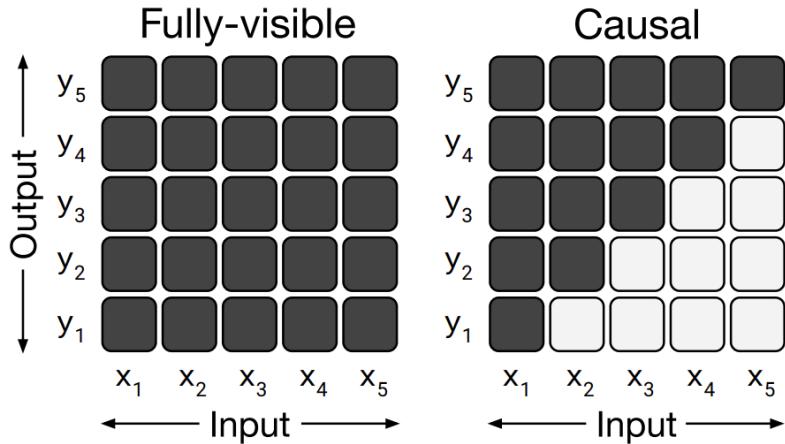
BERT-based Architecture (BEHRT)

Better performance than baselines (MedBERT)



But few-shot performance isn't great...

Other Disadvantages



Raffel et al. 2019

Masked Language Modeling uses **bidirectional attention**. Good for summarizing a sequence, but **not generating the next event/token**

Instruction Tuning: Aligning with Clinical Needs

Table 2: MEDALIGN instruction categories and example instructions.

Category	Example Instruction	Gold	All
Retrieve & Summarize	Summarize the most recent annual physical with the PCP	223	667
Care Planning	Summarize the asthma care plan for this patient including relevant diagnostic testing, exacerbation history, and treatments	22	136
Calculation & Scoring	Identify the risk of stroke in the next 7 days for this TIA patient	13	70
Diagnosis Support	Based on the information I've included under HPI, what is a reasonable differential diagnosis?	4	33
Translation	I have a patient that speaks only French. Please translate these FDG-PET exam preparation instructions for her	0	2
Other	What patients on my service should be prioritized for discharge today?	41	75
Total		303	983

Clinicians spend 49% of their day interacting with EHRs! **>66% of instructions were "retrieve & summarize" data from the EHR.**