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Overview: 
EHR Data & Tasks



Electronic Health Records (EHR)

Healthcare View

• GUI-based
• Data portal for a 

patients
• Focus on a single 

patient at a time



Electronic Health Records (EHR)

Data Scientist View

• Relational databases
• Some data model (Epic, 

OMOP, i2b2)
• Apply functions to all 

patients



STRUCTURED DATA UNSTRUCTURED DATA

Tabular Data
Genomics

Audio /Conversations

Video
                      
                     

                  
                     

Healthcare Data is Inherently Multimodal



Hospital data is growing at a rate of 36% per year
World Economic Forum, Dec. 2019

                      
                     

Hard to use for medical 
decision making  
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Many diverse data types that evolve over time

Electronic Health Records (EHRs) are Multimodal Timelines

Longitudinal EHRs provide a holistic view of multimodal data

PATIENT
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What Occurred in the Past? 

• Chart summarization
• Clinical trial recruitment

What is Occurring Now?

• Identify blood clots in lung CT scans
• Identify cancerous cells in pathology slides

Predict Future Risks & 
Intervention Benefits

• What is the likelihood that this 
patient will develop lung cancer?

Example ML 
Applications 

Stakeholders

AI for Healthcare Requires Temporal Reasoning

Diagnosis (Classification) Prognosis

Whether to Treat How to Treat subject 
to

Policy

Intervention Properties

Capacity to Act

9Clinicians



What Occurred in the Past? What is Occurring Now?
Predict Future Risks & 
Intervention Benefits

Example ML 
Applications 

Stakeholders

Foundation Models Are Essential for AI in Healthcare

Diagnosis (Classification) Prognosis

Clinicians
Hospital 

Administrators
Insurance 
Providers

Pharma
Regulatory 

Agencies
Patient

s
Researchers

Many stakeholder groups with distinct needs

10

? ? ?

…



How Can AI Improve Healthcare?



A Sketch of Healthcare Tasks

● Improved patient outcomes
○ Treatment selection
○ Disease diagnosis (e.g. early detection of cancer)
○ Risk stratification (e.g. mortality, cancer progression)
○ Abnormal test result prediction (e.g. lab values)

● More efficient hospital operations
○ Predictions for quality metrics (e.g. 30-day readmission likelihood)
○ Resource allocation (e.g. anticipating ICU transfers)
○ Billing (e.g. identify mis-coding of patient records)

● Research
○ Causal inference (e.g. drug trials and observational studies)
○ Identify off-label drug benefits



Foundation Models and AI’s “Industrial Age” 

13
Bommasani et al. 2022.
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Opportunity for AI to reimagine how we 
interact and understand medical data

14Khan et al., “A Comprehensive Survey of Foundation Models in Medicine,” 2025.



Design chat interfaces 

Automate feedback loops to 
improve model embeddings 

Find similar patients to 
inform decision making

The Future

We must build systems for patient 
timeline data that are fast, 
multimodal, and interactive

Byrne Lee, MD, Clinical Professor, 
Surgical Oncology, Stanford Health Care

“I can’t just go to the medical records 
department to have them pull 500 

charts on a certain type of patient.” 

Vector Database

TEXT
PAT
H

CT/MRI

XRAY
PRO
T

GEN
E

[ICD-10]
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https://profiles.stanford.edu/byrne-lee


Modeling: 
Pretraining Objectives



Classic Approach to Building and Patient Model



ALL PATIENTS

Classic Approaches Often Fail Due to Limited Data

Classic medical ML approach is to 
train on a small target cohort

…but this doesn’t take advantage 
of the structure present in the 
entire patient population



Modeling Patient Timelines for AI

PATIENT CASE: Patient presents to ED with sudden onset shortness of breath, 

pleuritic chest pain, and tachycardia. Concern for pulmonary embolism.

Admit to ED
Radiology 

Note
Chief 

Complaint
Admission 

Note
CT Scan

t it i-1t i-2 t i-3 t i-4 

Events

t i+1

?
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Modeling Patient Timelines for AI

Admit to ED
Chief 

Complaint
CT Scan Radiology 

Note

Clot Buster

Surgery 
(Embolectomy)

Send Home

Admission 
Note

t it i-1t i-2 t i-3 t i-4 

t i+1

PATIENT CASE: Patient presents to ED with sudden onset shortness of breath, 

pleuritic chest pain, and tachycardia. Concern for pulmonary embolism.

We’ve transformed our patient timeline into an 
autoregressive / LLM-like process
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Modeling Patient Timelines for AI

Admit to ED
Chief 

Complaint
CT Scan Radiology 

Note

Clot Buster

Surgery 
(Embolectomy)

Send Home

Admission 
Note

t it i-1t i-2 t i-3 t i-4 

t i+1

Hypothesis: A model that accurately predicts future health states, based 
on patient history, encompasses many proposed use cases of medical AI

How do we transform this multimodal timeline 
to facilitate self-supervised learning? 
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Modeling Structured EHR Timelines

ICD10
3E03317

Map events to ontologies to define a “language” based on medical codes

event := ci ∈ Vocabulary

CPT 
34001

ICD10
R06.02

SNOMED 
4140634

LOINC 
85261-6

CPT 
99284

CPT 
71275

c N-1c N-2c 2c 1

c N

…

c …

Admit to ED → CPT 99284
Shortness of Breath → ICD10 R06.02
Chest Pain → ICD10 R07.1
Tachycardia → ICD10 R00.0
Admission Note → LOINC 47039-3
CT Scan → CPT 71275
Radiology Note → LOINC 85261-6
Thrombolytic → ICD10 3E03317
Embolectomy → CPT 34001
Discharge to Home → SNOMED 
4140634

Ontology Mapping

22

“Next Code” Pretraining



Modeling Structured EHR Timelines

ICD10
3E03317

Map events to ontologies to define a “language” based on medical codes

event := ci ∈ Vocabulary

CPT 
34001

ICD10
R06.02

SNOMED 
4140634

LOINC 
85261-6

CPT 
99284

CPT 
71275

c N-1c N-2c 3c 2

c N

…

c …
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VISIT 
START

VISIT 
END

Event tokens
Time tokens

c 1
c N+1

Adding discrete time tokens enables using this 
EHR language model to generate timelines

(Pang at al 2024, Renc et al 2024)



Task Head

<10k

Mortality Many 
benefits…

Self-Supervised Training of an EHR Foundation Model

Model

Foundation
Model

Diagnoses
Medications
Visit Types
Lab Orders / Results
Procedures
Medical Devices
…
Demographics

2.57M

PATIENT POPULATION

10k

TASKS

Medical 
Ontologies

ICD9 
195.1

A primary or 
metastatic 
malignant 
neoplasm 

affecting the 
tissues of the 

thorax.

Medical Code 
Descriptions

296M
24Epic Cosmos

1,699 Hospitals

Stanford Health Care

▪ Data-hungry
▪ Brittle

Mortality



Self-Supervised Pretraining Objectives 
for Structured Event Data  

BERT-Style (Masked 
Language Modeling)

▪ BEHRT (Li et al. 2020)
▪ MedBERT (Rasmy et al. 2021)
▪ CEHR-BERT (Pang et al 2021)
▪ ClaimPT (Zeng et al. 2022)
▪ et alia

GPT-Style
(Autoregressive)

▪ CLMBR (Steinberg et al. 2020)
▪ TransformEHR (Yang et al. 2023)
▪ CEHR-GPT (Pang et al 2024)
▪ ETHOS (Renc et al. 2024)

Time-to-Event

▪ MOTOR (Steinberg et al. 2024)

Won’t talk about masked language modeling
Will focus on structured (medical code) models



Structured Data: Medical Vocabularies

https://blogs.halodoc.io/

• Controlled Vocabularies
• Knowledge Graphs

codei ∈ Vocabulary



More Like NLP Now, but Key Differences!

Tokenization / Vocabulary 
   NLP EHR
Vocabulary Size  50k 250k+
Subwords  Yes No
Tokens Semantics  Flat Hierarchical, Complex Dependencies 
 

Sequence Properties
   NLP EHR
Sequence Length  32k 250k+
Ordering   Total Partial 
Time Intervals  None Discontinuous 
Sampling Fidelity  All Sparse/Errors

50% Patients 
>= 68k tokens



GPT-Style (Autoregressive)

▪ CLMBR (Steinberg et al. 2020)
▪ TransformEHR (Yang et al. 2023)
▪ CEHR-GPT (Pang et al 2024)
▪ ETHOS (Renc et al. 2024)



Self-Supervised Pretraining in Natural Language



Next Code Pretraining

ICD10
3E03317

event := ci ∈ Vocabulary

CPT 
34001

ICD10
R06.02

SNOMED 
4140634

LOINC 
85261-6

CPT 
99284

CPT 
71275

c N-1c N-2c 2c 1

c N

…

c …

Admit to ED → CPT 99284
Shortness of Breath → ICD10 R06.02
Chest Pain → ICD10 R07.1
Tachycardia → ICD10 R00.0
Admission Note → LOINC 47039-3
CT Scan → CPT 71275
Radiology Note → LOINC 85261-6
Thrombolytic → ICD10 3E03317
Embolectomy → CPT 34001
Discharge to Home → SNOMED 
4140634

Ontology Mapping
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Tokenization

ETHOS (Renc et al. 2024)



Generalized Tokenizer

MedTok (Su et al. 2025)
Drop-in Replacement
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GPT

n = 768

Downstream 
Tasks

Mortality
ICU 

Transfer
30-day 

Readmit
ICD 

Diagnosis
…

Learning objective: 
Next code prediction

Embed

Linear Head

GPT

EHR 
database2.5 million 

records

GPT-based Approach
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Data Efficiency

Validating Benefits of EHR Foundation Models

Reproducible EHR 
Benchmarking

(Wornow et al. 2025) 
(Arnrich et al. 2024)

(Steinberg et al. 2024)
(Wornow et al. 2023) 
(Huang et al. 2023)

First externally 
verifiable evaluation of 

EHR foundation models 
on longitudinal data

SOTA few-shot 
learning

Cross-Site 
Adaptability

Require up to 90% 
less pretraining data 

(Guo et al. 2024) 

Transfer pretrained 
models across hospitals

Hospital 
A

Hospital 
B

Robustness

Improved robustness to 
temporal distribution shifts

Improved performance across 
key subgroups (pediatrics)

YEAR

ICU Admission Model Decay

AU
RO

C

(Guo et al. 2023) 

(Lemmon et al. 2023) 

SOTA overall 
performance

Medical / Informatics

Computer Science

Publication Venue

(Wornow et al. 2023)  

(Steinberg et al. 2020)
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Zero-Shot Patient Classification

ETHOS samples from model generations to estimate future event risk  



Time-to-Event Modeling



Data (Label) Efficiency of EHR Foundation Models

BERT-Style (Masked Language Modeling)

▪ BEHRT (Li et al. 2020)
▪ MedBERT (Rasmy et al. 2021)
▪ CEHR-BERT (Pang et al 2021)
▪ ClaimPT (Zeng et al. 2022)
▪ et alia

MedBERT
▪ Trained on 28M patients
▪ Performance  with < 500 

examples worse than 
logistic regression

GPT-Style (Autoregressive)

▪ CLMBR (Steinberg et al. 2020)
▪ TransformEHR (Yang et al. 2023)
▪ CEHR-GPT (Pang et al 2024)
▪ ETHOS (Renc et al. 2024)

CLMBR 
▪ Trained on 2.57M patients (3.5B tokens)
▪ SOTA few-shot learning using embeddings

ETHOS
▪ Trained on 200k patients (MIMIC-VI) 
▪ Zero-shot abilities using generation

37

Label Efficiency: How many labeled examples are needed to train a high-performing model?



Autoregressive Modeling at Smaller Scales

Autoregressive LLMs can capture 
long-distance dependencies given 
sufficient data and parameters

≥ 7B parameters
≥ 500B-1T tokens 

Natural Language

143M parameters
3.5B tokens

EHR 285x 
less data

Can we train a small, data-constrained  EHR foundation model 
to learn embeddings that capture more information about the future?

38



Learn a patient representation 
                            for estimating 
personalized hazard ratesSurvival depends on 

cumulative hazard over time

Key Concepts in Time-to-Event Modeling

Model the time until an event occurs (e.g., death) while accounting for censoring

Mortality Event Time Censoring

Event times are not fully observed by end of a study period

Censoring

BIASE
D

Survival Curve

Time

P
ro

b
a

b
il

it
y

Median Survival 
Time

Survival Function

The probability that an event 
has not occurred as of time t

Hazard Rate Function
Instantaneous risk of an 
event at time t, given 
survival up to t Event's "speed" at each 

moment
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Intuition Behind the Pretraining Objective

Hypothesis: Multi-task learning (MTL) will capture generalizable TTE features

Shared Decoder

Timeline Input

Select k TTE 
pretraining tasks

k ≤ 
16,392

Teach our model to predict 
patient survival trajectories

at a massive scale

40

Event j



Intuition Behind the Pretraining Objective

Shared Decoder

Hypothesis: Multi-task learning (MTL) will capture generalizable TTE features

Timeline Input
41



Intuition Behind the Pretraining Objective

Hypothesis: Multi-task learning (MTL) will capture generalizable TTE features

Shared Decoder

Timeline Input
42



Intuition Behind the Pretraining Objective

Hypothesis: Multi-task learning (MTL) will capture generalizable TTE features

Shared Decoder

Timeline Input
43



Intuition Behind the Pretraining Objective

Shared Decoder

Timeline Input

Hypothesis: Multi-task learning (MTL) will capture generalizable TTE features

44



Pretraining Objective

Deep Piecewise Exponential Model

▪ Partition time into pieces for more expressive risk modeling
▪ For piece p, interval start and end time:
▪ Hazard rate is constant within this interval 

For a patient with event j, task k, and piece p

Piecewise 
Hazard Function

Survival 
Function

Hazard Rate

time-independent task embedding

patient representation as of j
piece-specific linear projection

TRANSFORMER

hazard rate for piece p

t is within piece p
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Pretraining Objective

Loss Function

event happens in piece p no event in piece p

Minimize the negative log-likelihood of the observed event times across all tasks and time pieces

all events 
and tasks

U  represents the amount of time an event is at risk within a given time interval

46



Datasets & Tasks

ICD-10

NLP-based

We remove 
these tasks from 

the pretraining 
set

Intuition:  We pick k 
tasks that maximize 
diversity by selecting 
nodes whose values 
are least predictable 
given their parents

Datasets

Pretraining Tasks

k ≤ 
16,392

Evaluation Tasks

Measures 
generalization to 

labels not derived 
from codes

3.5B

Rule-based labeling

13 Chest X-ray 
Findings

Celiac Disease

Heart Attack Lupus

Pancreatic Cancer NAFLD

Stroke

47



Results: MOTOR vs. Baselines

MOTOR-Scratch (no pretraining) largely 
underperforms compared to baselines
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Results: MOTOR vs. Baselines

But with pretraining… 
MOTOR-Probe & MOTOR-Finetune outperform SOTA on all tasks

Avg improvement: +4.6%
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Results: Autoregressive vs. TTE Pretraining

Overall Performance

Autoregressive beats SOTA (RSF)

50

…but TTE beats autoregressive by 

~2%  

Performance Deltas of MOTOR with TTE Pretraining Versus:

Autoregressive Pretraining MOTOR-Scratch (No Pretraining) Random Survival Forests

Time Horizon (Percentile of Event Times)

Performance Comparison over Long Time Horizons

Pretraining is 
the key driver 

of performance

Now Futur
e



Results: Autoregressive vs. TTE Pretraining

Overall Performance

Performance Deltas of MOTOR with TTE Pretraining Versus:

Autoregressive Pretraining MOTOR-Scratch (No Pretraining) Random Survival Forests

Performance Comparison over Long Time Horizons

51

Autoregressive beats SOTA (RSF)

…but TTE beats autoregressive by 

~2%  

Now Futur
eTime Horizon (Percentile of Event Times)



Evaluation: 
EHR Foundation Models
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Reproducibility in Healthcare AI

Longstanding 
Reproducibility 

Challenges

Medical data are noisy, replete 
with errors, biases, missingness

Most AI is trained and 
tested on cleaned data



Multiple Choice vs. Longitudinal Patient Timelines

Longitudinal Patient Timelines

54



Instruction Tuning: Aligning with Clinical Needs

MedAlign: A Clinician-Generated Benchmark 
Dataset for Instruction Following with 

Electronic Medical Records [1]

[1] Fleming et al. “A Clinician-Generated Benchmark Dataset for Instruction Following with Electronic Medical Records”. AAAI. 2024.

• 15 clinicians / 7 specialties
• 983 instructions, 303 responses
• Assess real information needs
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Instruction Tuning: Aligning with Clinical Needs

[1] Fleming et al. “A Clinician-Generated Benchmark Dataset for Instruction Following with Electronic Medical Records”. Under Review. 2023.

GPT-4 35% Error Rate

56



Instruction Tuning in Medical LLMs

Current short instruction 
tuning tasks for medicine 

(e.g., MedQA) actually hurt 
performance on MedAlign

57

A Single 
Benchmark Does 

NOT Tell the 
Whole Story!



INSPECT: A Multimodal Dataset for 
Patient Outcome Prediction of 
Pulmonary Embolisms

Longitudinal, Multimodal EHR Dataset Releases

Dataset Task Technical Challenge Example Tabular Images Notes

EHRSHOT Risk Stratification Few-Shot Learning
What is the likelihood that this 
patient gets a diagnosis of pancreatic 
cancer within the next year?

INSPECT Time-to-Event 
Modeling Multimodal Learning When is chronic pulmonary 

hypertension most likely to develop

MedAlign Instruction 
Following

Long-Context Learning 
& Temporal Reasoning

From this EHR, summarize the 
patient’s history of strokes and the 
resulting neurologic deficits.

Dataset Task Technical Challenge Example Tabular Images Notes

26k Patients 295M 

Events

442k Visits

https://redivis.com/ShahLab



Enabling Open Science

59

Margaret Mitchell
Chief AI Ethics Scientist, Hugging Face

First EHR model hub release!

• Gated model on Hugging Face
• Requires CITI ethics training
• Non-commercial use only



Medical Event Data Standard (MEDS)

60

https://github.com/Medical-Event-Data-Standard/meds

Open Data Schema for Health AI Practitioners 

Bert Arnrich, Edward Choi, Jason A. Fries, Matthew B. A. McDermott, Jungwoo Oh, 
Tom J Pollard, Nigam Shah, Ethan Steinberg, Michael Wornow, Robin van de Water

https://github.com/Medical-Event-Data-Standard/meds
https://github.com/Medical-Event-Data-Standard/meds
https://github.com/Medical-Event-Data-Standard/meds
https://github.com/Medical-Event-Data-Standard/meds
https://github.com/Medical-Event-Data-Standard/meds
https://github.com/Medical-Event-Data-Standard/meds
https://github.com/Medical-Event-Data-Standard/meds


Opportunities: Datasets & Benchmarks

61

Stanford MedHELM
Community evaluation framework 
for benchmarking  healthcare LLMs

https://medhelm.stanford.edu/



Future: 
Research Opportunities



Multimodal Time-to-Event Pretraining

▪ Same pretraining setup as MOTOR
▪ Single time point (not dynamic)

▪ Pretraining a 3D image encoder

18,945 CT Scans 
(4.2 Million 2D images)

Pulmonary 
Embolisms

63

Time-to-Event Pretraining for 3D Medical Imaging
Huo et al. ICLR 2025.



Use Real EHRs to 
Generate Synthetic 
Post-Training Data 

Synthetic Data Generation

TIMER: Temporal Instruction Modeling and Evaluation for 
Longitudinal Clinical Records
Cui et al. 2025. Preprint



Researcher View

EHR data is typically 
transformed in 
hidden ways

Unknown/Unobserved Transformations

Data-Centric AI: Data Quality



▪ Exclusion biases in training data
▪ General data scarcity (e.g., rare diseases)
▪ Limited EHR datasets and benchmarks for pediatric populations
▪ Unique data processing challenges

▪ Example: Child and mother combined in a single patient record
▪ Limited patient history vs. adults
▪ Rapid developmental changes

Data-Centric AI: Training Mixtures



Human-AI Teaming & Agentic Systems

Collaboration with Microsoft + Agent Orchestrator Platform



Thank You!

68

jason-fries@stanford.edu



Appendix



BERT-Style (Masked Language Modeling)

BEHRT (Li et al. 2020)
MedBERT (Rasmy et al. 2021)
ClaimPT (Zeng et al. 2022)



Corruption-based (Masking) Pretraining Objective 

71

BERT

• Mask tokens (15%)

• Train Model to Predict [MASK]’ed tokens 



Corruption-based (Masking) Pretraining Objective 

72

BERT

you  0.70
they  0.25
…
FunYuns  >0.001 



BERT-based Architecture (BEHRT)

73

BERT

Li et al. 2020

EHR 
database



Better performance than baselines (MedBERT)

74

BERT

Rasmy et al. 2021
But few-shot performance isn’t great…



Other Disadvantages

75

BERT

Rasmy et al. 2021

Raffel et al. 2019

Masked Language Modeling uses 
bidirectional attention. Good for 
summarizing a sequence, but not 
generating the next event/token 



Instruction Tuning: Aligning with Clinical Needs

76

Clinicians spend 49% of 

their day interacting with 

EHRs! >66% of 

instructions were 

"retrieve & summarize" 
data from the EHR. 
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