

Introduction to Vision-Language Models

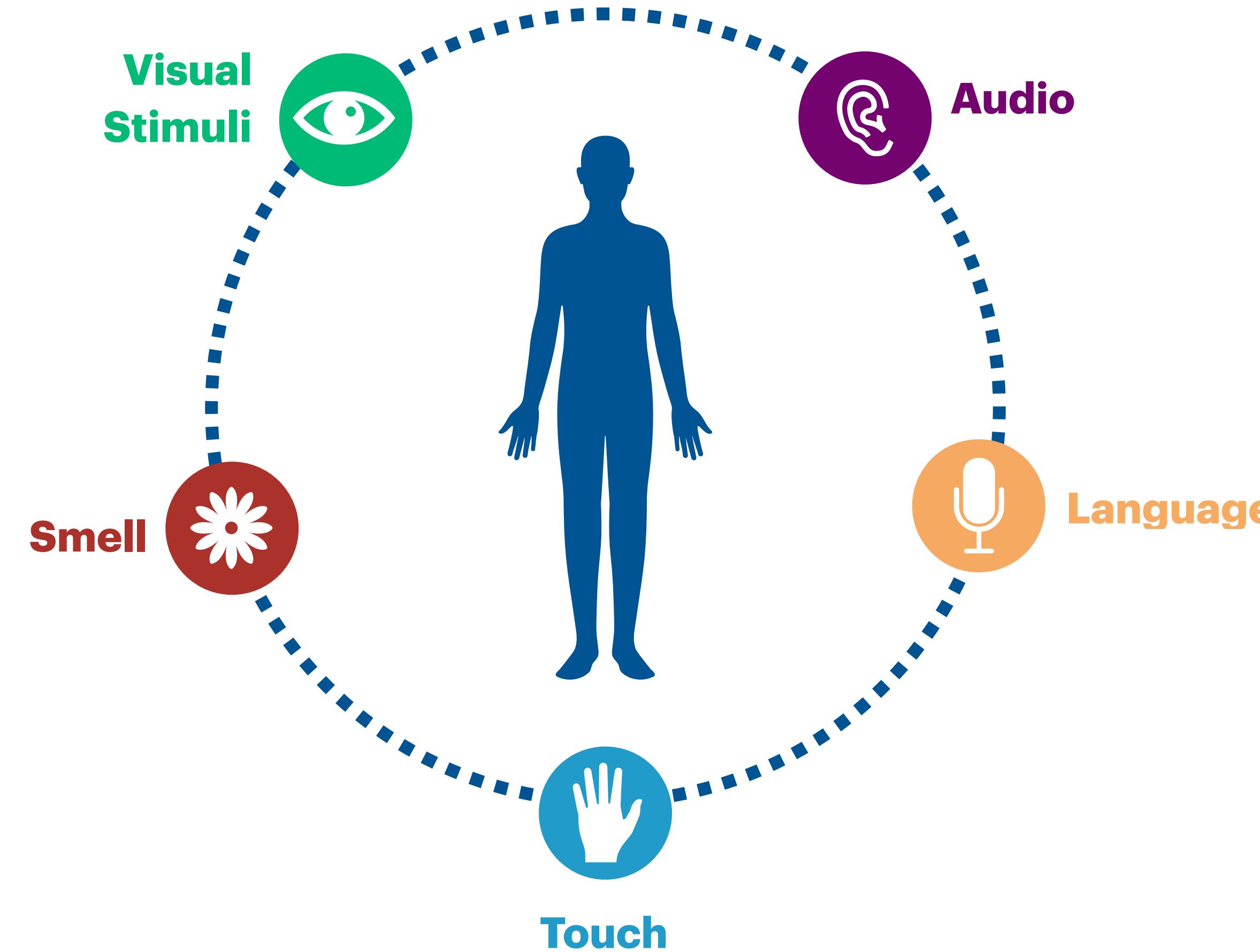
BIODS 271 / CS 277

Maya Varma

Stanford University

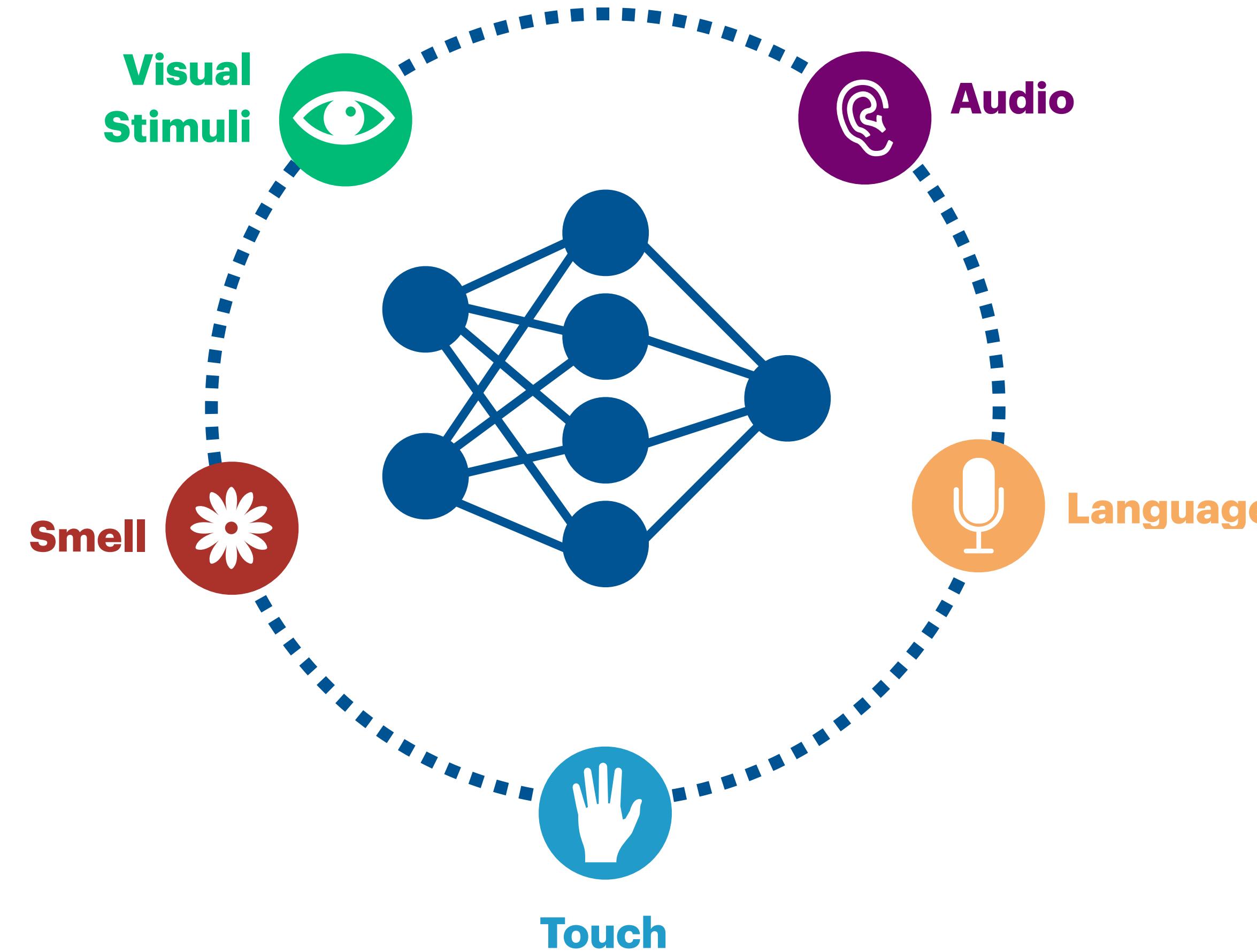
Why do we need VLMs?

The human experience of the world is multimodal.



Why do we need VLMs?

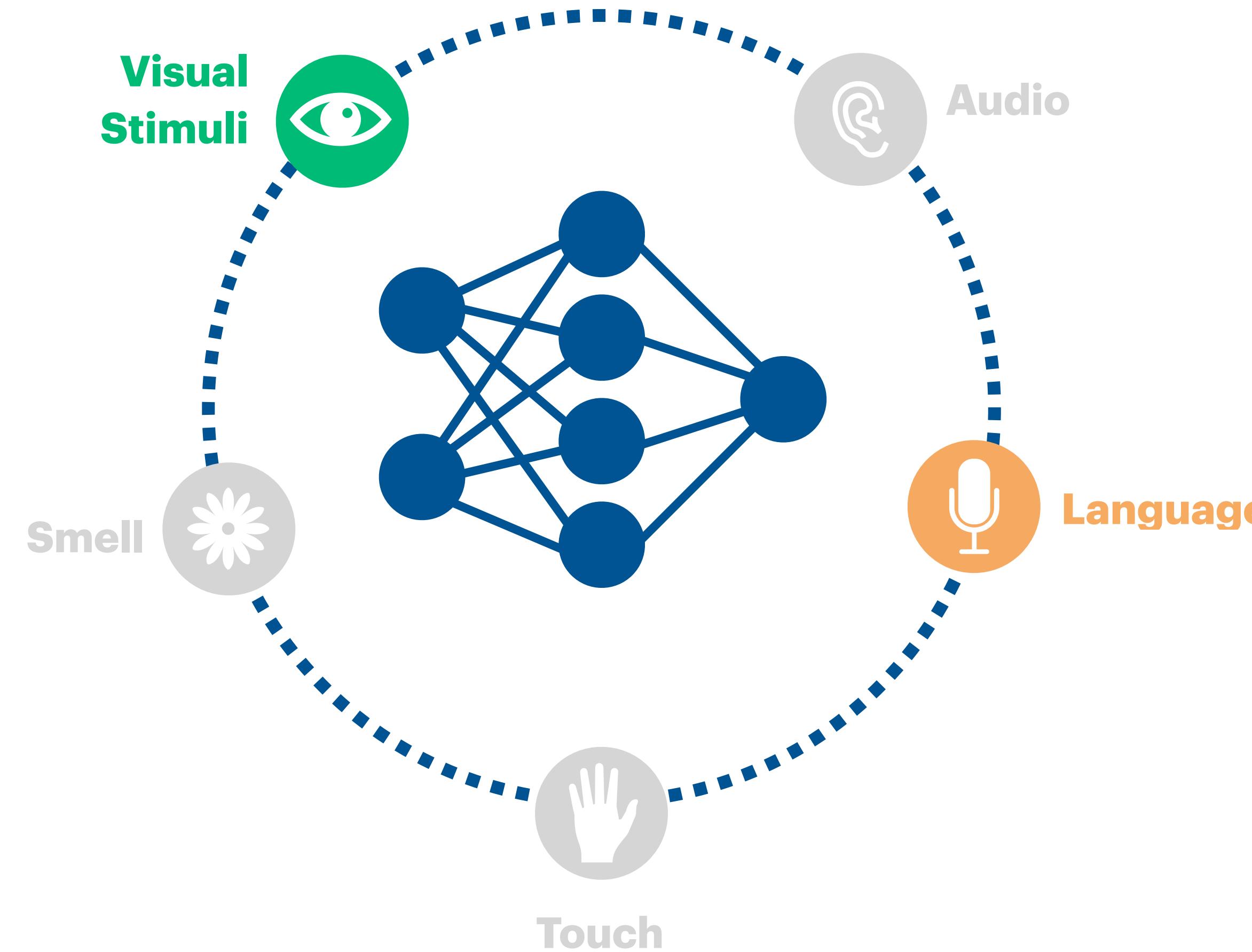
The human experience of the world is multimodal.



We need AI systems capable of simultaneously processing diverse input modalities.

Why do we need VLMs?

The human experience of the world is multimodal.



We need AI systems capable of simultaneously processing diverse input modalities.

Part 1: Pretraining Methods

Data is often inherently multimodal

Yosemite National Park

Article Talk

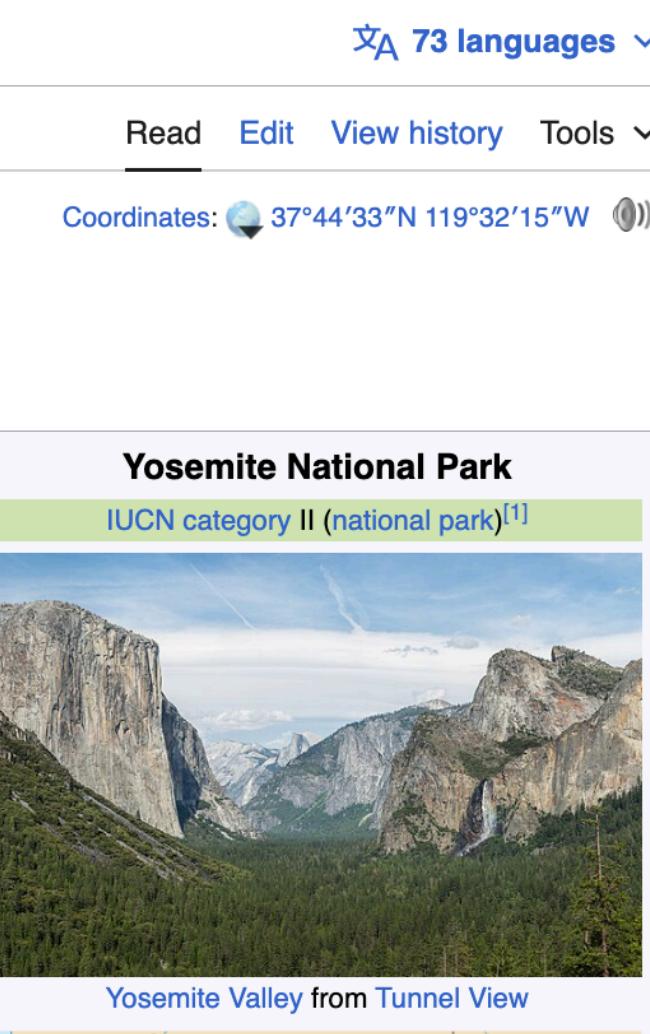
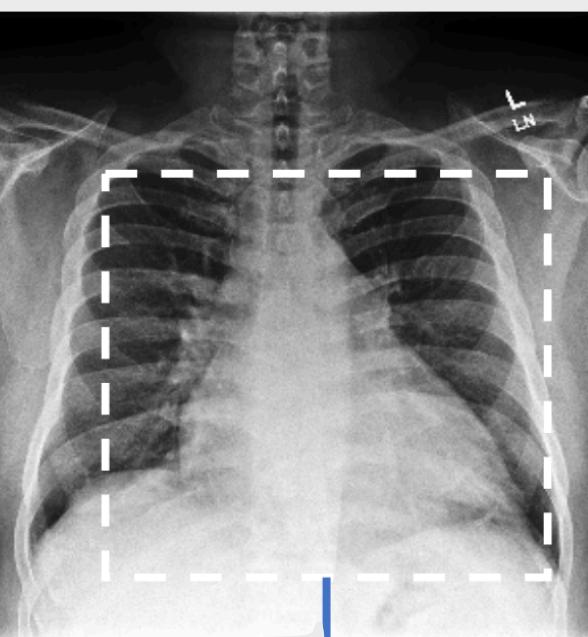
From Wikipedia, the free encyclopedia

(Redirected from [Yosemite](#))

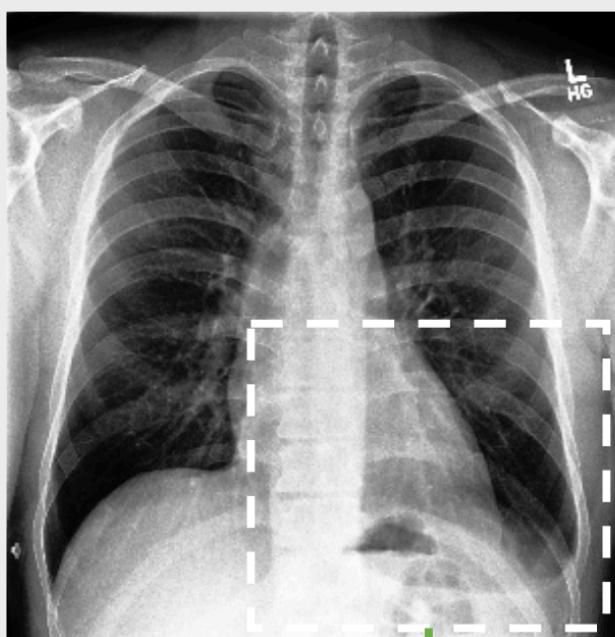
"Yosemite" redirects here. For other uses, see [Yosemite \(disambiguation\)](#).

Yosemite National Park (/*jou'semtɪ/ yoh-SEM-ih-tee^[5]) is a national park in California.^{[6][7]} It is bordered on the southeast by Sierra National Forest and on the northwest by Stanislaus National Forest. The park is managed by the National Park Service and covers 759,620 acres (1,187 sq mi; 3,074 km²)^[3] in four counties – centered in Tuolumne and Mariposa, extending north and east to Mono and south to Madera. Designated a World Heritage Site in 1984, Yosemite is internationally recognized for its granite cliffs, waterfalls, clear streams, giant sequoia groves, lakes, mountains, meadows, glaciers, and biological diversity.^[8] Almost 95 percent of the park is designated wilderness.^[9] Yosemite is one of the largest and least fragmented habitat blocks in the Sierra Nevada.*

Its geology is characterized by granite and remnants of older rock. About 10 million years ago, the Sierra Nevada was uplifted and tilted to form its unique slopes, which increased the steepness of stream and river beds, forming deep, narrow canyons. About one million years ago glaciers formed at higher elevations. They moved downslope, cutting and sculpting the U-shaped Yosemite Valley.^[8]



Severe **cardiomegaly** is noted in the image with enlarged...



Radiograph shows **pleural effusion** in the right...

Data is often inherently multimodal

Yosemite National Park

Article Talk

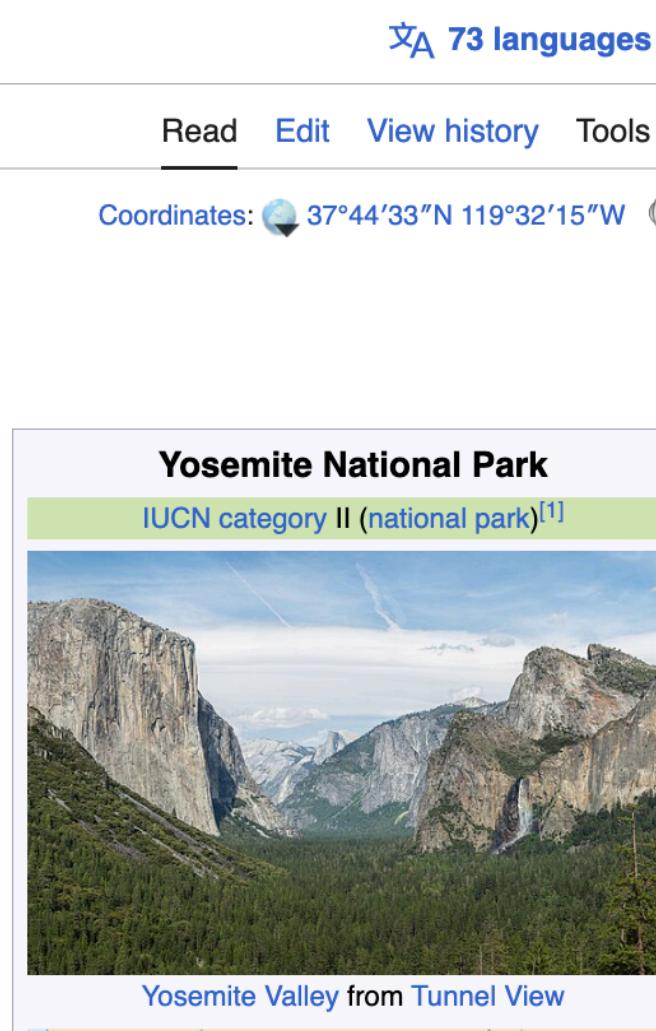
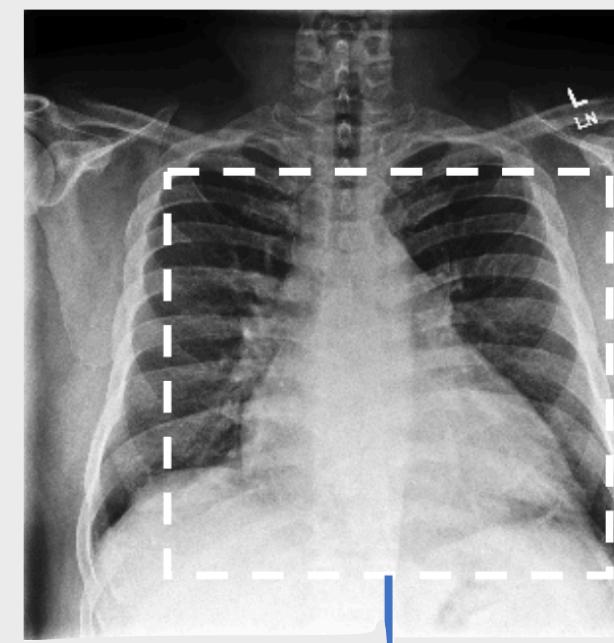
From Wikipedia, the free encyclopedia

(Redirected from [Yosemite](#))

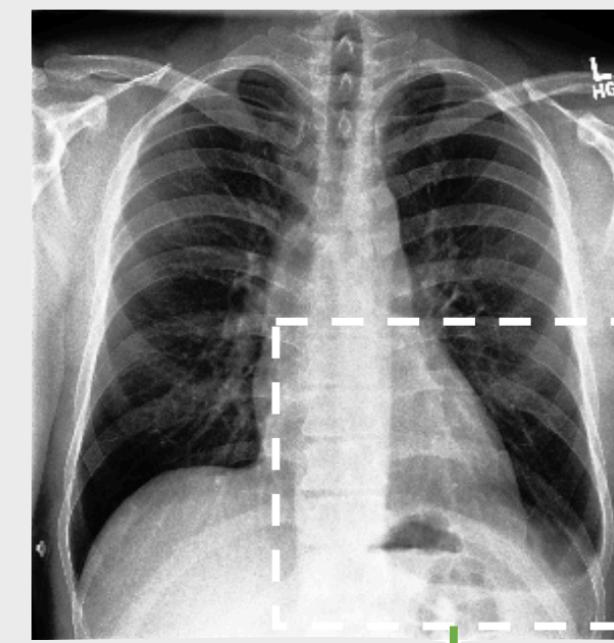
"Yosemite" redirects here. For other uses, see [Yosemite \(disambiguation\)](#).

Yosemite National Park (/*yoʊsəmɪti/ yoh-SEM-ih-tee^[5]*) is a **national park** in **California**.^{[6][7]} It is bordered on the southeast by **Sierra National Forest** and on the northwest by **Stanislaus National Forest**. The park is managed by the **National Park Service** and covers 759,620 acres (1,187 sq mi; 3,074 km²)^[3] in four **counties** – centered in **Tuolumne** and **Mariposa**, extending north and east to **Mono** and south to **Madera**. Designated a **World Heritage Site** in 1984, Yosemite is internationally recognized for its granite cliffs, waterfalls, clear streams, **giant sequoia** groves, lakes, mountains, meadows, glaciers, and **biological diversity**.^[8] Almost 95 percent of the park is designated **wilderness**.^[9] Yosemite is one of the largest and least fragmented habitat blocks in the **Sierra Nevada**.

Its **geology** is characterized by **granite** and remnants of older rock. About 10 million years ago, the **Sierra Nevada** was **uplifted** and tilted to form its unique slopes, which increased the steepness of stream and river beds, forming deep, narrow canyons. About one million years ago **glaciers** formed at higher elevations. They moved downslope, cutting and sculpting the U-shaped **Yosemite Valley**.^[8]



Severe **cardiomegaly** is noted in the image with enlarged...



Radiograph shows **pleural effusion** in the right...

Can we use language to improve visual representation learning?

Pros

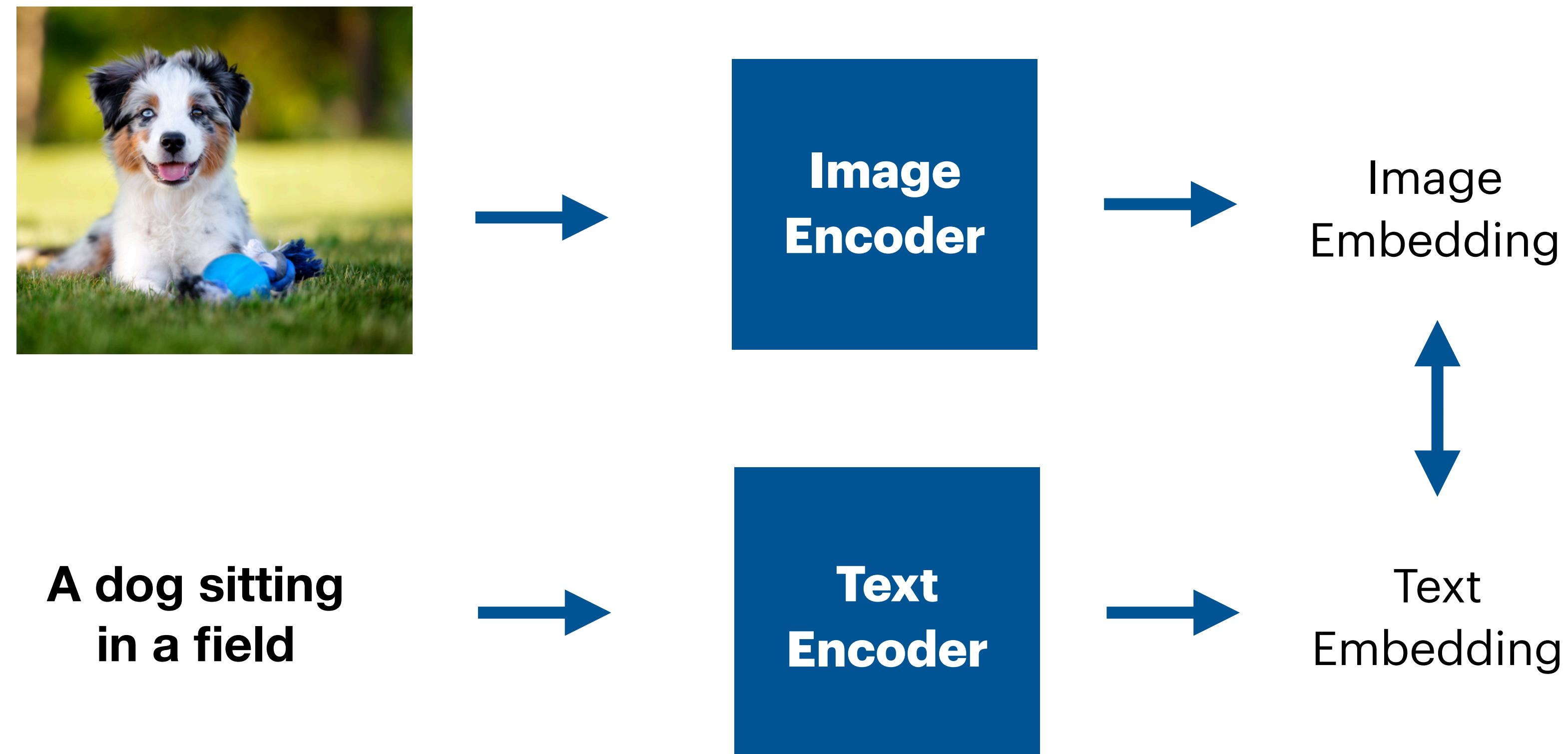
- Text is widely available
- Text can provide a form of supervision signal. No need for labels!

Cons

- Text may not always be available
- Text quality may be highly variable

Contrastive Language-Image Pretraining (CLIP)

Key Idea: Maximize the similarity between true image-text embedding pairs and minimize similarity between mismatched image-text embedding pairs



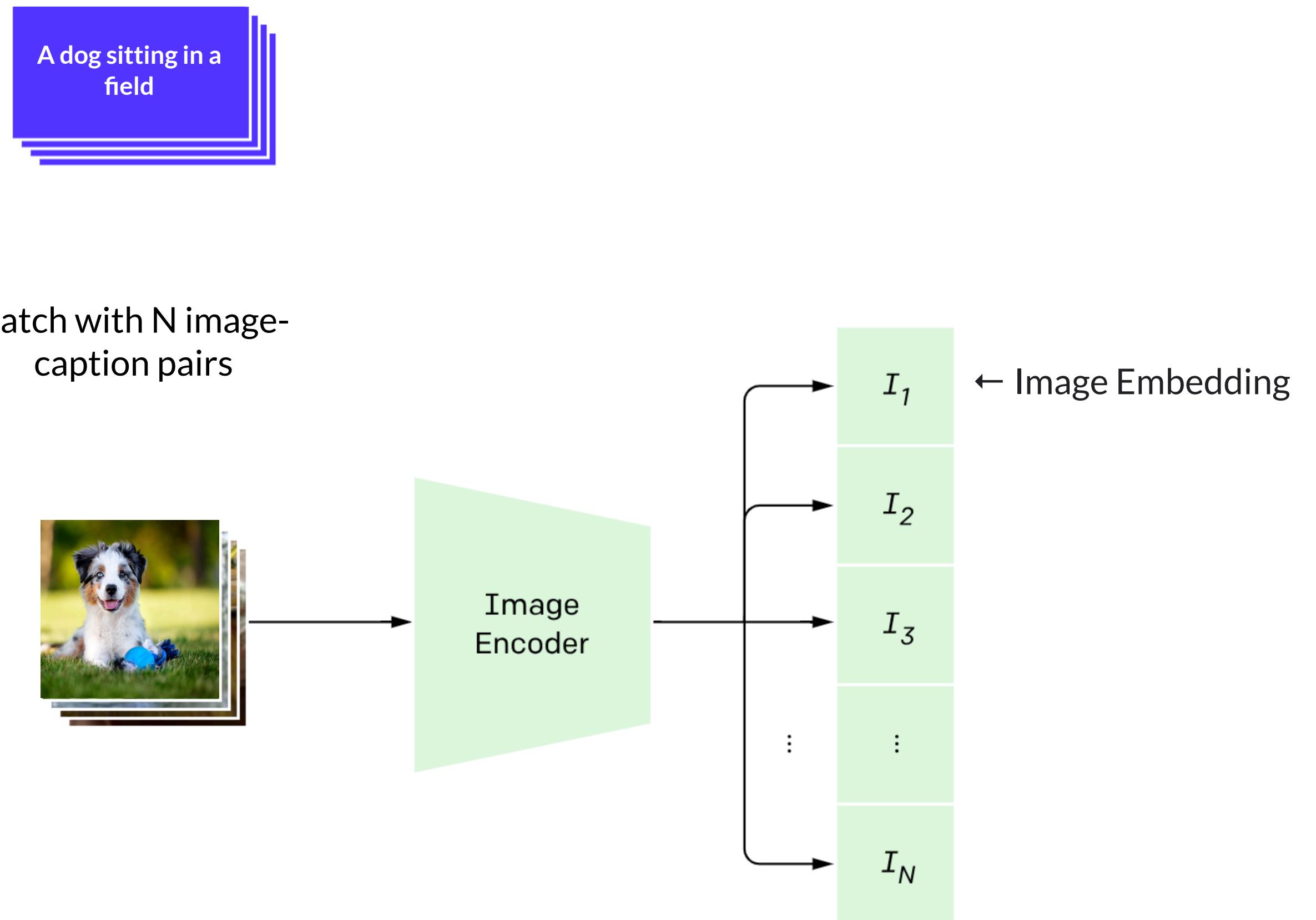
Contrastive Language-Image Pretraining (CLIP)

Key Idea: Maximize the similarity between true image-text embedding pairs and minimize similarity between mismatched image-text embedding pairs

Batch with N image-caption pairs

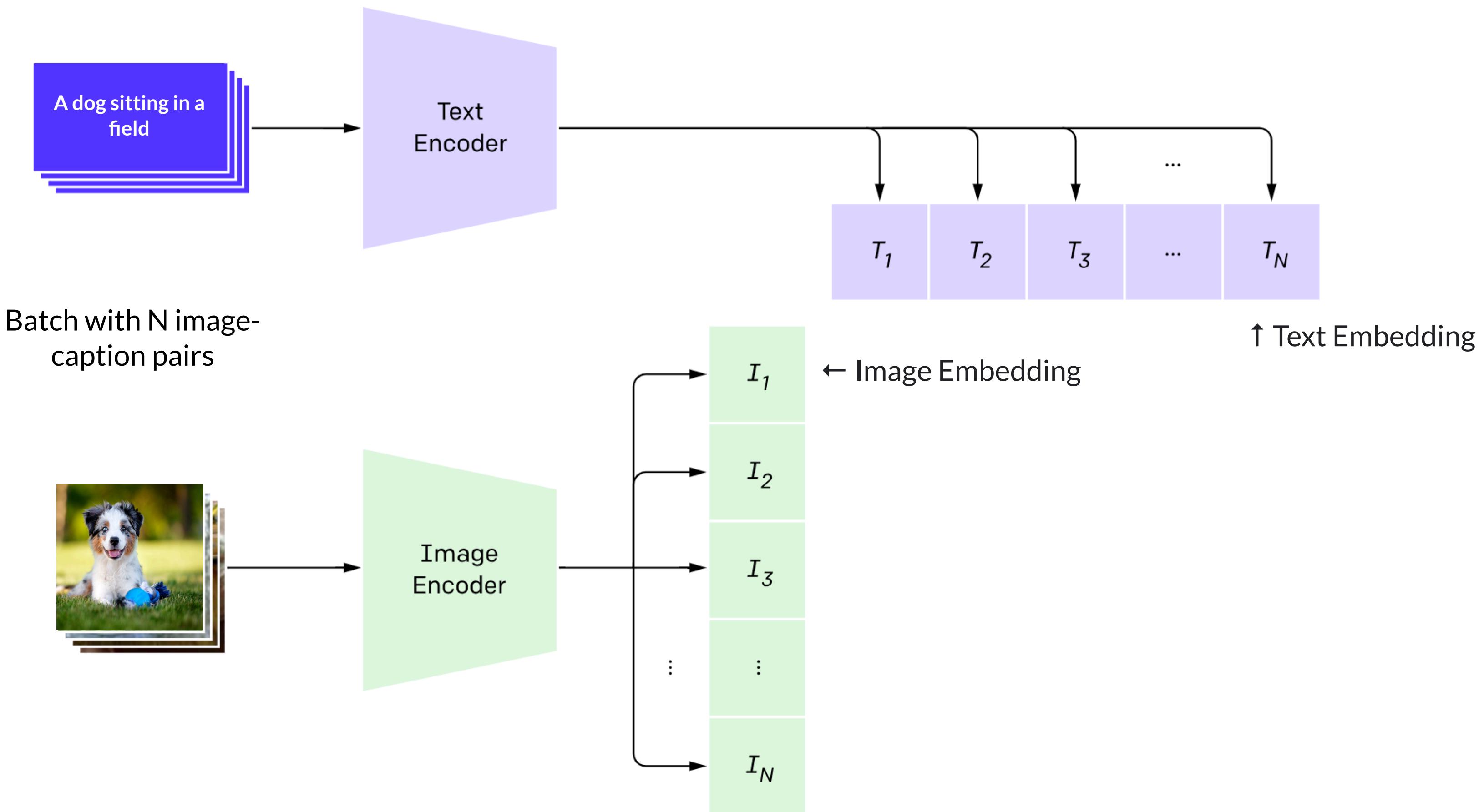
Contrastive Language-Image Pretraining (CLIP)

Key Idea: Maximize the similarity between true image-text embedding pairs and minimize similarity between mismatched image-text embedding pairs



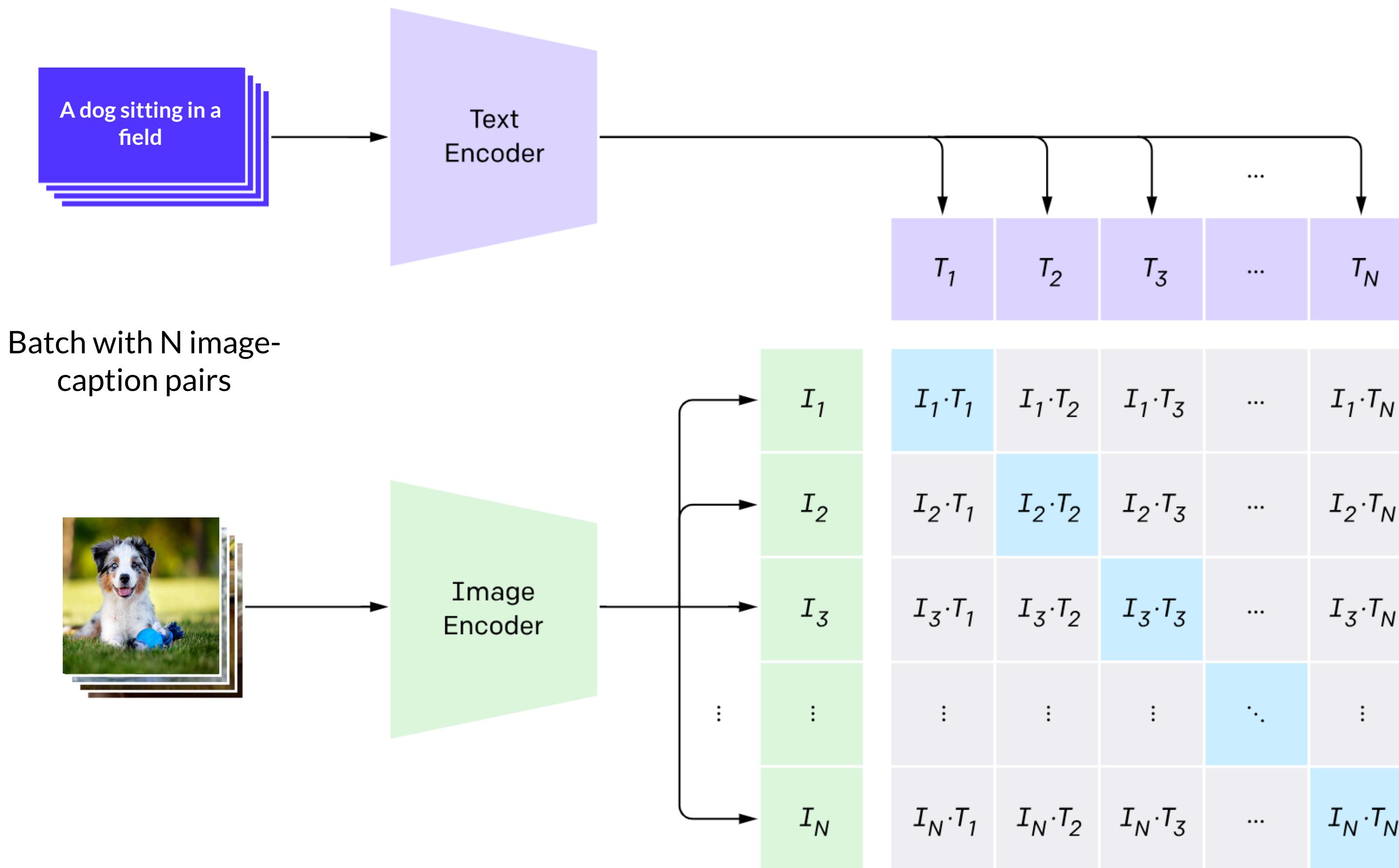
Contrastive Language-Image Pretraining (CLIP)

Key Idea: Maximize the similarity between true image-text embedding pairs and minimize similarity between mismatched image-text embedding pairs



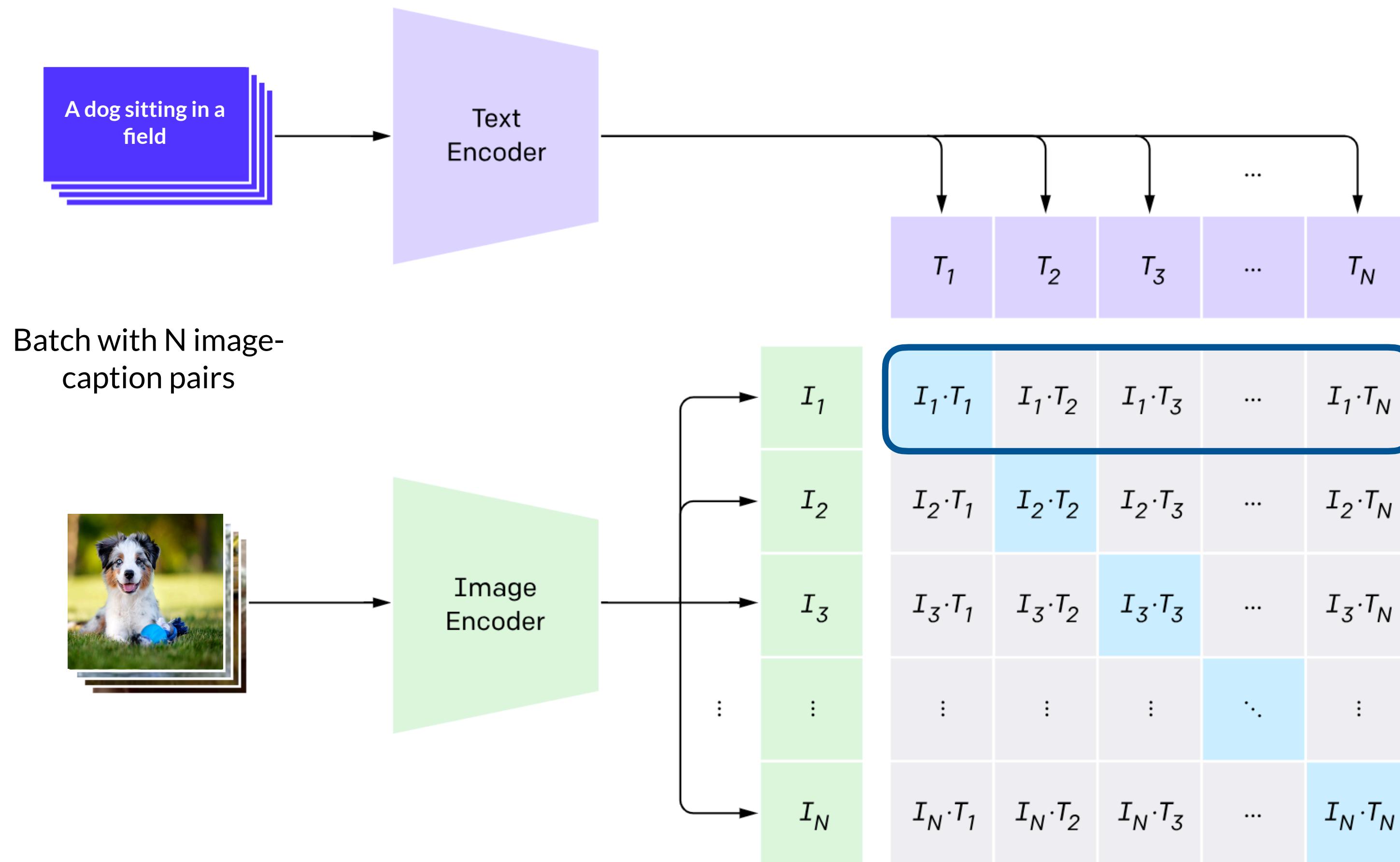
Contrastive Language-Image Pretraining (CLIP)

Key Idea: Maximize the similarity between true image-text embedding pairs and minimize similarity between mismatched image-text embedding pairs



Contrastive Language-Image Pretraining (CLIP)

Key Idea: Maximize the similarity between true image-text embedding pairs and minimize similarity between mismatched image-text embedding pairs



Objective: InfoNCE Loss Function

$$L_{I \rightarrow T} = \sum_{k=1}^N -\log \frac{\exp(I_k \cdot T_k / \tau)}{\sum_{j=1}^N \exp(I_k \cdot T_j / \tau)}$$

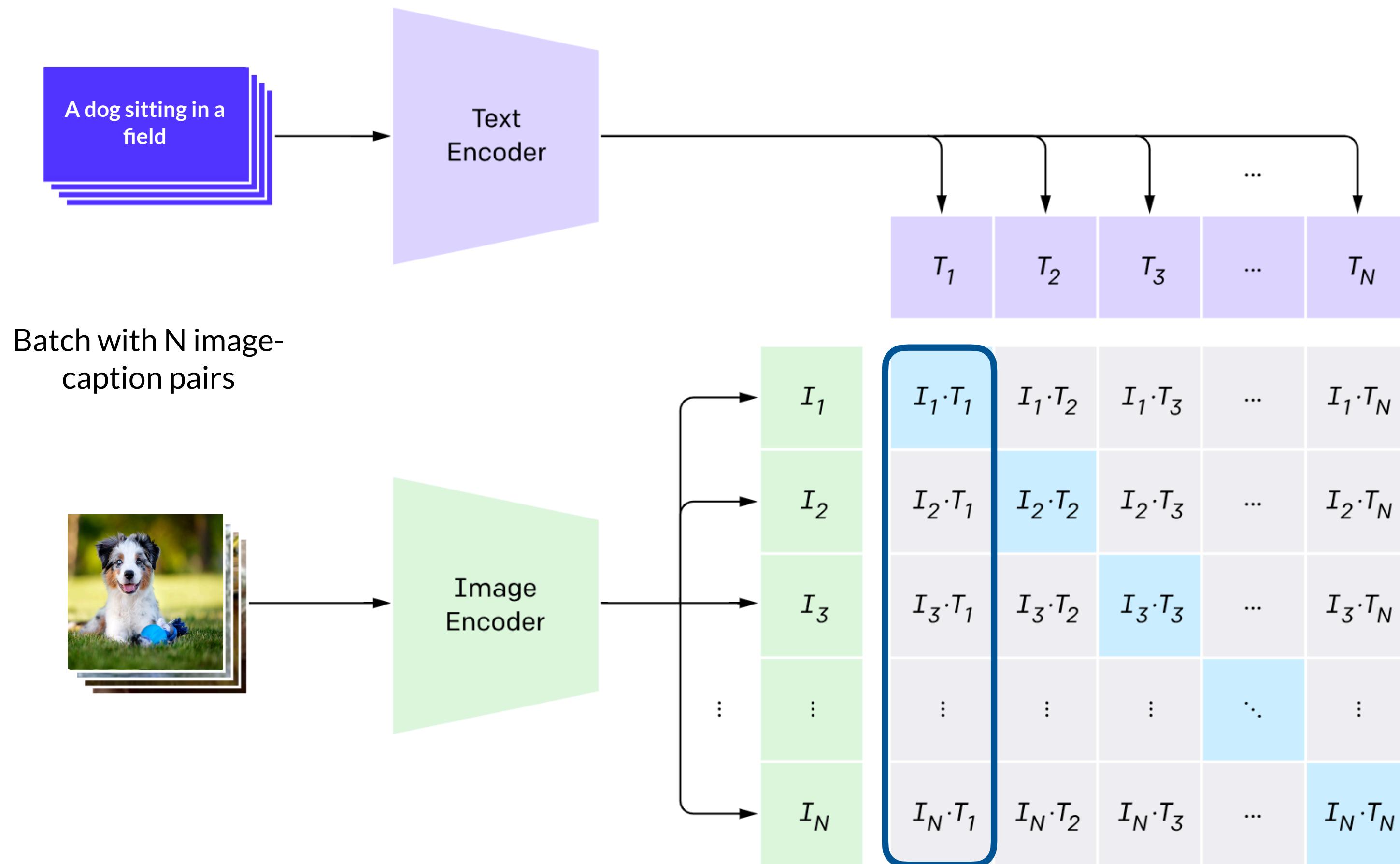
Positive Image-Text Pairs

Negative Image-Text Pairs

Softmax Function

Contrastive Language-Image Pretraining (CLIP)

Key Idea: Maximize the similarity between true image-text embedding pairs and minimize similarity between mismatched image-text embedding pairs



Objective: InfoNCE Loss Function

$$L_{I \rightarrow T} = \sum_{k=1}^N -\log \frac{\exp(I_k \cdot T_k / \tau)}{\sum_{j=1}^N \exp(I_k \cdot T_j / \tau)}$$

$$L_{T \rightarrow I} = \sum_{k=1}^N -\log \frac{\exp(I_k \cdot T_k / \tau)}{\sum_{j=1}^N \exp(I_j \cdot T_k / \tau)}$$

$$L = L_{T \rightarrow I} + L_{I \rightarrow T}$$

OpenCLIP

□ README License

OpenCLIP

[\[Paper\]](#) [\[Citations\]](#) [\[Clip Colab\]](#) [\[Coca Colab\]](#) [pypi](#) v2.24.0

Welcome to an open source implementation of OpenAI's [CLIP](#) (Contrastive Language-Image Pre-training).

Using this codebase, we have trained several models on a variety of data sources and compute budgets, ranging from [small-scale experiments](#) to larger runs including models trained on datasets such as [LAION-400M](#), [LAION-2B](#) and [DataComp-1B](#). Many of our models and their scaling properties are studied in detail in the paper [reproducible scaling laws for contrastive language-image learning](#). Some of our best models and their zero-shot ImageNet-1k accuracy are shown below, along with the ViT-L model trained by OpenAI. We provide more details about our full collection of pretrained models [here](#), and zero-shot results for 38 datasets [here](#).

Model	Training data	Resolution	# of samples seen	ImageNet zero-shot acc.
ConvNext-Base	LAION-2B	256px	13B	71.5%
ConvNext-Large	LAION-2B	320px	29B	76.9%
ConvNext-XXLarge	LAION-2B	256px	34B	79.5%
ViT-B/32	DataComp-1B	256px	34B	72.8%
ViT-B/16	DataComp-1B	224px	13B	73.5%
ViT-L/14	LAION-2B	224px	32B	75.3%
ViT-H/14	LAION-2B	224px	32B	78.0%
ViT-L/14	DataComp-1B	224px	13B	79.2%
ViT-G/14	LAION-2B	224px	34B	80.1%
ViT-L/14	OpenAI's WIT	224px	13B	75.5%

OpenCLIP

README License

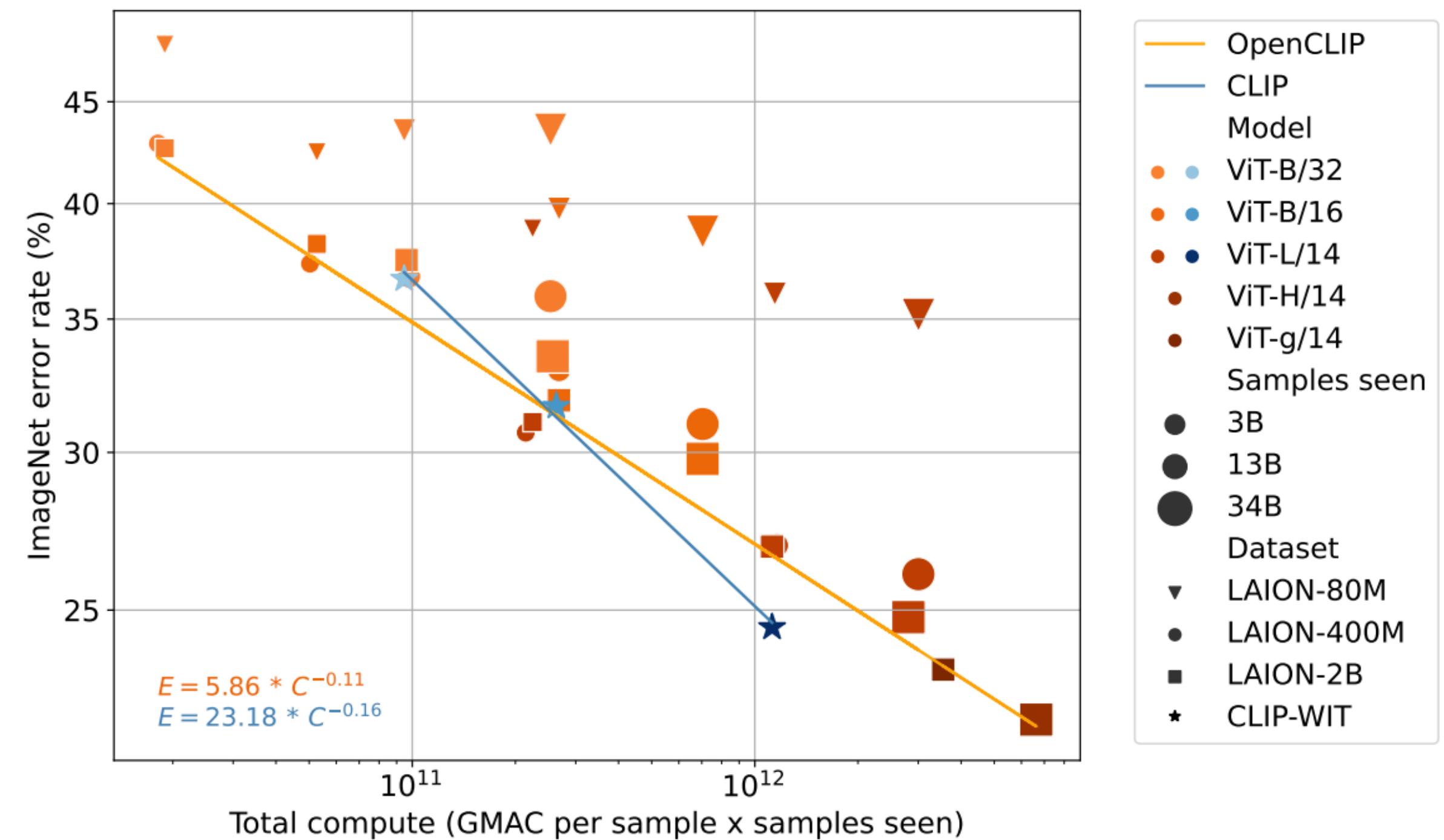
OpenCLIP

[\[Paper\]](#) [\[Citations\]](#) [\[Clip Colab\]](#) [\[Coca Colab\]](#) [pypi v2.24.0](#)

Welcome to an open source implementation of OpenAI's [CLIP](#) (Contrastive Language-Image Pre-training).

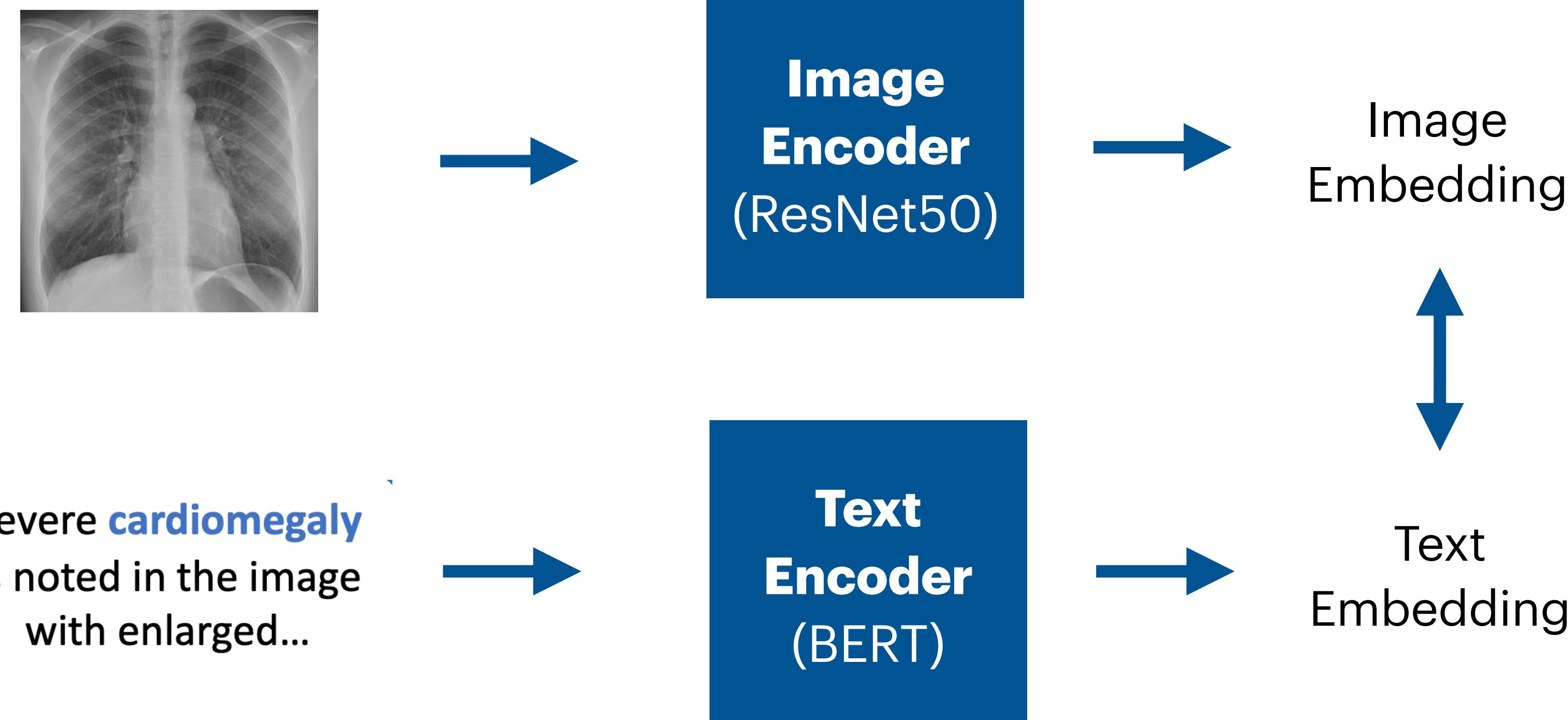
Using this codebase, we have trained several models on a variety of data sources and compute budgets, ranging from [small-scale experiments](#) to larger runs including models trained on datasets such as [LAION-400M](#), [LAION-2B](#) and [DataComp-1B](#). Many of our models and their scaling properties are studied in detail in the paper [reproducible scaling laws for contrastive language-image learning](#). Some of our best models and their zero-shot ImageNet-1k accuracy are shown below, along with the ViT-L model trained by OpenAI. We provide more details about our full collection of pretrained models [here](#), and zero-shot results for 38 datasets [here](#).

Model	Training data	Resolution	# of samples seen	ImageNet zero-shot acc.
ConvNext-Base	LAION-2B	256px	13B	71.5%
ConvNext-Large	LAION-2B	320px	29B	76.9%
ConvNext-XXLarge	LAION-2B	256px	34B	79.5%
ViT-B/32	DataComp-1B	256px	34B	72.8%
ViT-B/16	DataComp-1B	224px	13B	73.5%
ViT-L/14	LAION-2B	224px	32B	75.3%
ViT-H/14	LAION-2B	224px	32B	78.0%
ViT-L/14	DataComp-1B	224px	13B	79.2%
ViT-G/14	LAION-2B	224px	34B	80.1%
ViT-L/14	OpenAI's WIT	224px	13B	75.5%

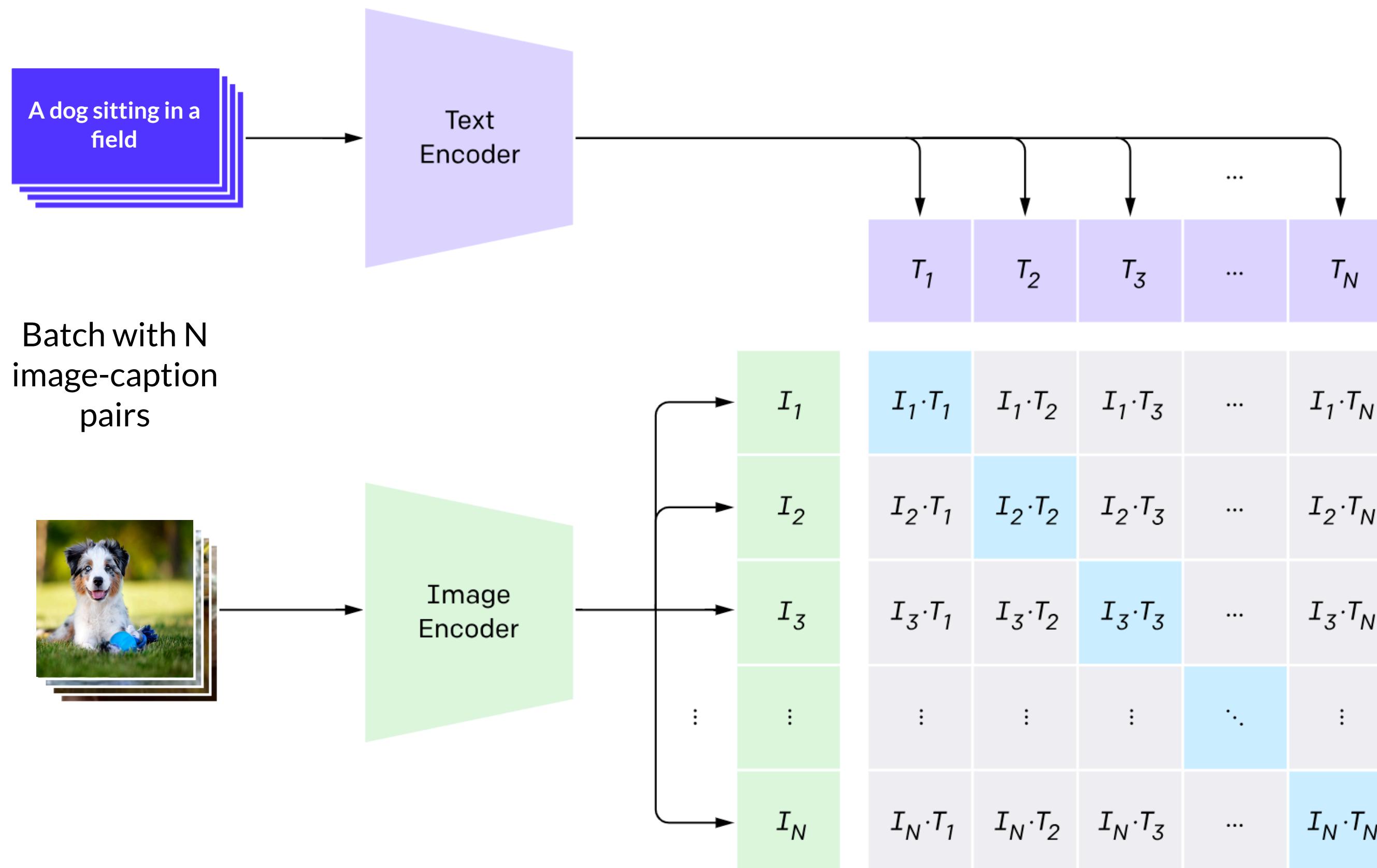


ConVIRT

Key Idea: Maximize the similarity between true image-text embedding pairs and minimize similarity between mismatched image-text embedding pairs



Considerations for CLIP



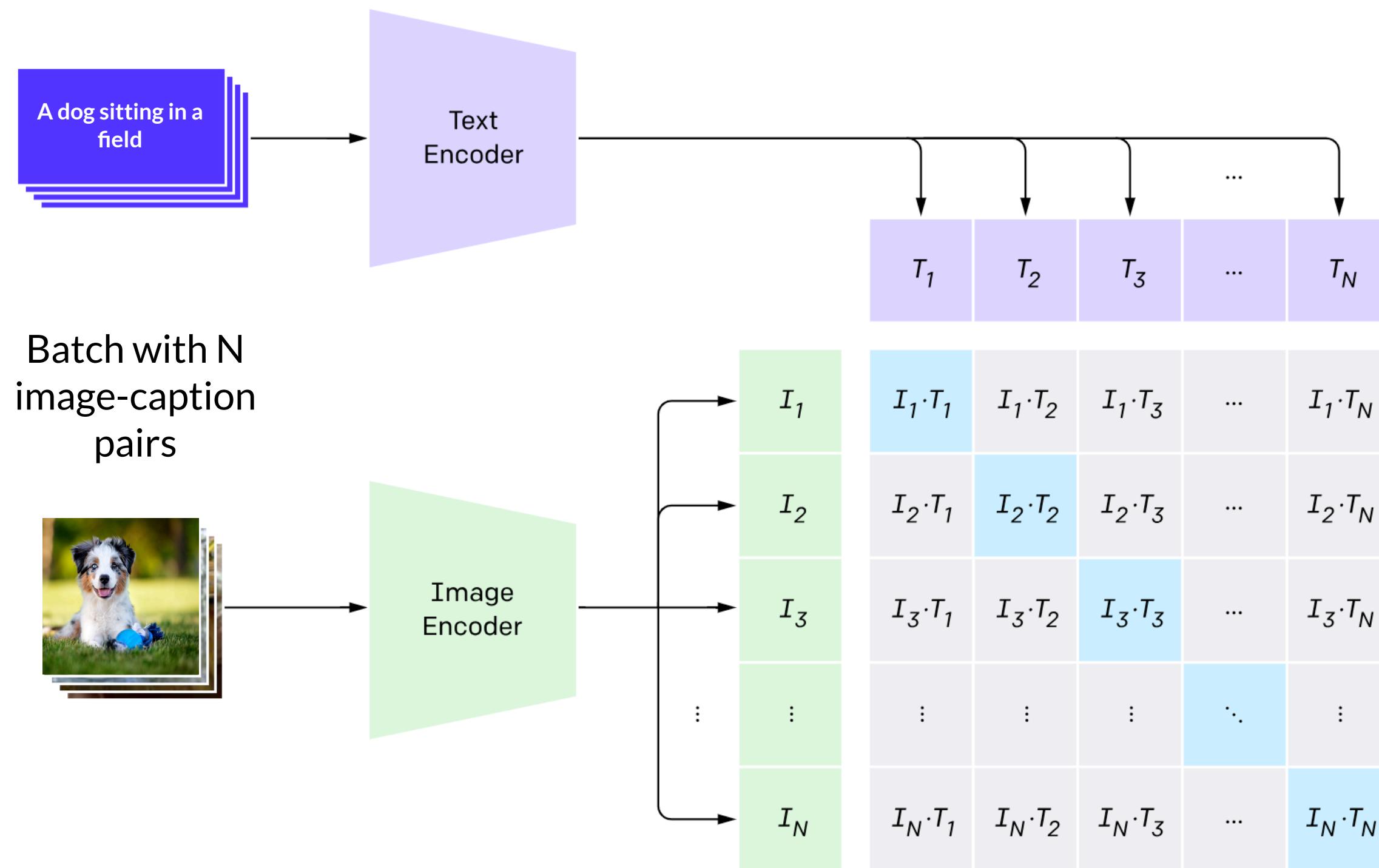
Q: What is the most important hyperparameter when training CLIP?

A: Batch Size!

CLIP uses a batch size of 32,768
(trained on up to 592 V100 GPUs)

Can we reduce the need for massive batch sizes?

SigLIP: Sigmoid Loss for Language Image Pre-Training



CLIP Objective: InfoNCE Loss Function

$$L_{I \rightarrow T} = \sum_{k=1}^N -\log \frac{\exp(I_k \cdot T_k / \tau)}{\sum_{j=1}^N \exp(I_k \cdot T_j / \tau)}$$

Positive Image-Text Pairs Negative Image-Text Pairs

Softmax Function

SigLIP Objective: Sigmoid Loss Function

$$-\frac{1}{|\mathcal{B}|} \sum_{k=1}^{|\mathcal{B}|} \sum_{j=1}^{|\mathcal{B}|} \underbrace{\log \frac{1}{1 + e^{z_{ik}(-t I_k \cdot T_j + b)}}}_{\mathcal{L}_{ij}}$$

Sigmoid Function

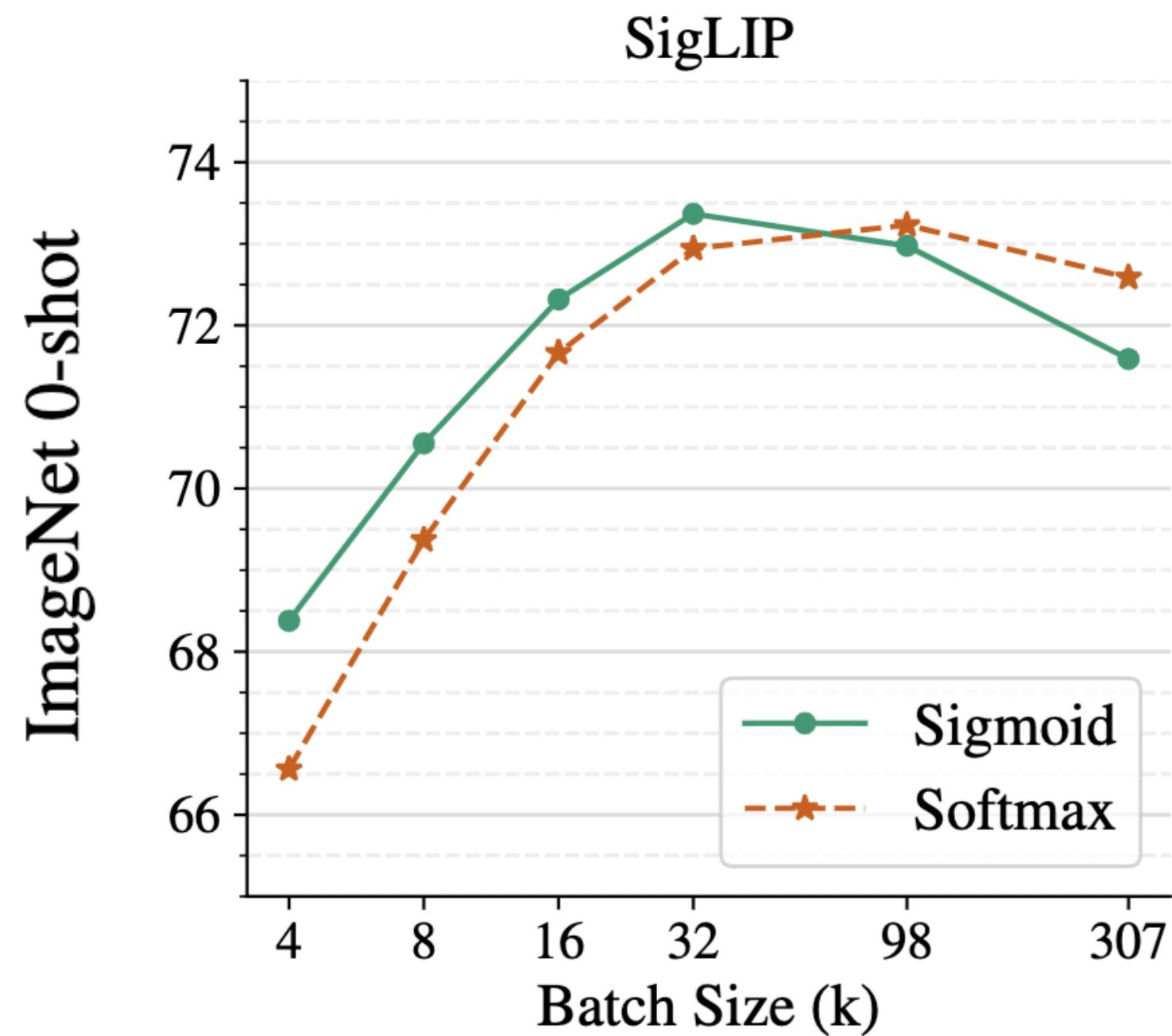
$z_{ik} = 1$ for positive image-text pairs (i.e. $k=j$)

$z_{ik} = -1$ for negative image-text pairs (i.e. $k \neq j$)

SigLIP: Sigmoid Loss for Language Image Pre-Training

Advantages

- SigLIP is more memory-efficient than CLIP → avoids materializing a $|B| \times |B|$ matrix.
- SigLIP outperforms CLIP at smaller batch sizes



Part 2: Data

General-Domain Data: LAION-5B

LAION-5B contains 5 billion image-text pairs obtained from CommonCrawl

C: Green Apple Chair

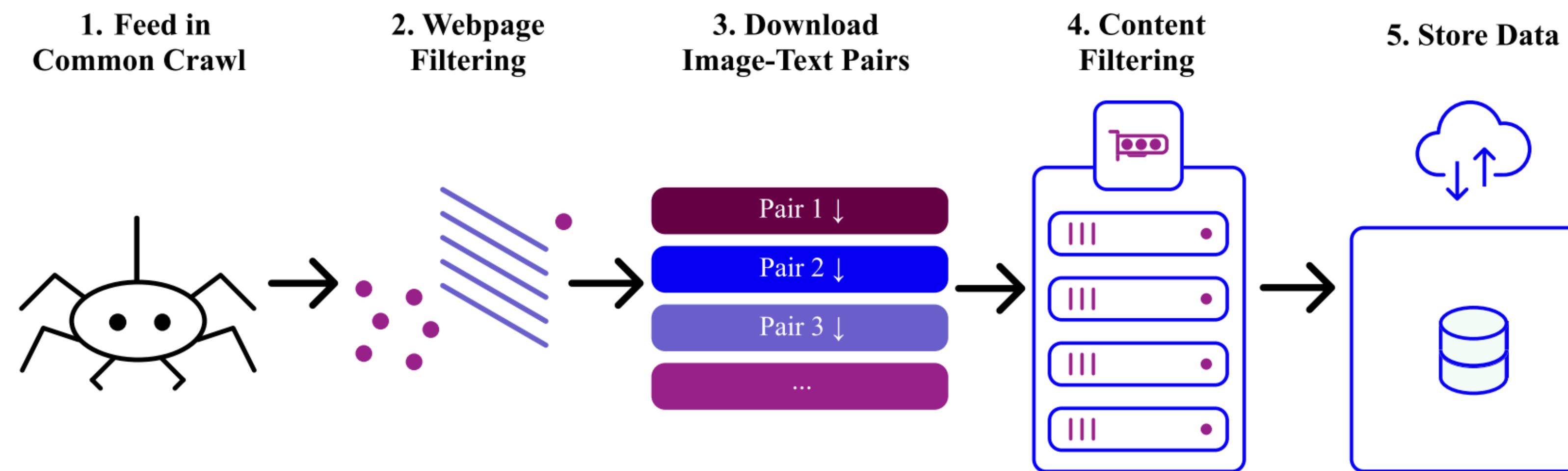
C: sun snow dog

C: Color Palettes

C: pink, japan, aesthetic image

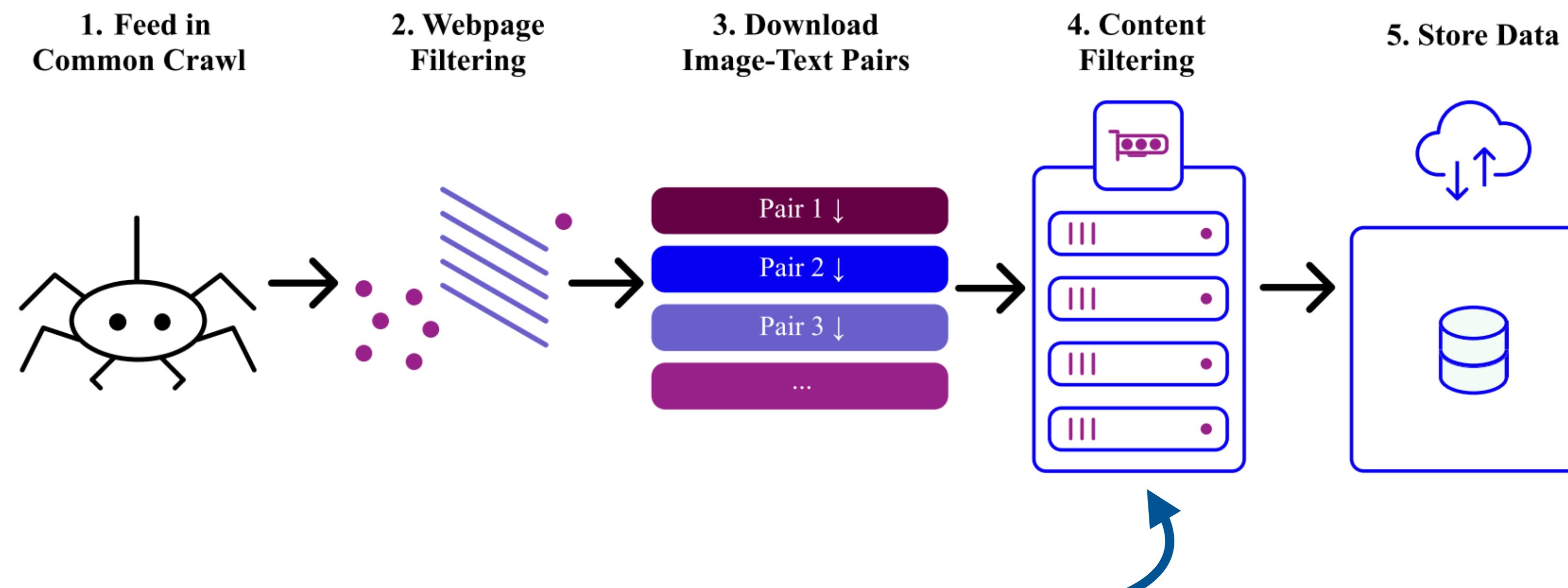
General-Domain Data: LAION-5B

LAION-5B contains 5 billion image-text pairs obtained from CommonCrawl



General-Domain Data: LAION-5B

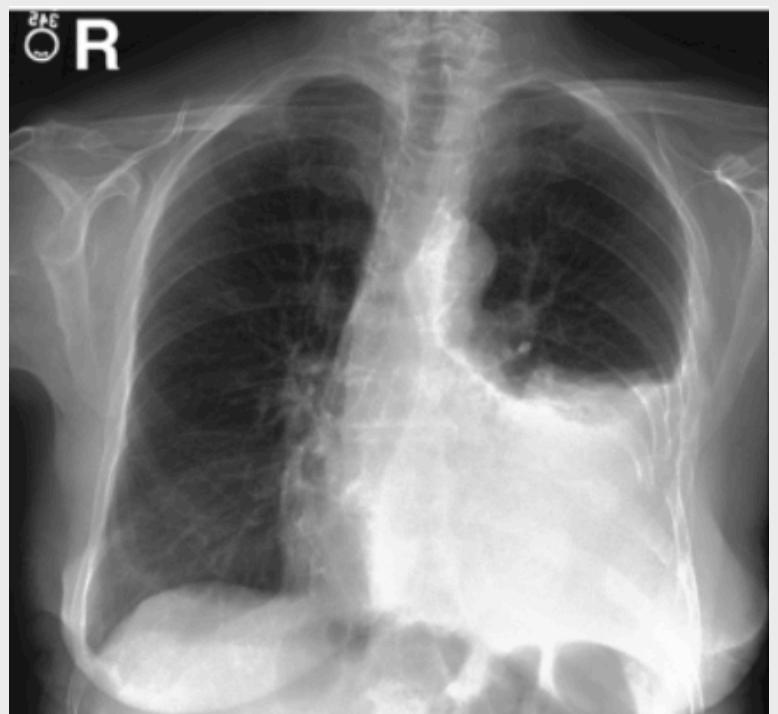
LAION-5B contains 5 billion image-text pairs obtained from CommonCrawl



Medical-Domain Data

MIMIC-CXR

370k chest X-rays with
220k reports



Cardiac size cannot be evaluated. Large left pleural effusion is new. Small right effusion is new. The upper lungs are clear. There is no pneumothorax.

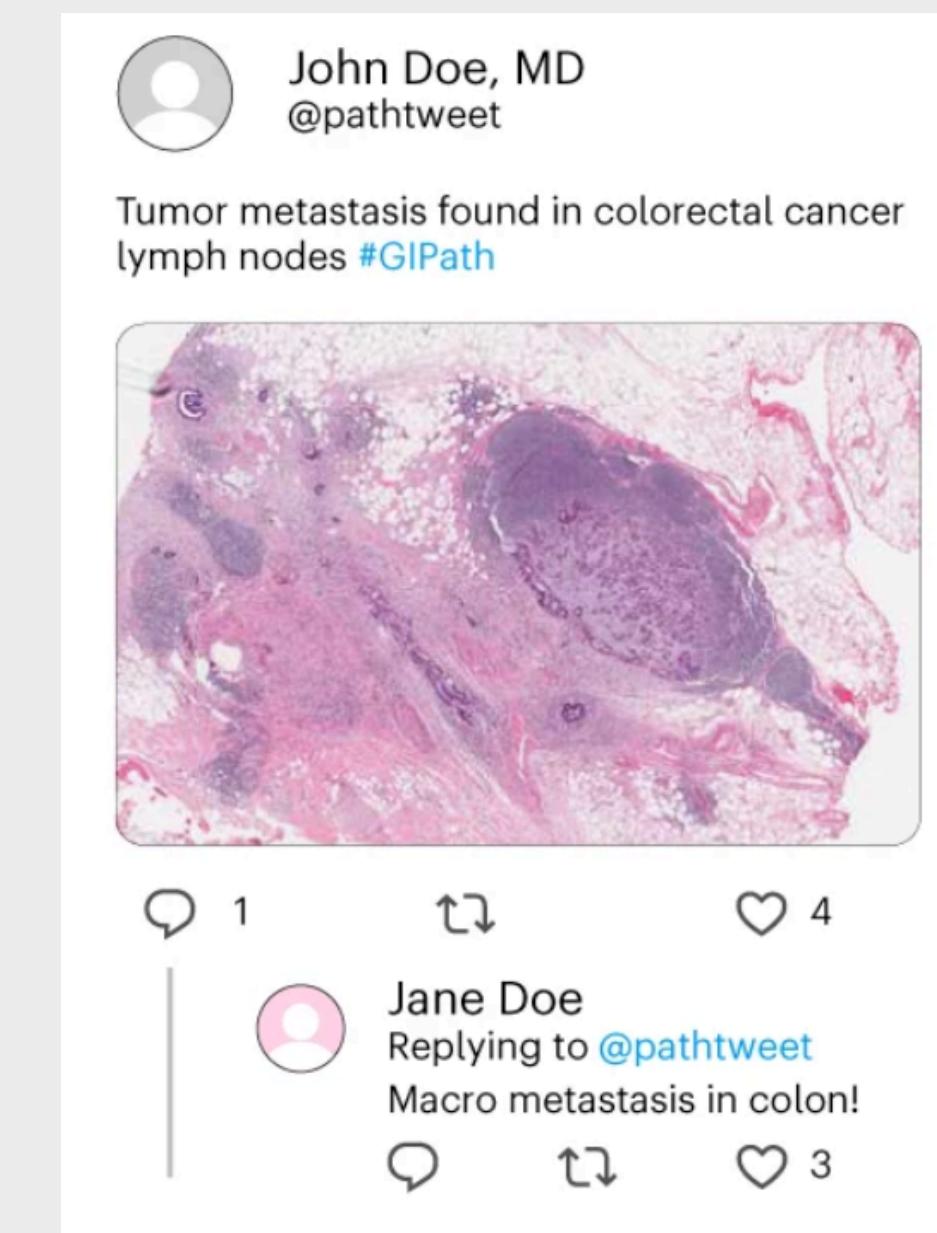
PadChest

160k chest X-rays with
110k reports (Spanish)

cambi pulmonar cronic sever. sign fibrosis bibasal. sutil infiltr pseudonodul milimetr vidri deslustr localiz bas. cifosis sever

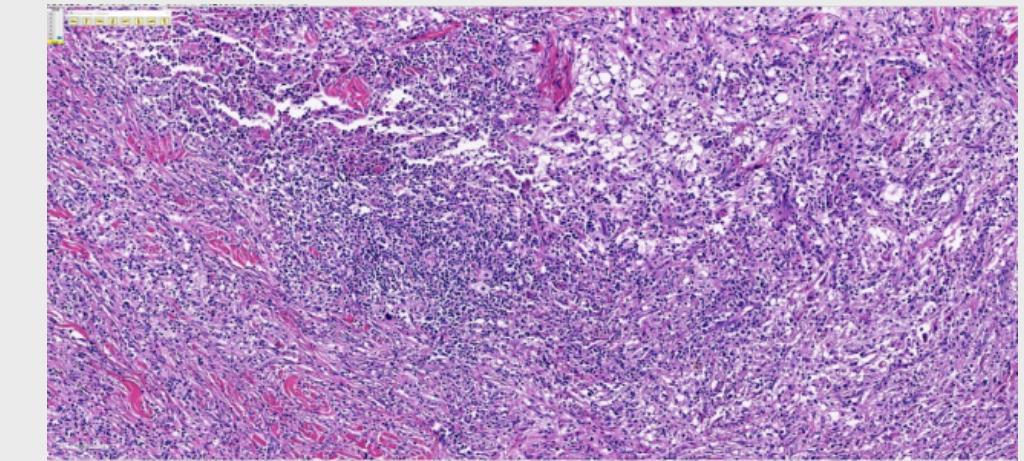
OpenPath

200k histopathology
image-text pairs (Twitter)



Quilt-1M

1M histopathology image-text pairs (Youtube)



Large histiocytes with abundant cytoplasm identified as Rosai-Dorfman histiocytes

Johnson et al. "MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports."

Bustos et al. "PadChest: A large chest x-ray image dataset with multi-label annotated reports"

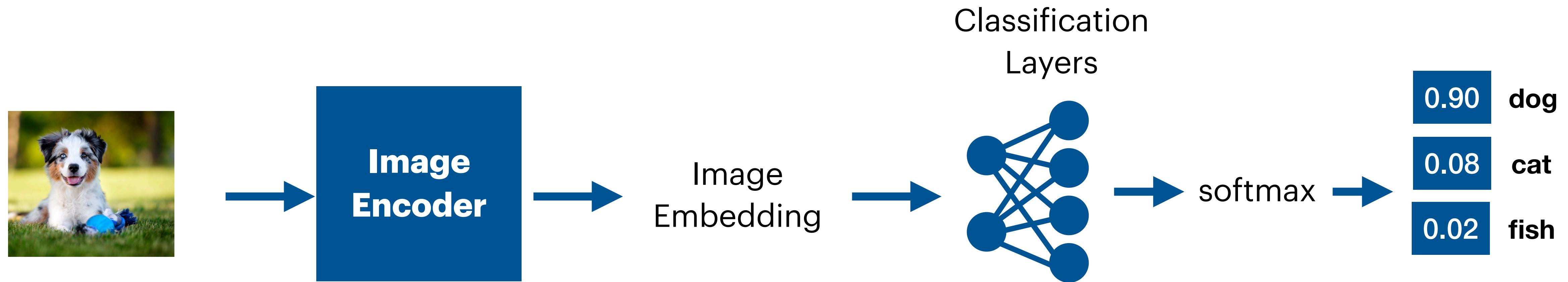
Ikezogwo et al. "Quilt-1M: One Million Image-Text Pairs for Histopathology"

Huang et al. "A visual-language foundation model for pathology image analysis using medical Twitter"

Part 3: Evaluation

Evaluating VLMs

Let's consider a standard classification setup for a vision model

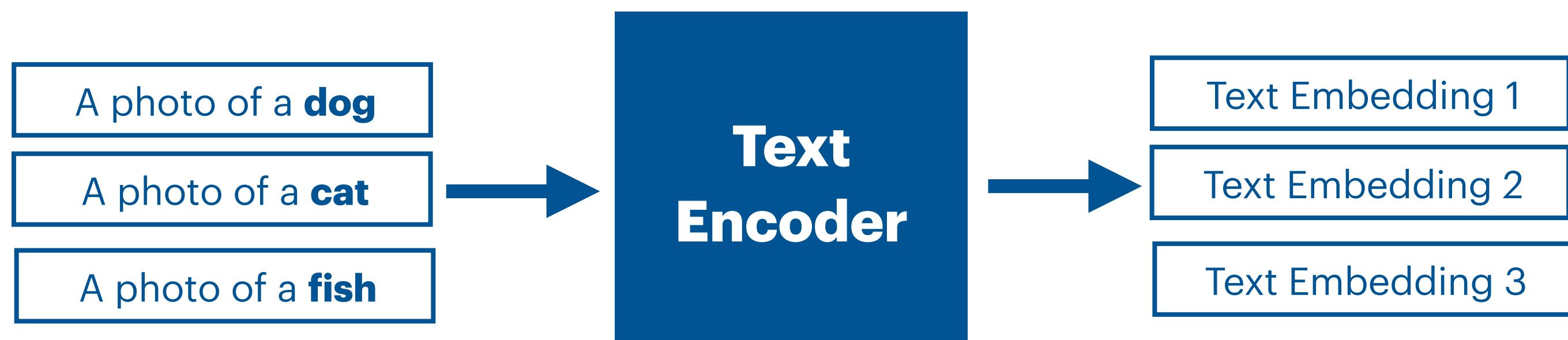
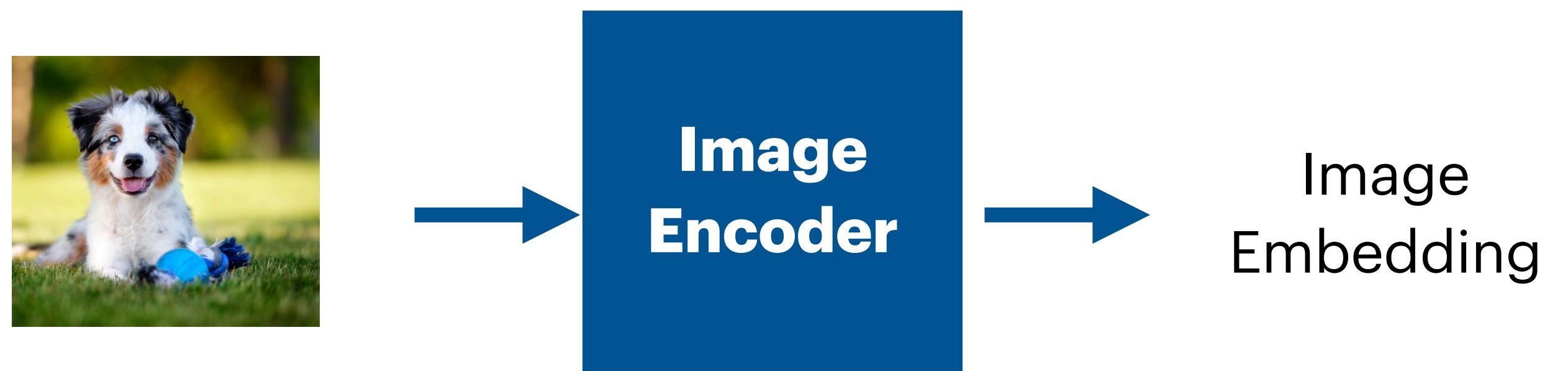


Q: What is undesirable about this approach?

- Classification layers need to be trained on an annotated dataset.
- Labels are fixed. Changing the labels requires retraining classification layers.

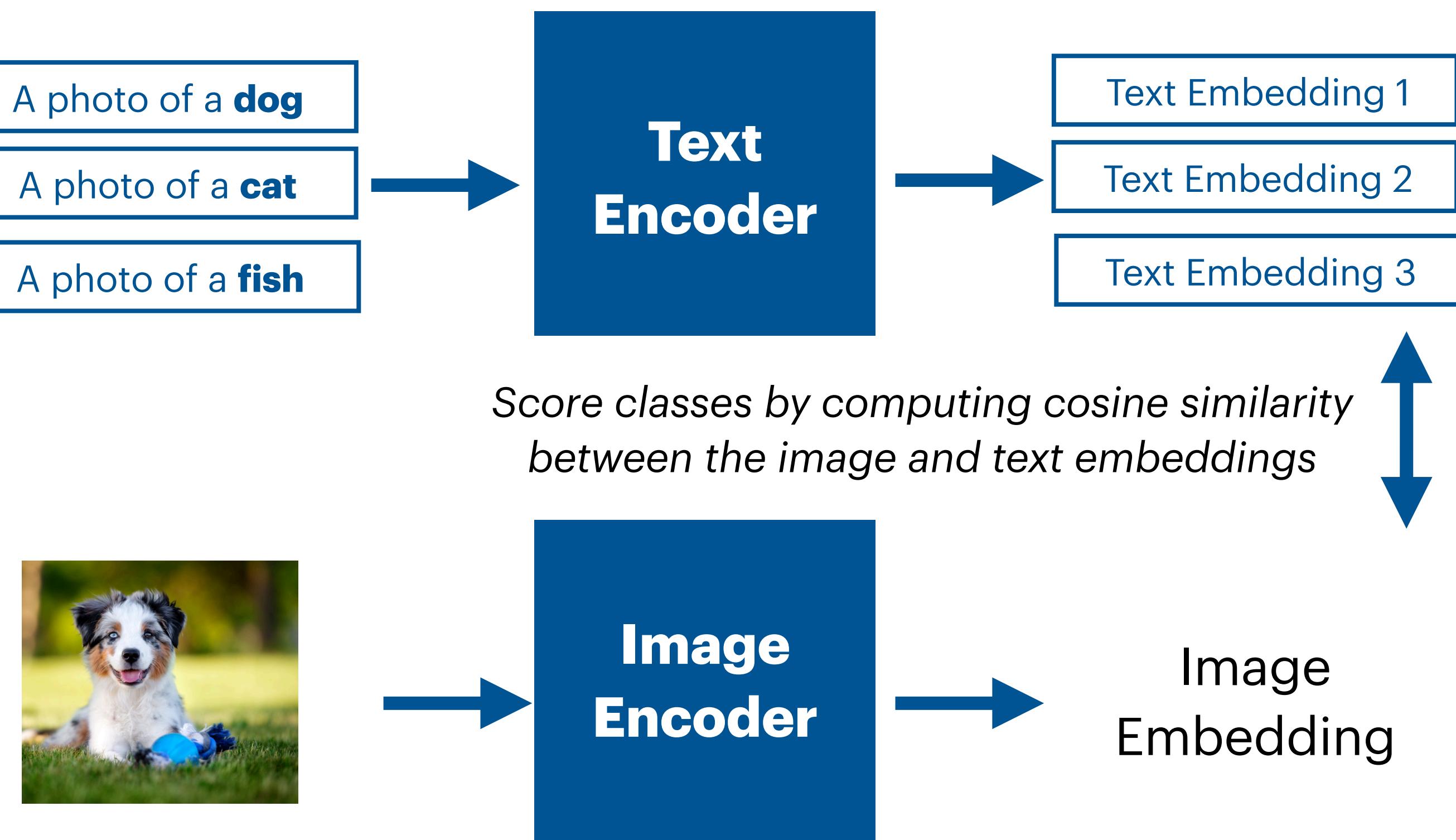
Evaluating VLMs

Zero-Shot Classification



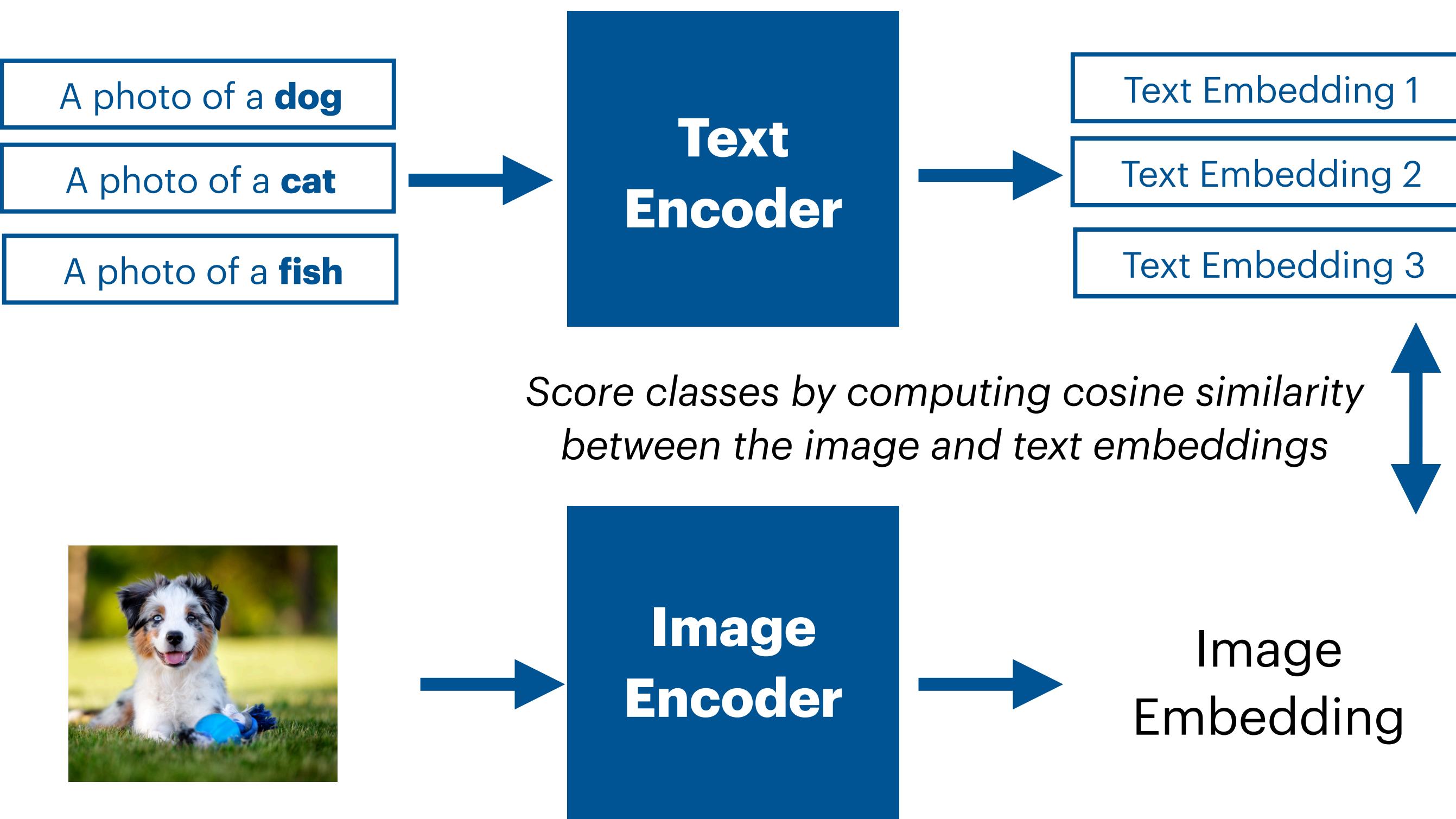
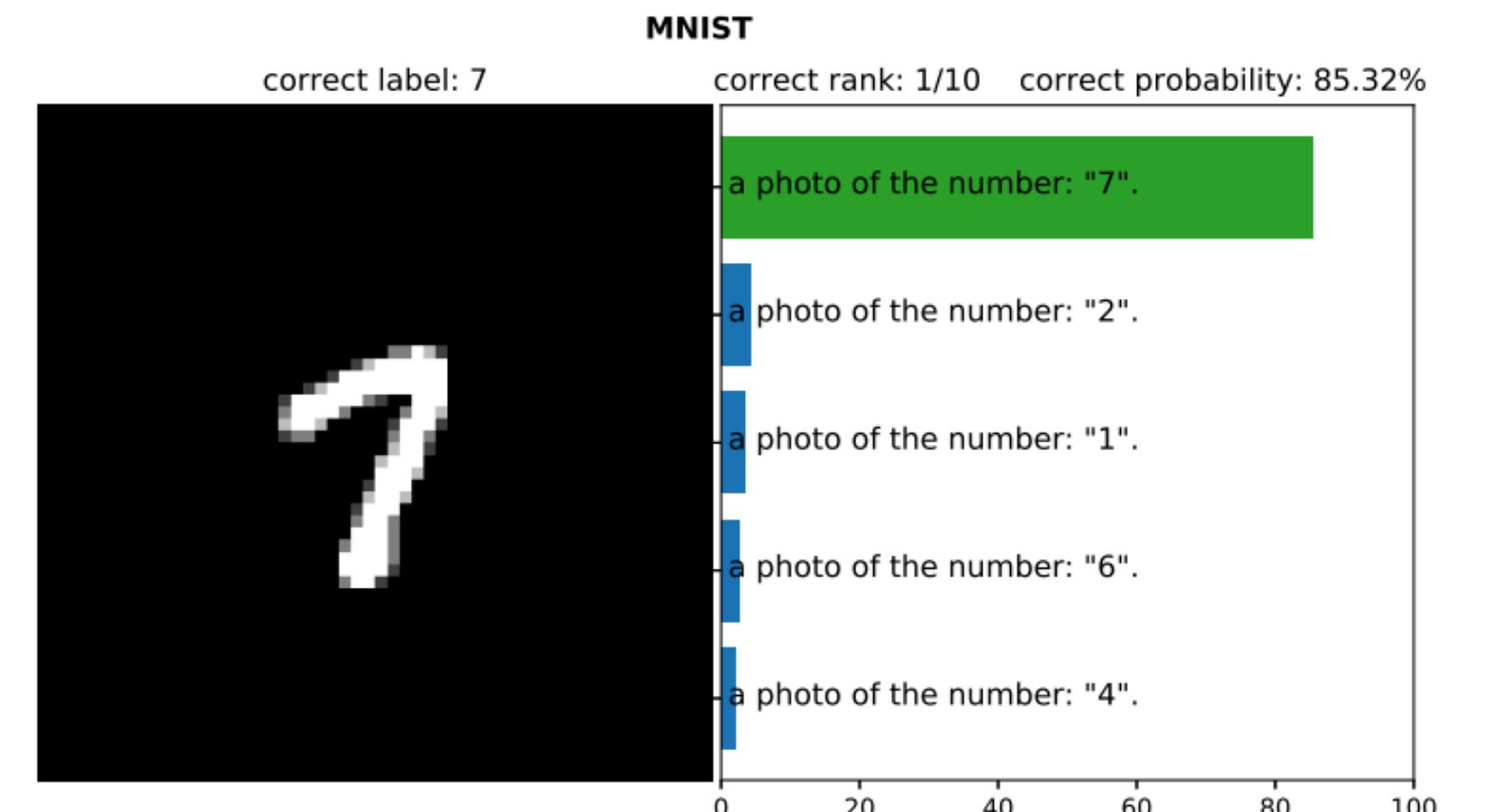
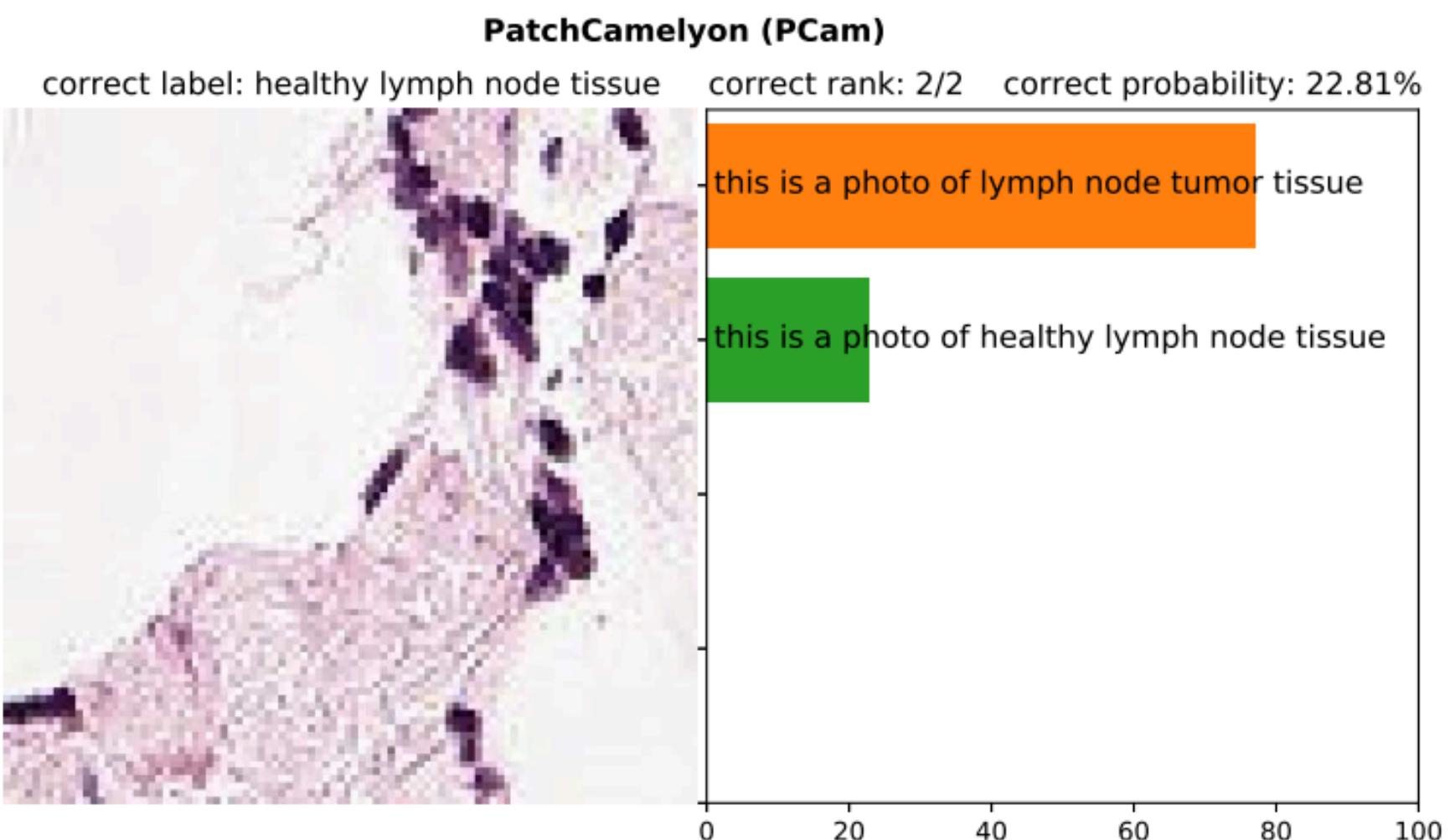
Evaluating VLMS

Zero-Shot Classification



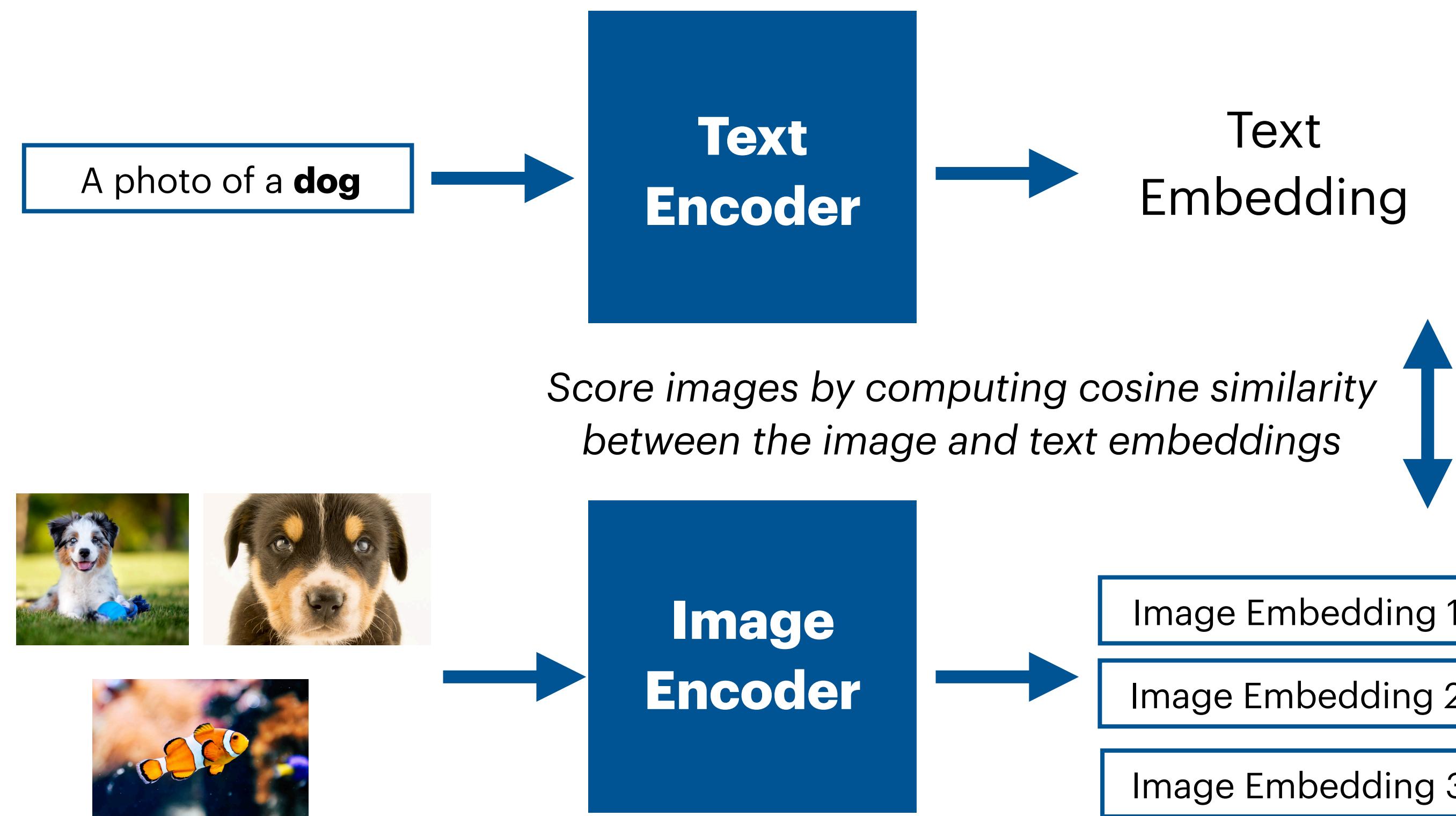
Evaluating VLMs

Zero-Shot Classification



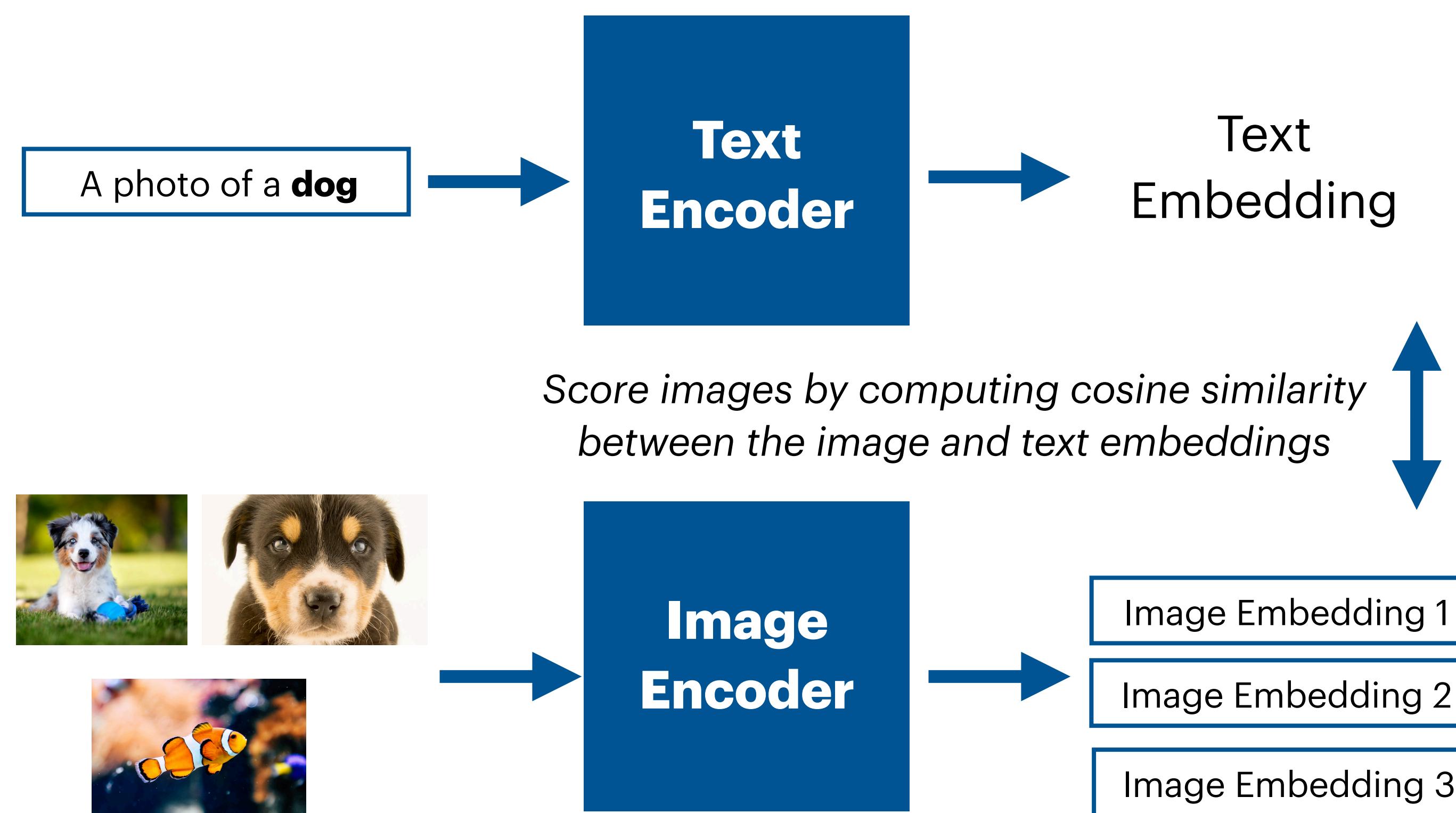
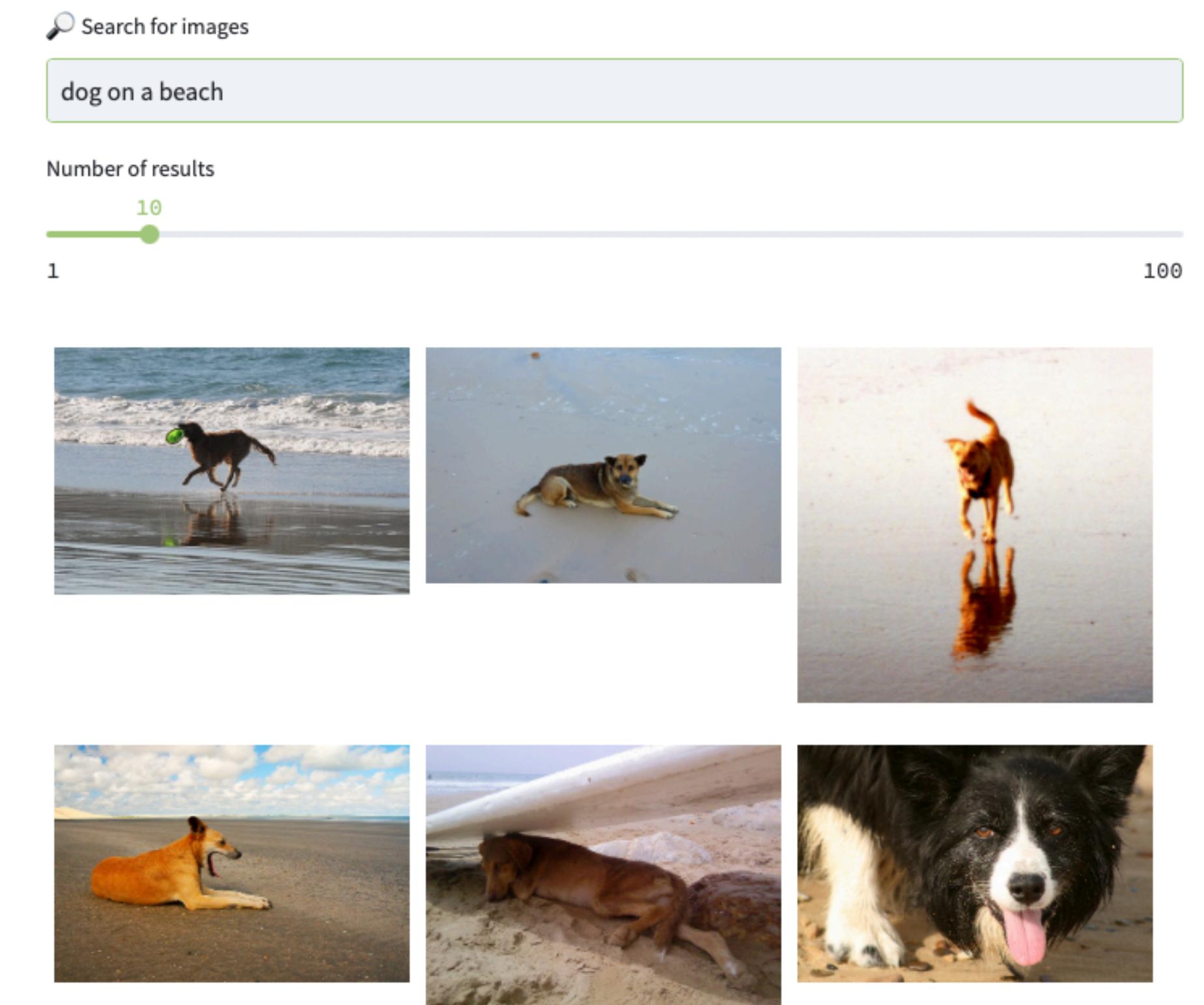
Evaluating VLMs

Text → Image Retrieval



Evaluating VLMs

Text → Image Retrieval



Prompting VLMs

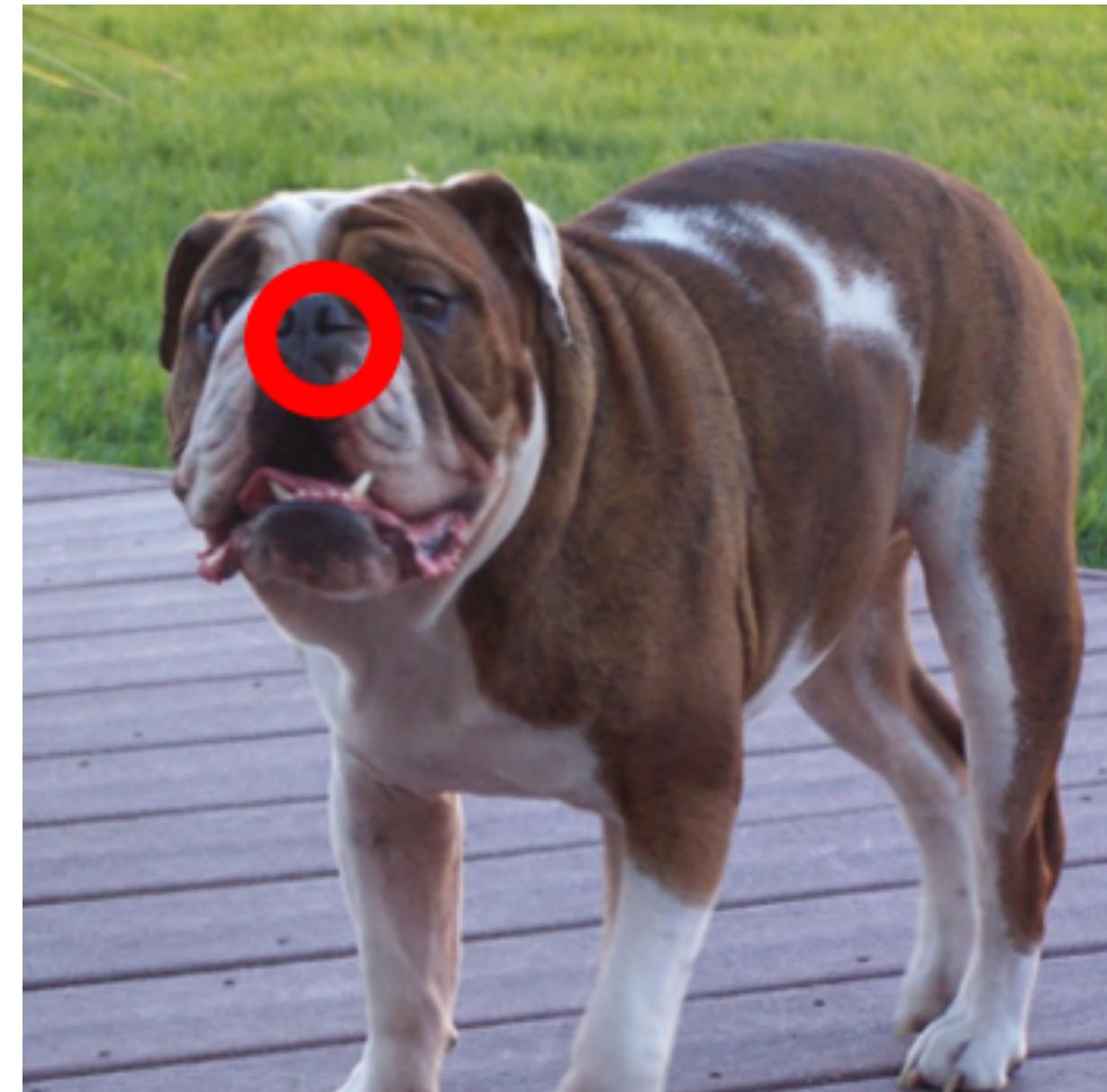
Textual Prompts

Example text prompts used by CLIP for zero-shot classification on CIFAR-10

```
templates = [
    'a photo of a {}.',
    'a blurry photo of a {}.',
    'a black and white photo of a {}.',
    'a low contrast photo of a {}.',
    'a high contrast photo of a {}.',
    'a bad photo of a {}.',
    'a good photo of a {}.',
    'a photo of a small {}.',
    'a photo of a big {}.',
    'a photo of the {}.',
    'a blurry photo of the {}.',
    'a black and white photo of the {}.',
    'a low contrast photo of the {}.',
    'a high contrast photo of the {}.',
    'a bad photo of the {}.',
    'a good photo of the {}.',
    'a photo of the small {}.',
    'a photo of the big {}.',
]
```

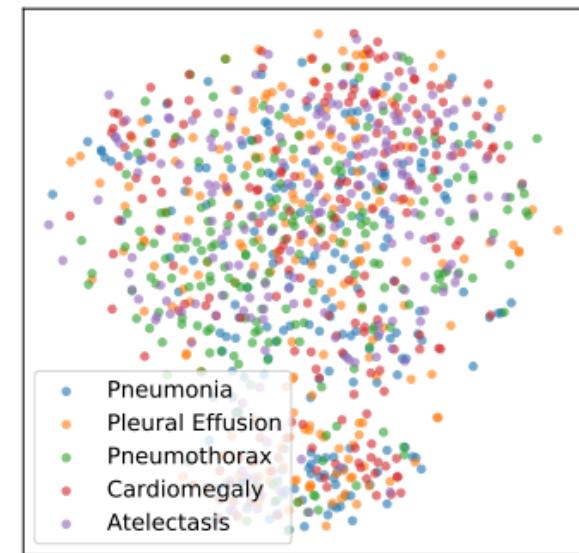
Visual Prompts

Adding visual signal to images can help with targeted retrieval and classification

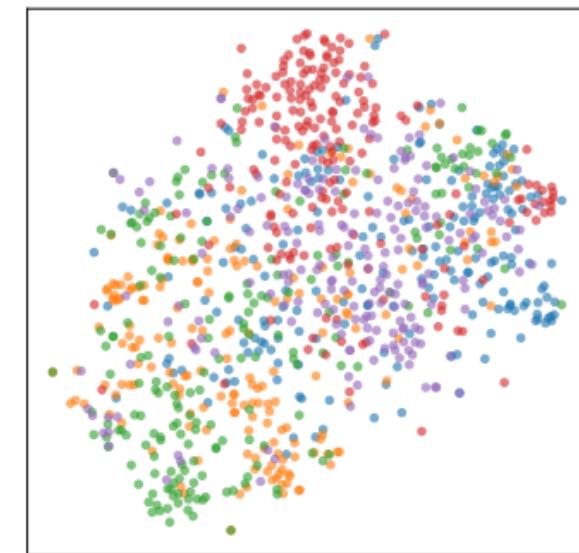


Evaluating Medical VLMs

Classification

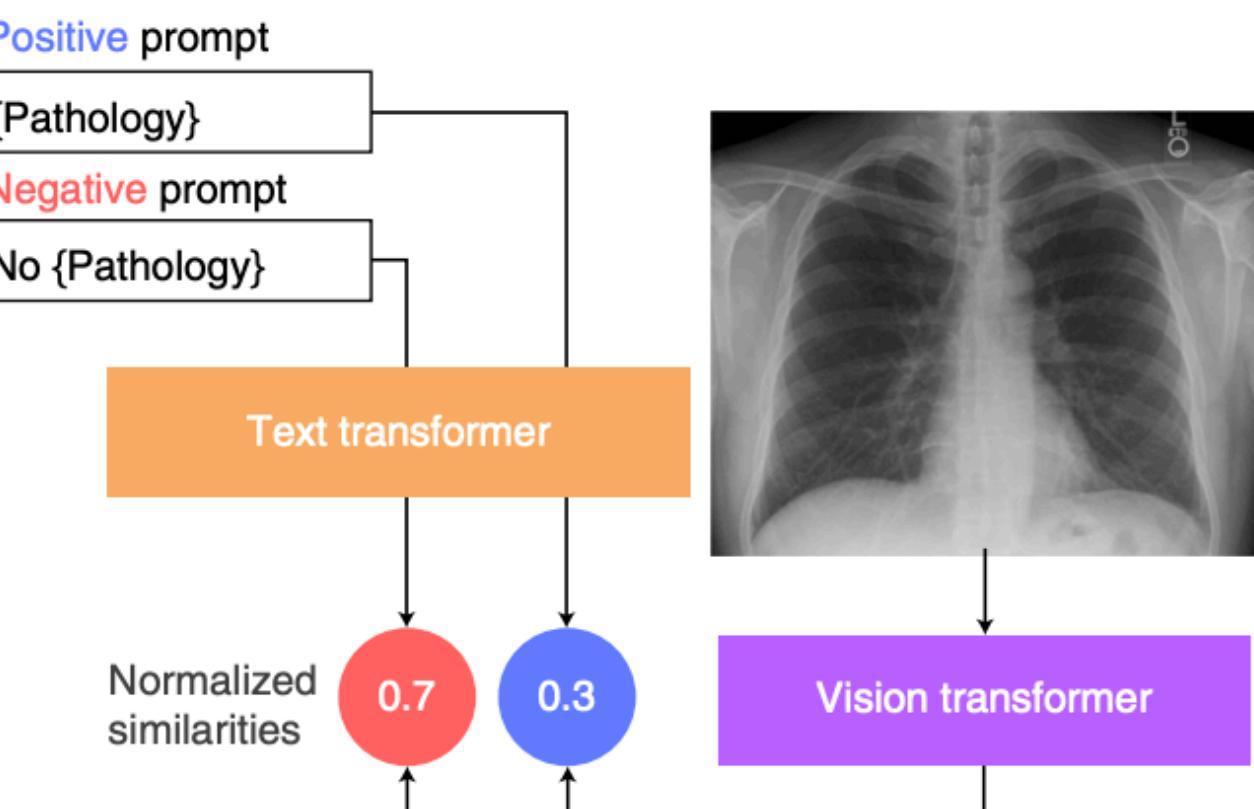


(a) ImageNet Pretraining



(b) ConVIRT Pretraining

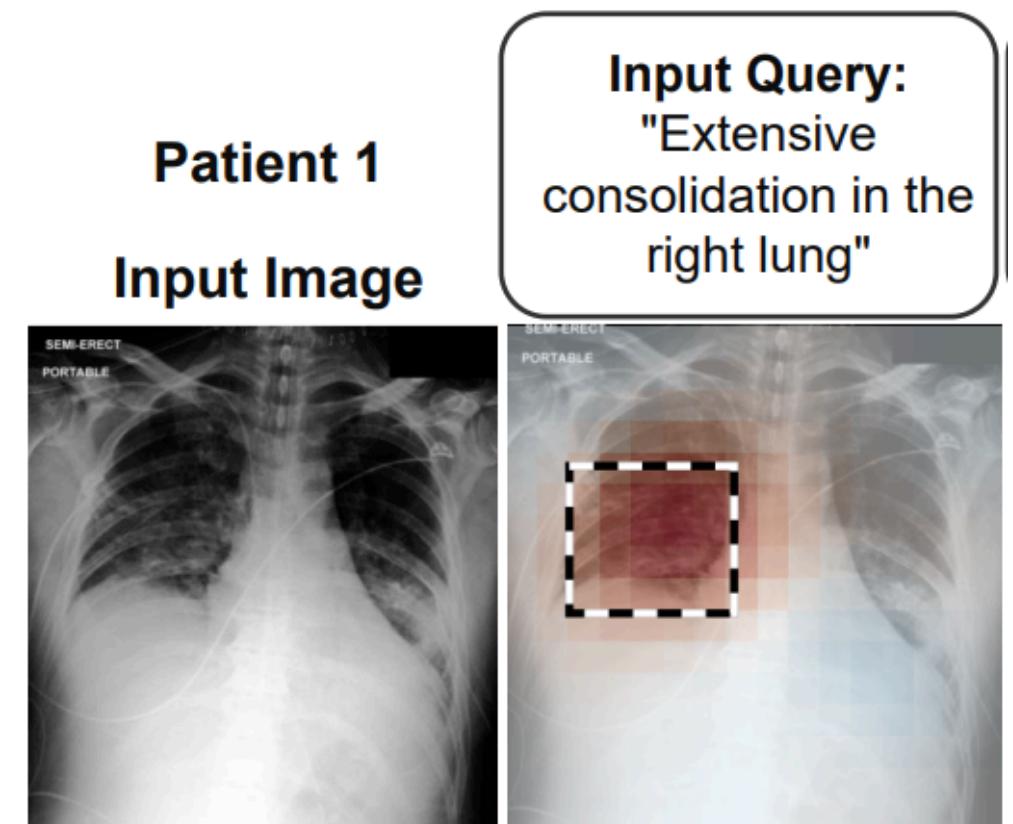
Zero-Shot Classification



Segmentation

Text to Image Retrieval

Visual Grounding



Natural Language Inference

Sentence 1:

No pneumothorax is seen

Sentence 2:

Previously-seen pneumothorax is no longer visualized

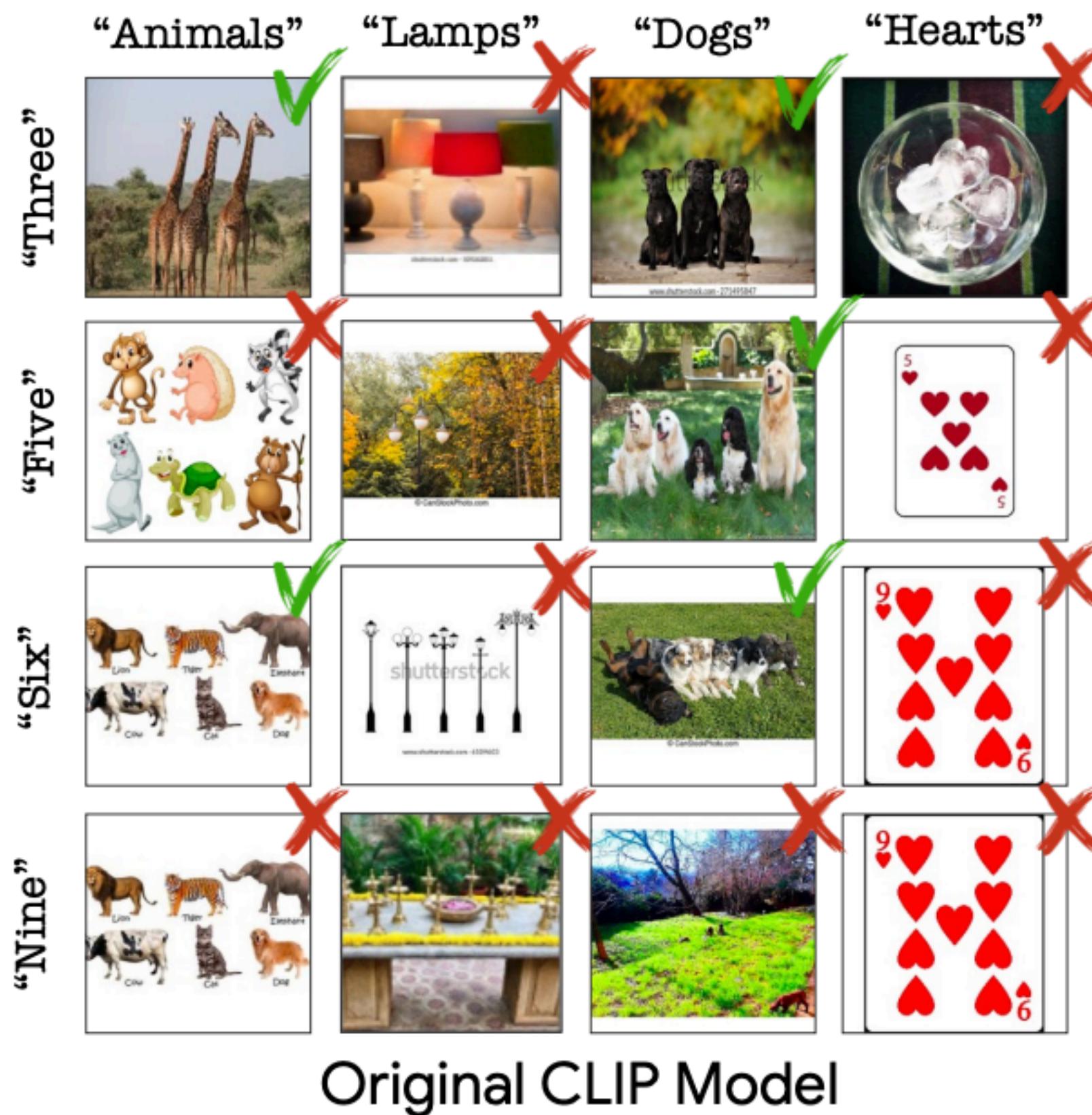
Type: **Entailment**

Part 4: Limitations

Limitations: Contrastive Training

Complex Patterns (e.g. counting)

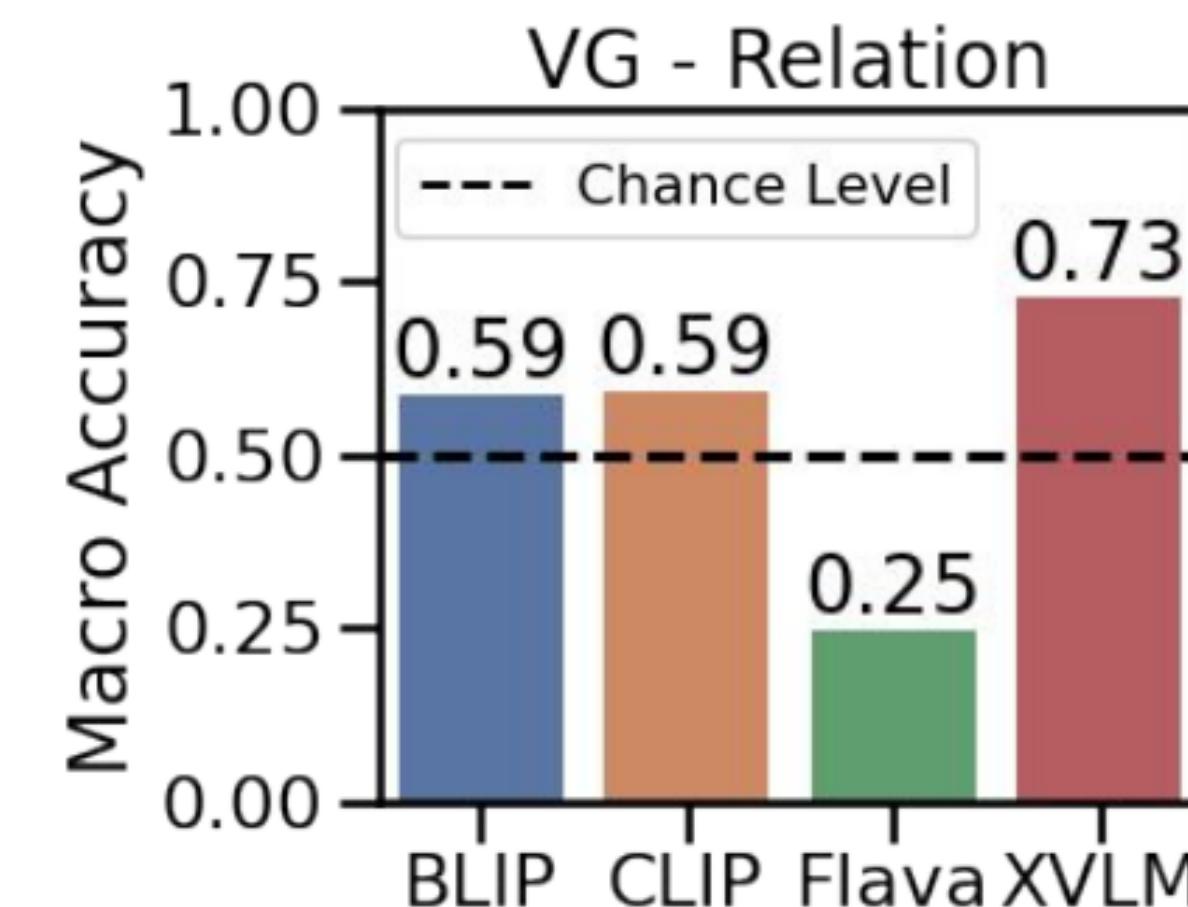
Image Retrieval Results:



Relational Understanding

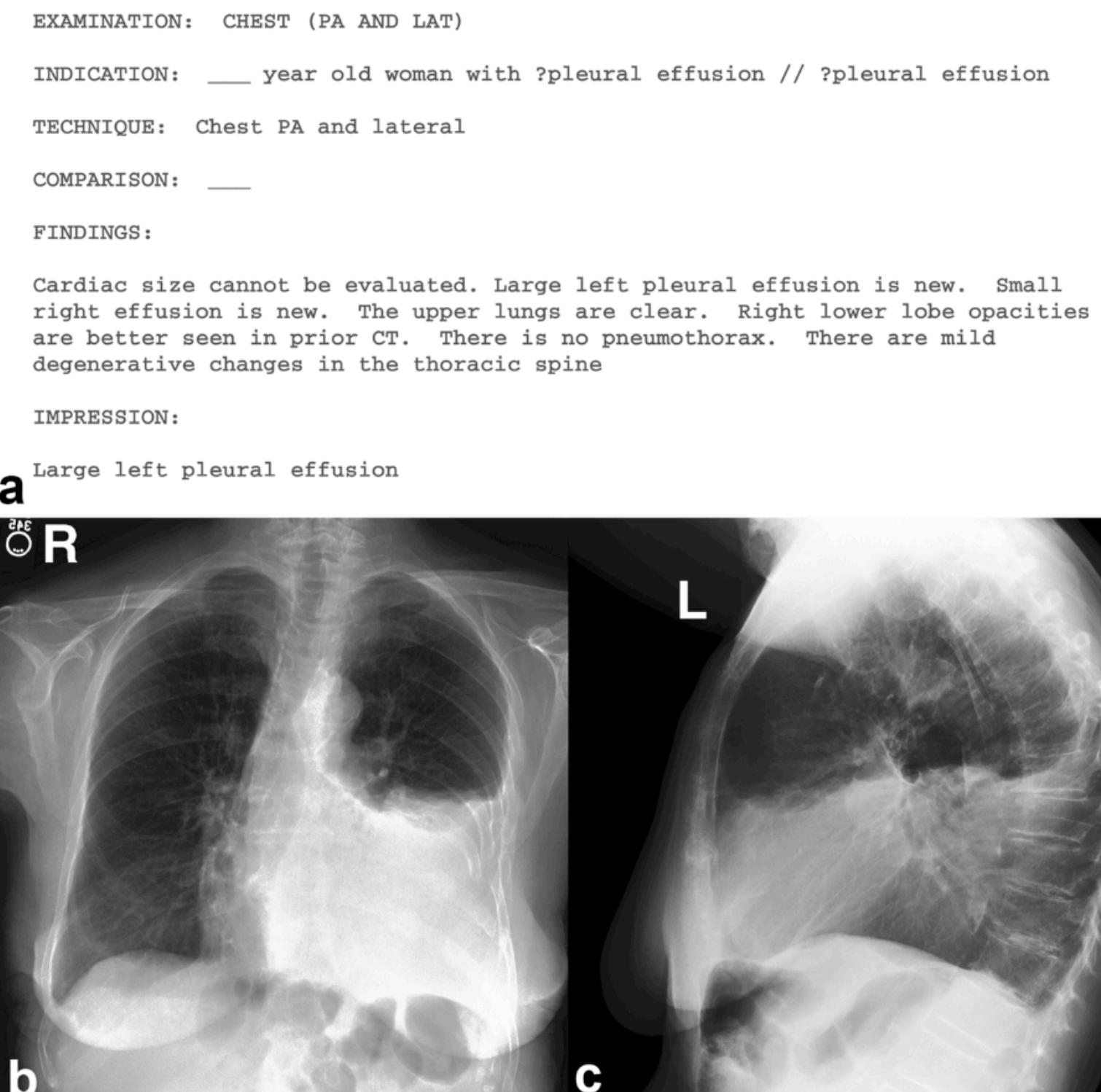
Image-to-Text
Retrieval

- the grass is eating the horse 81%
- the horse is eating the grass 78%

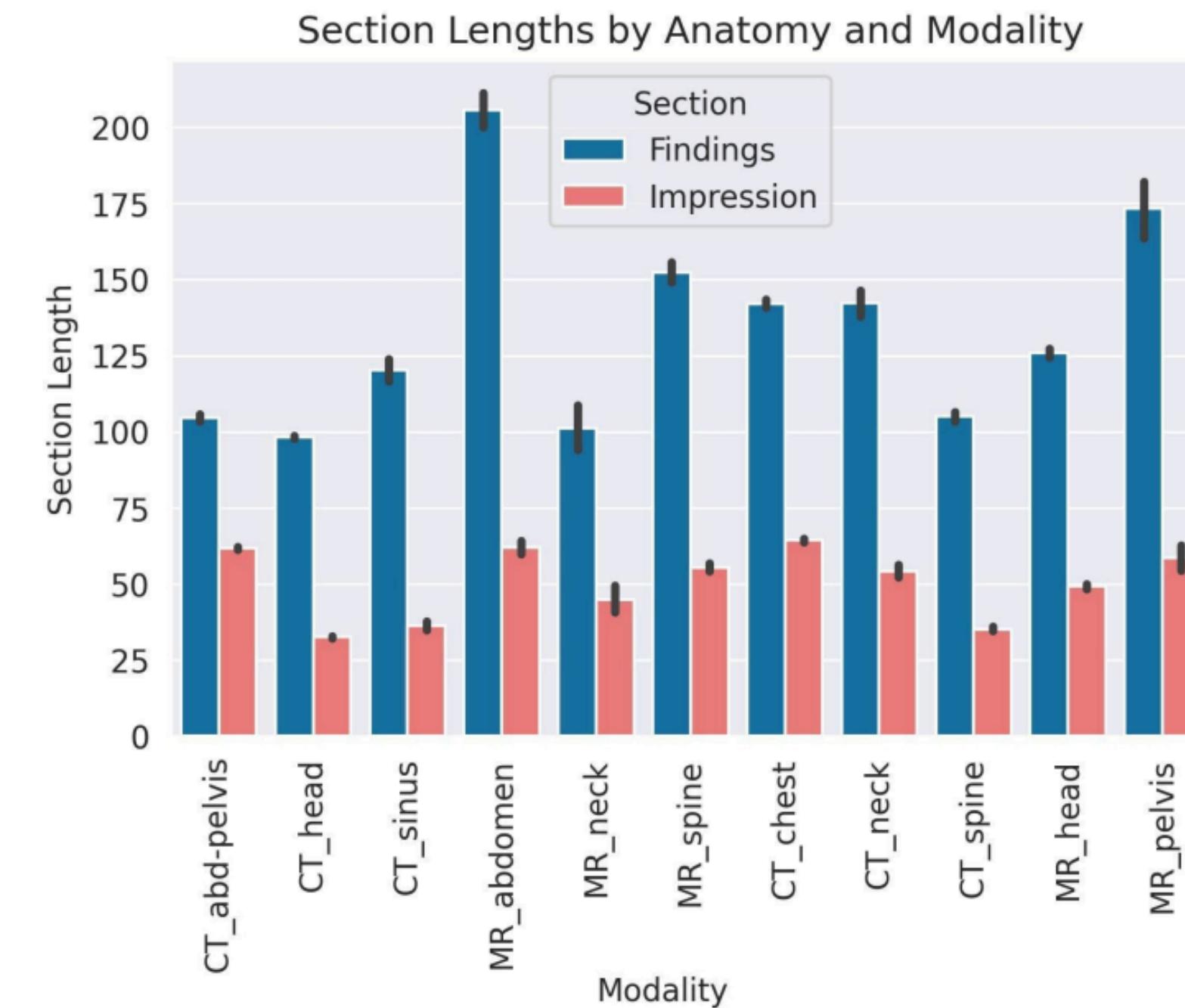


Limitations: Domain-Specific Challenges

Fine-Grained Visual Information



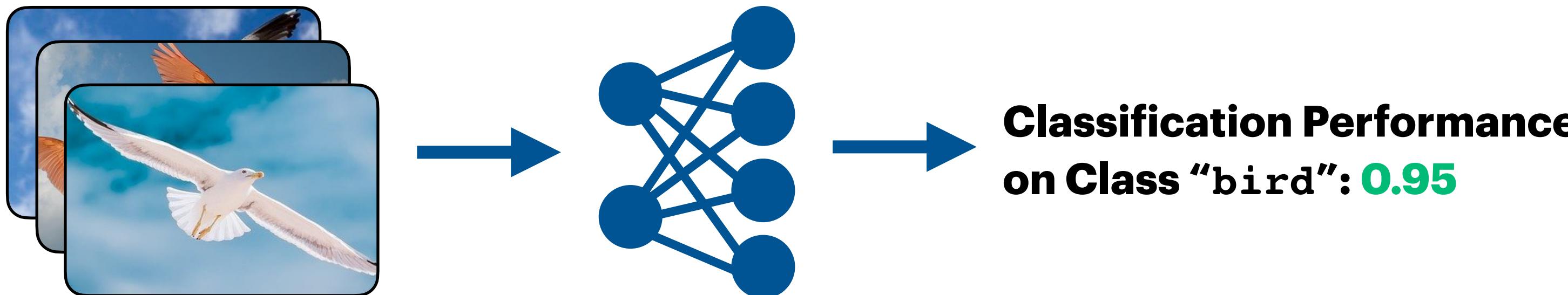
Lengthy and Complex Text



Part 5: Applications

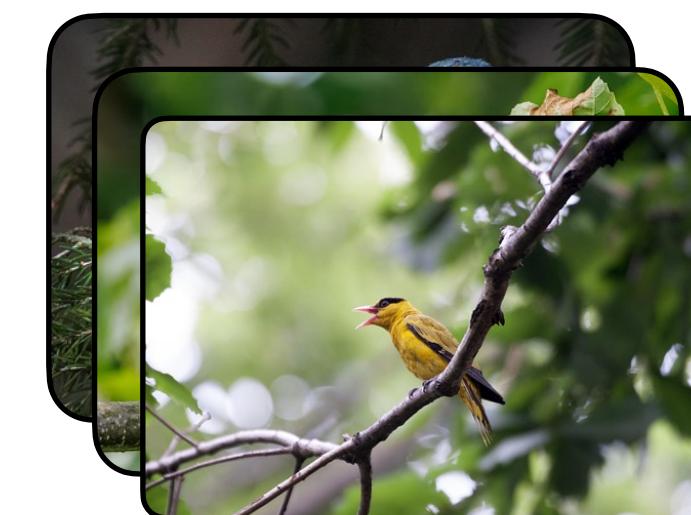
Application 1: Discovering Systematic Errors

Computer vision models often demonstrate high overall performance...



...yet make systematic errors on specific data subgroups

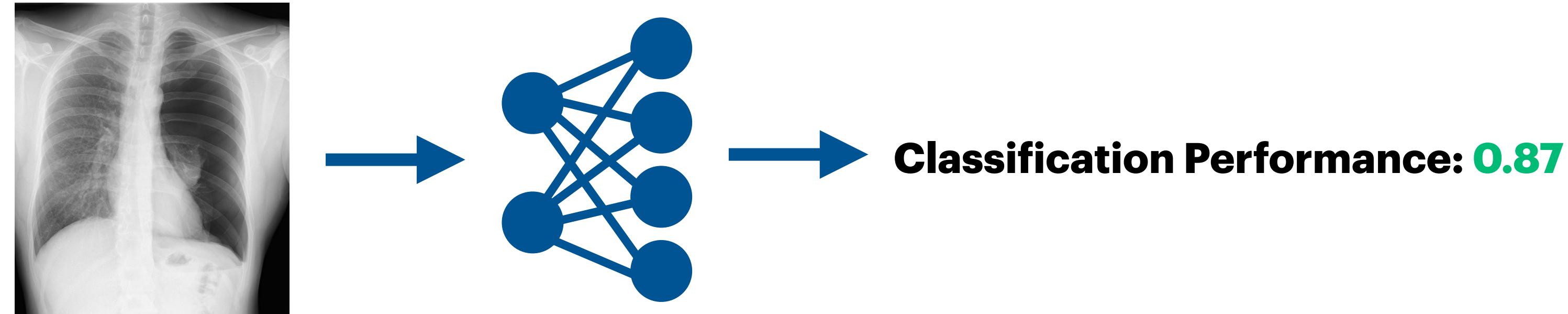
Classification Performance
on subgroup with blue skies:
0.98



Classification Performance
on subgroup with forest backgrounds:
0.32

Application 1: Discovering Systematic Errors

Computer vision models often demonstrate high overall performance...



...yet make systematic errors on specific data subgroups

**Classification Performance on
subgroup with chest tubes:**

0.94

**Classification Performance
on subgroup without chest tubes:**

0.77

**Key Challenge:
Subgroups are not
labeled!**

Application 1: Discovering Systematic Errors

Domino uses vision-language embeddings to identify and describe systematic prediction errors.

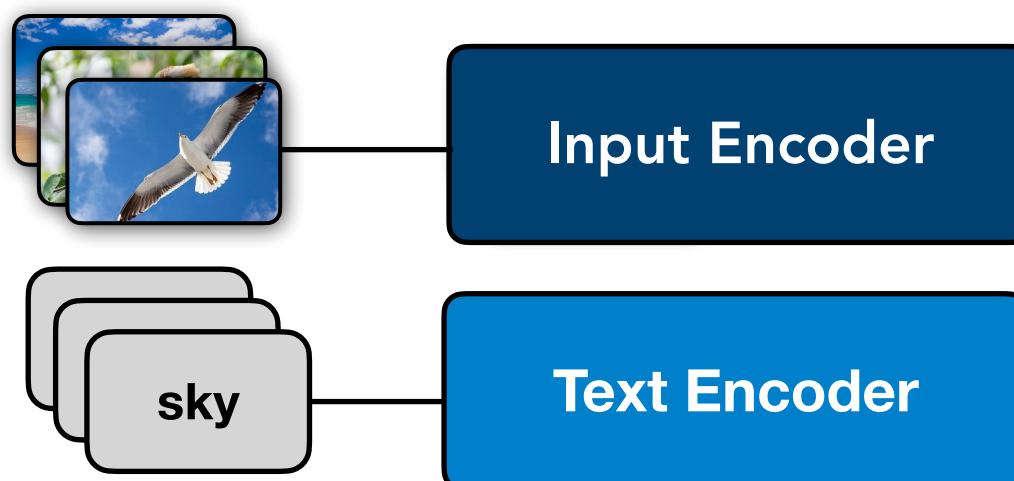
Key Assumption: Access to validation dataset with predictions and ground-truth labels.

Application 1: Discovering Systematic Errors

Domino uses vision-language embeddings to identify and describe systematic prediction errors.

Key Assumption: Access to validation dataset with predictions and ground-truth labels.

1 Embed inputs with vision-language embeddings

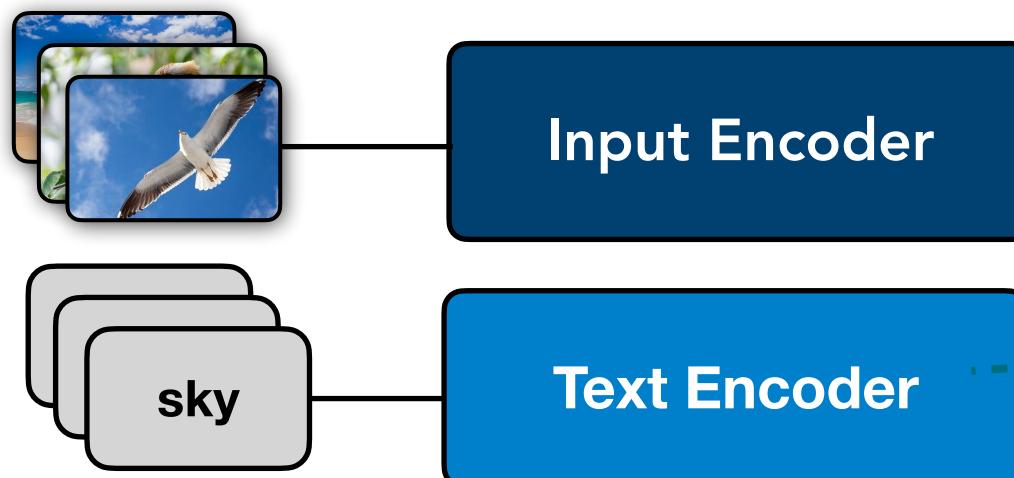
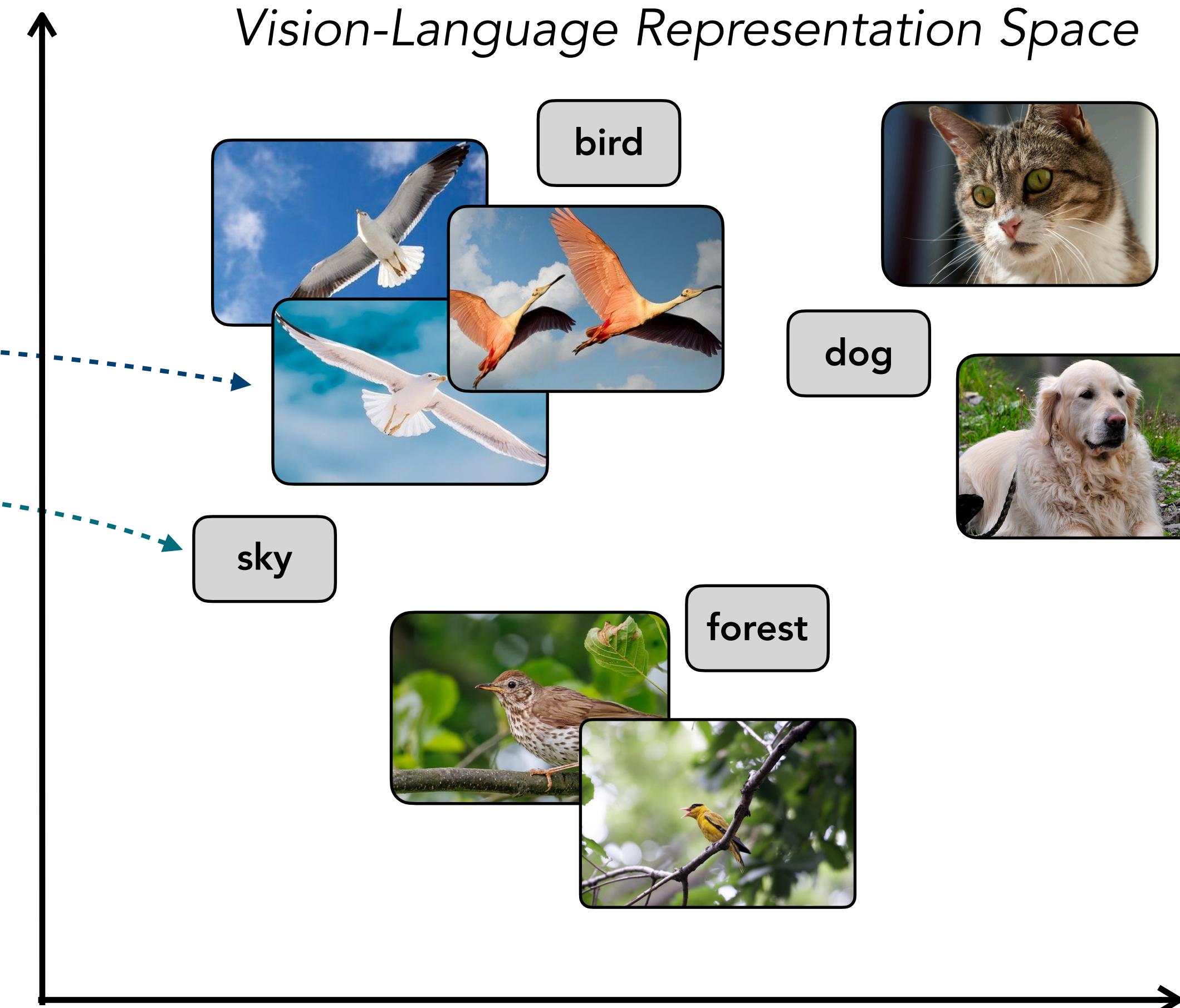


Application 1: Discovering Systematic Errors

Domino uses vision-language embeddings to identify and describe systematic prediction errors.

Key Assumption: Access to validation dataset with predictions and ground-truth labels.

1 Embed inputs with vision-language embeddings

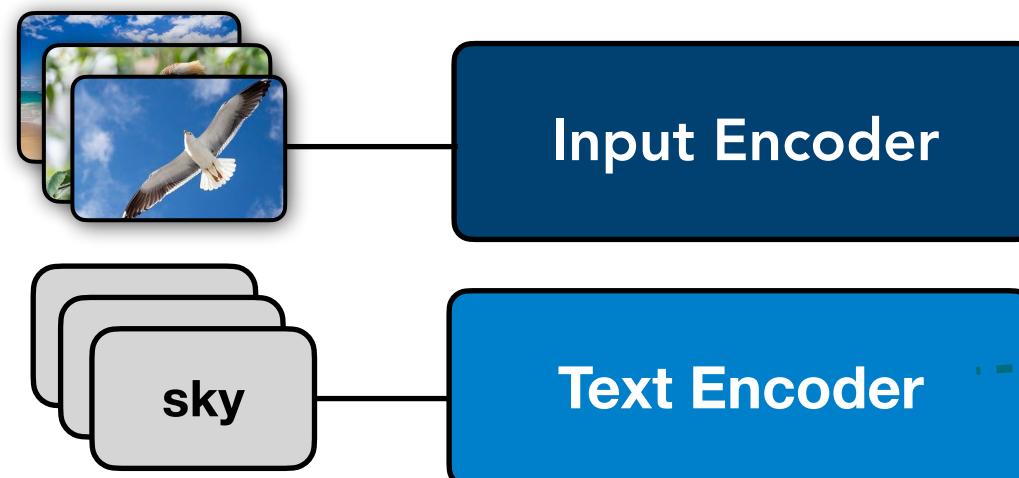


Application 1: Discovering Systematic Errors

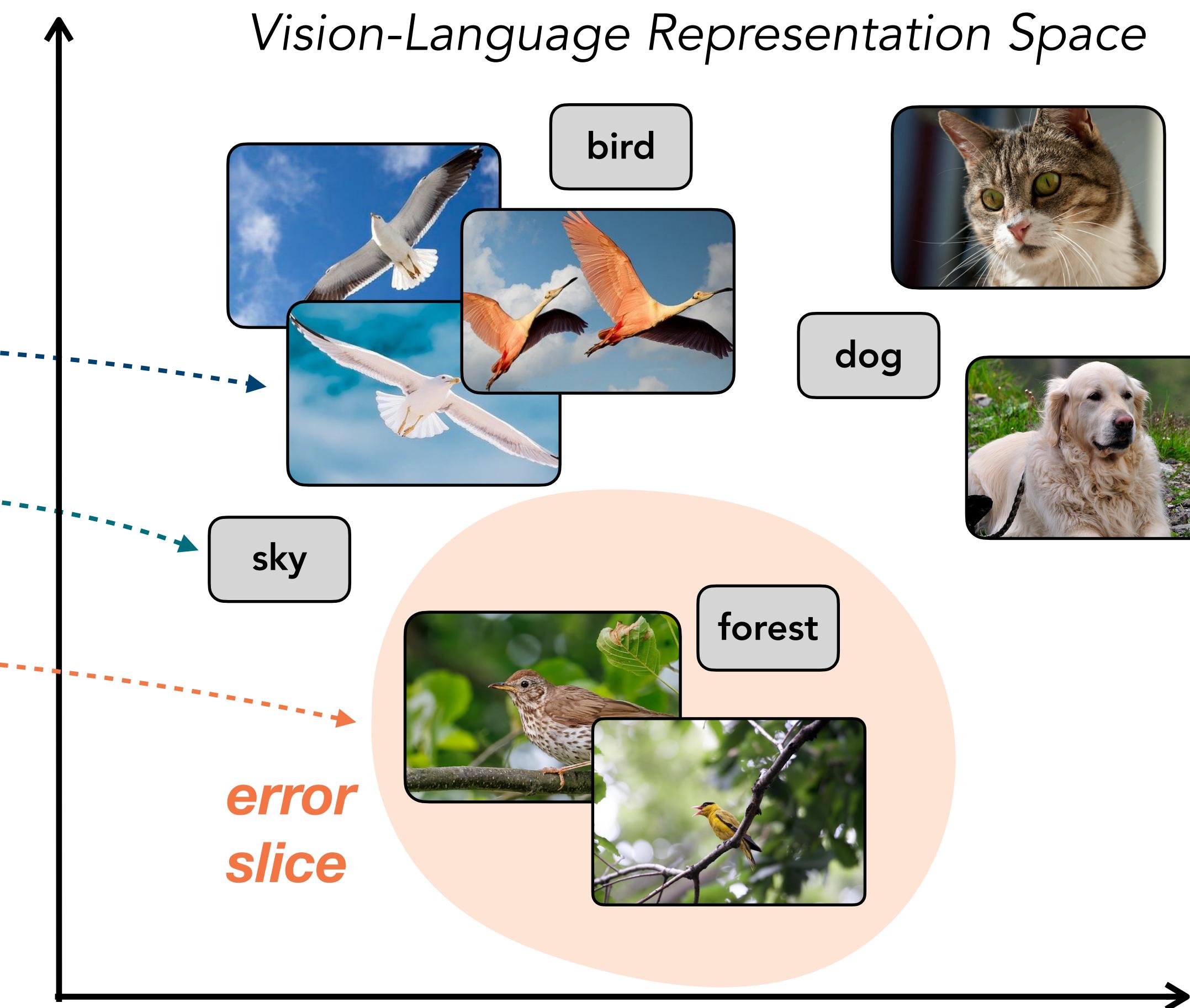
Domino uses vision-language embeddings to identify and describe systematic prediction errors.

Key Assumption: Access to validation dataset with predictions and ground-truth labels.

1 Embed inputs with vision-language embeddings



2 Slice to identify high-error regions

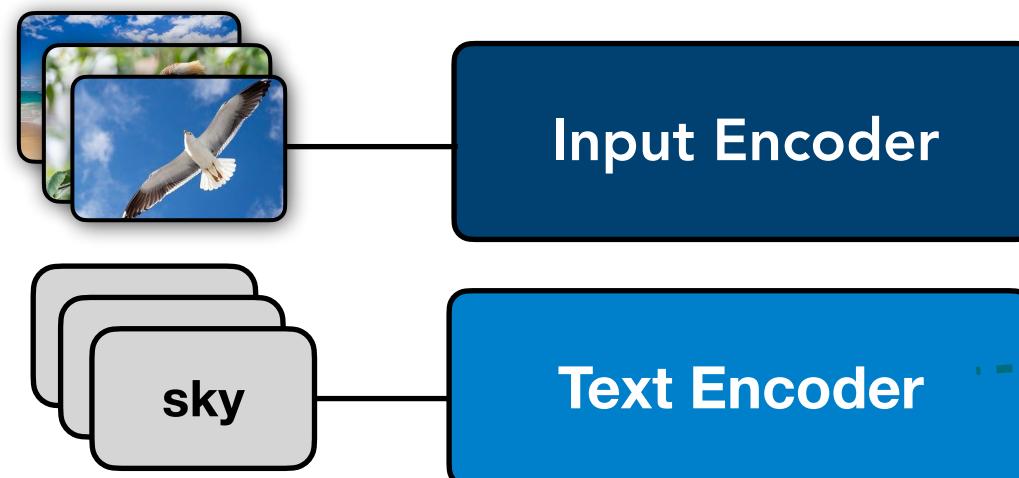


Application 1: Discovering Systematic Errors

Domino uses vision-language embeddings to identify and describe systematic prediction errors.

Key Assumption: Access to validation dataset with predictions and ground-truth labels.

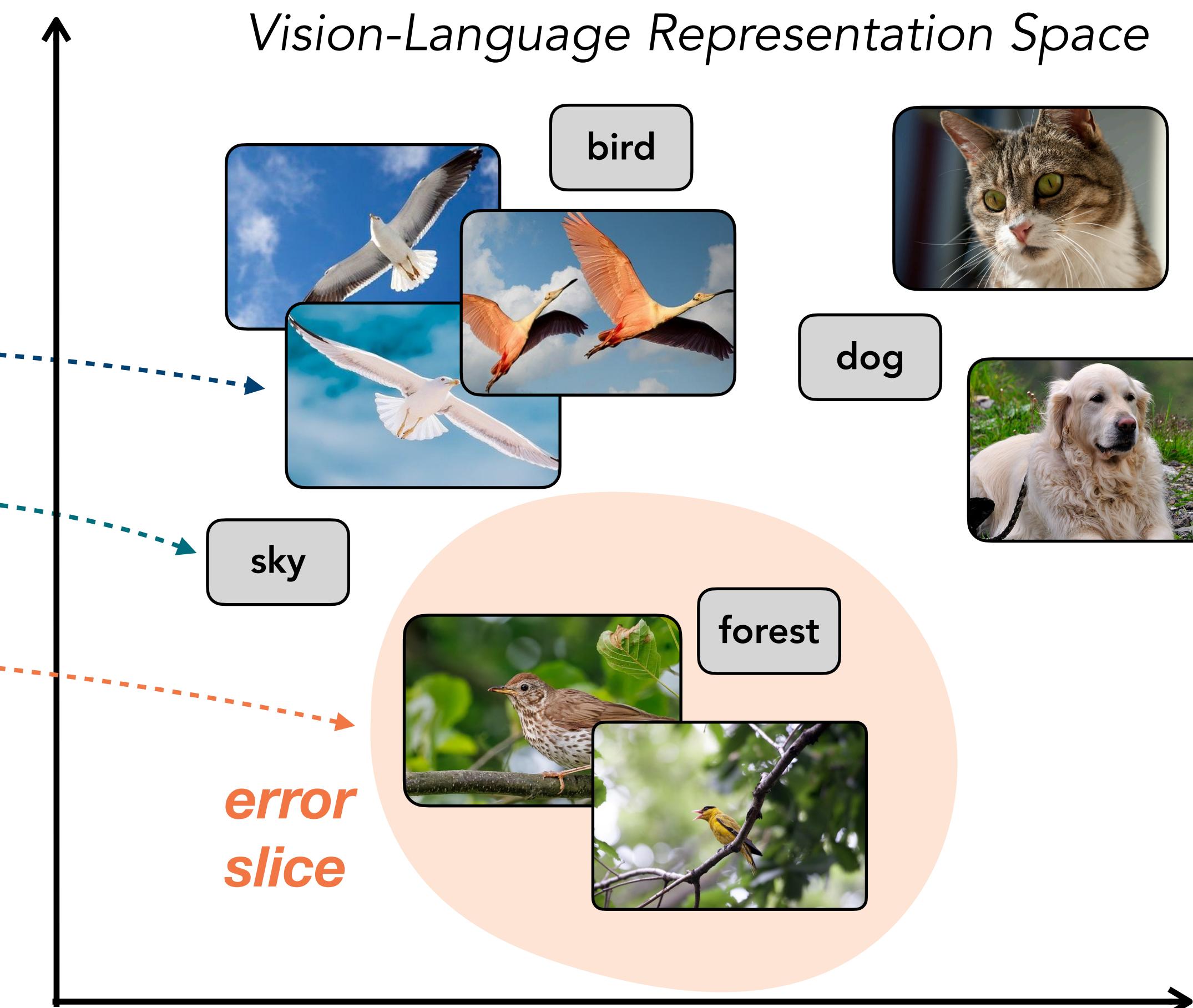
1 Embed inputs with vision-language embeddings



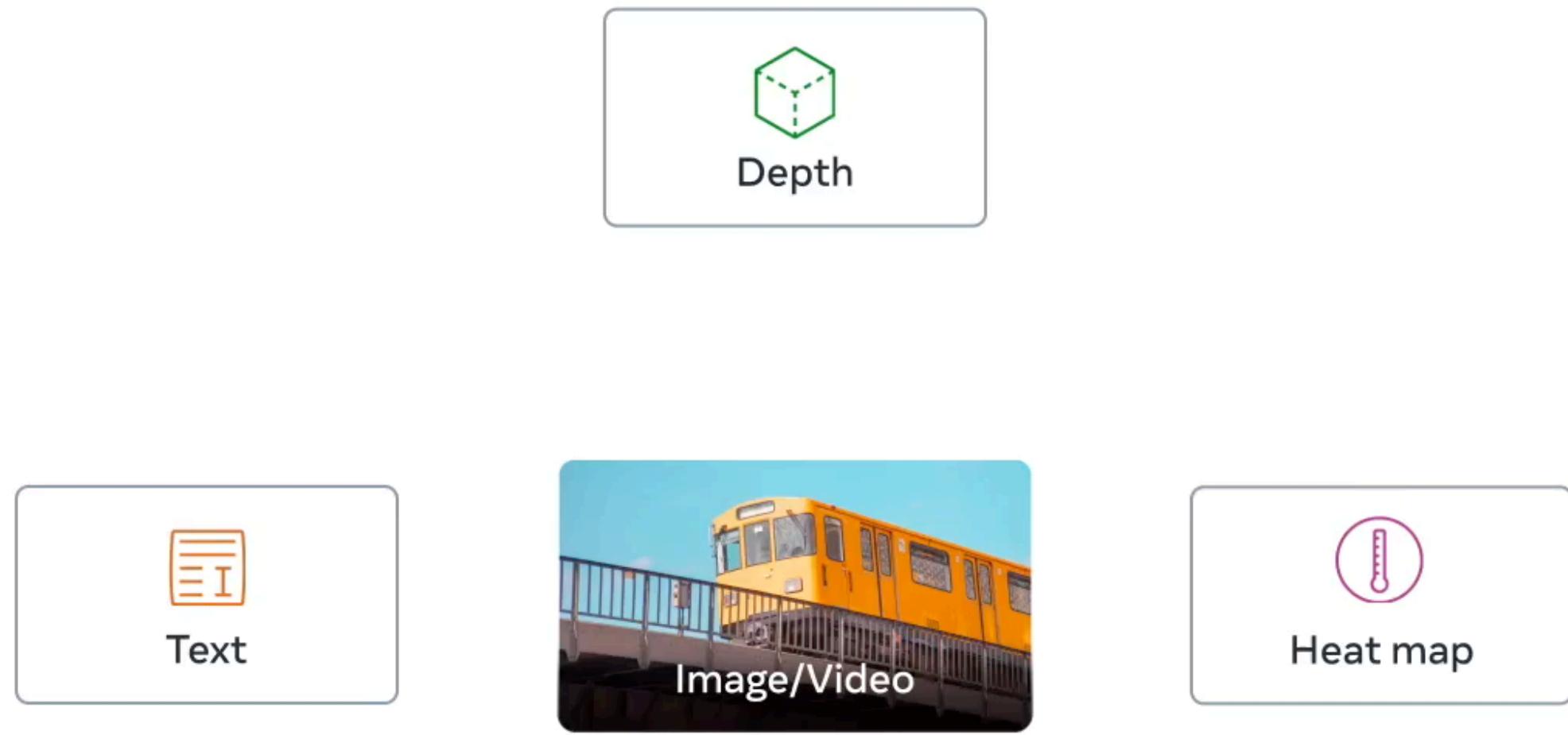
2 Slice to identify high-error regions

3 Describe errors with natural language

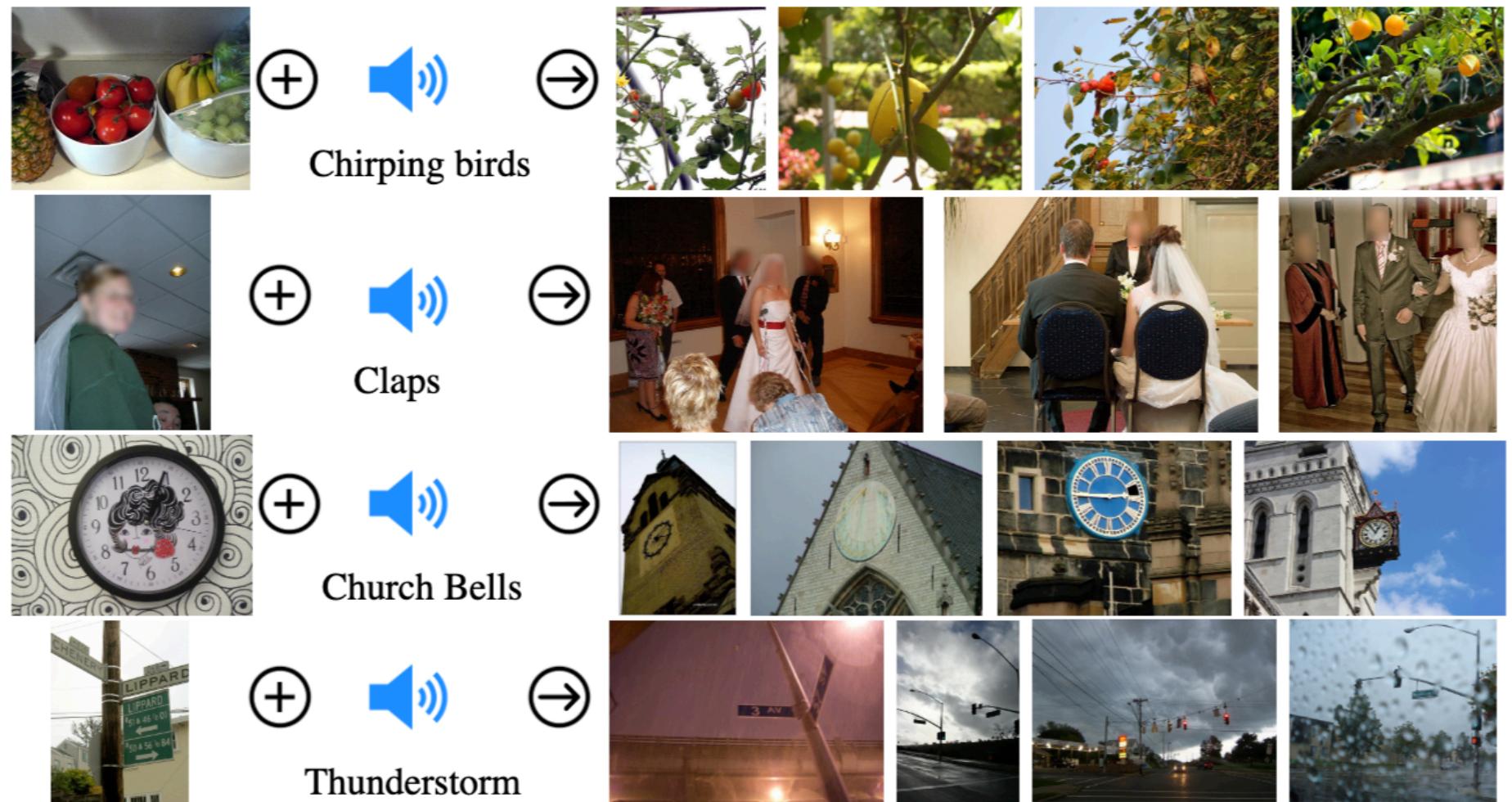
birds in forests



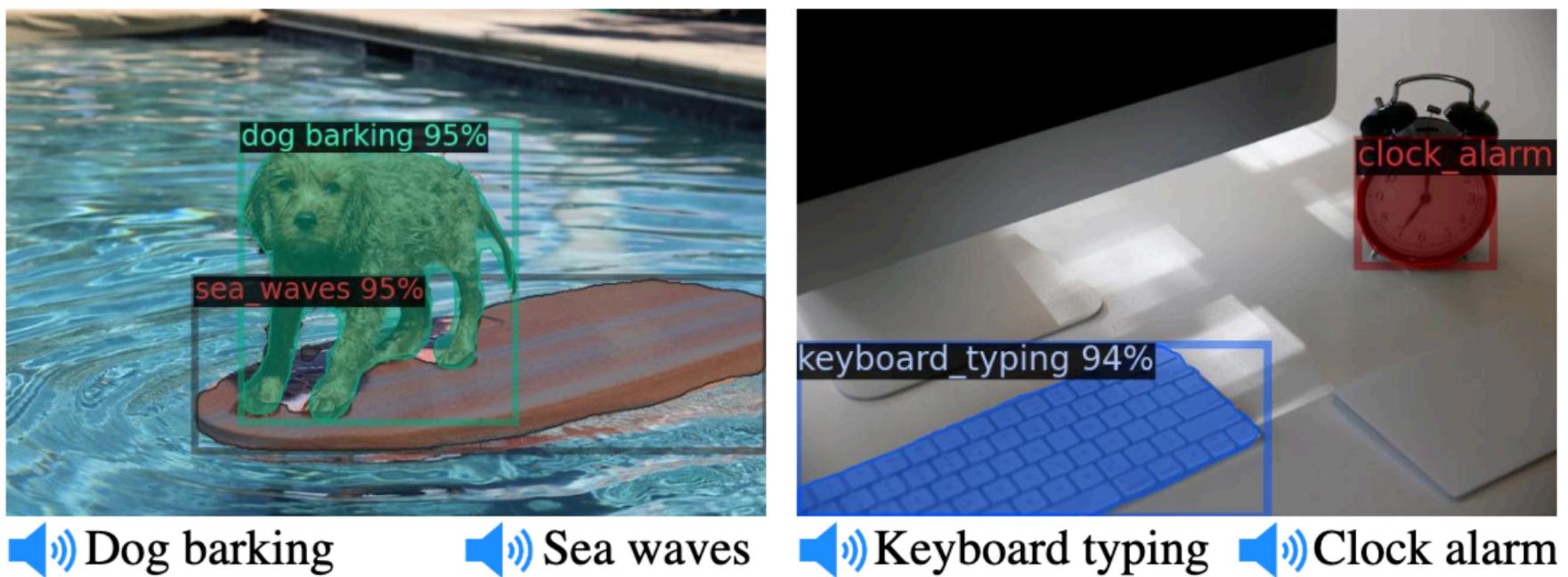
Application 2: Beyond Vision-Language



Embedding Arithmetic with Images and Audio



Object Detection with Audio



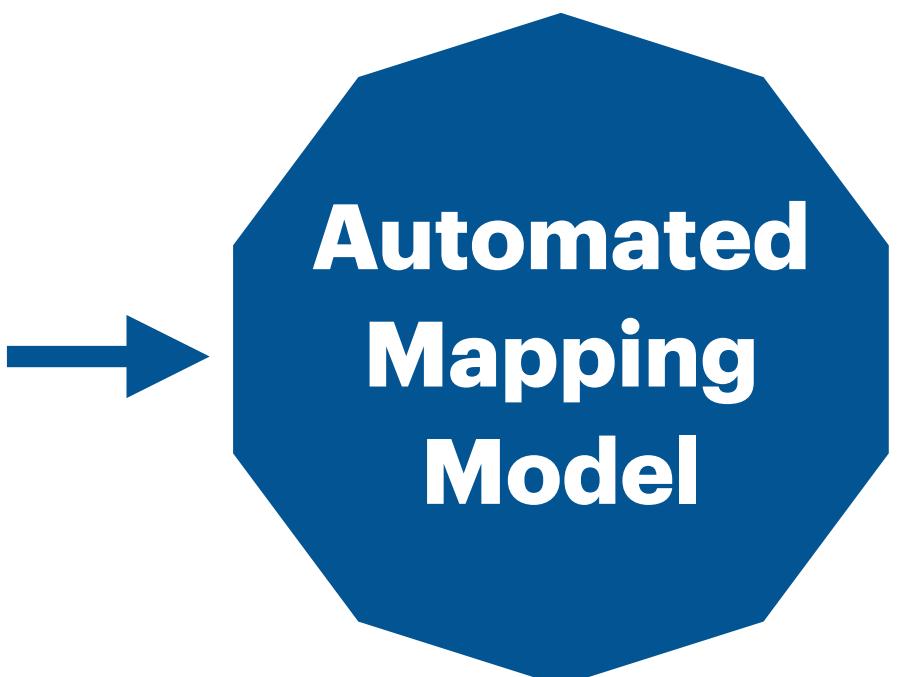
Application 3: Improving Fine-Grained Reasoning

Input

Portable AP chest radiograph. Cardio-mediastinal contours are stable. On the left, there are unchanged areas of basal atelectasis and a moderate left pleural effusion. There is improvement in the pulmonary edema of mid right lung.

Training Stage 1

Goal: Given candidate regions and textual attributes, learn a mapping between these sets.



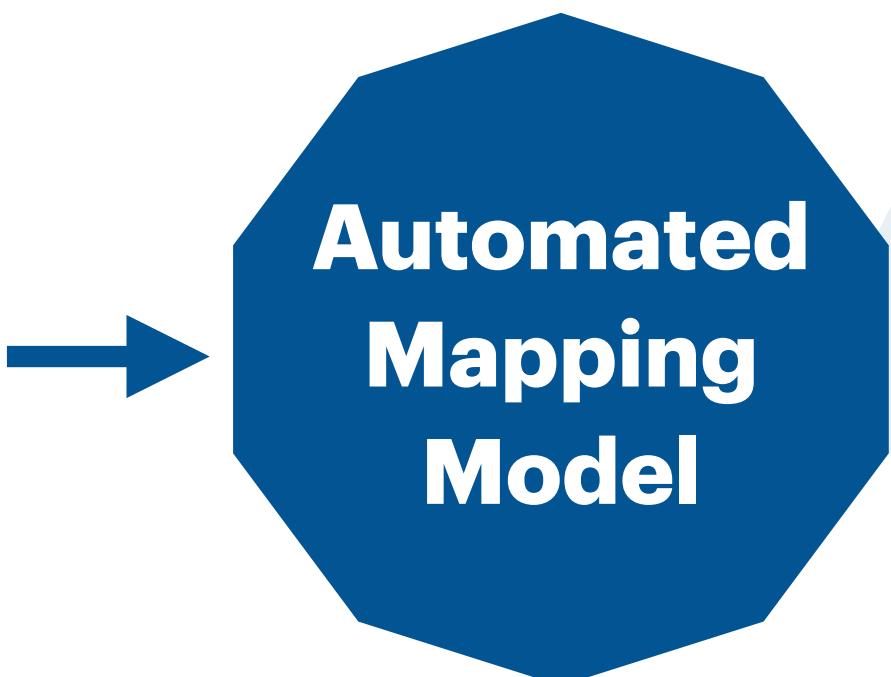
Application 3: Improving Fine-Grained Reasoning

Input

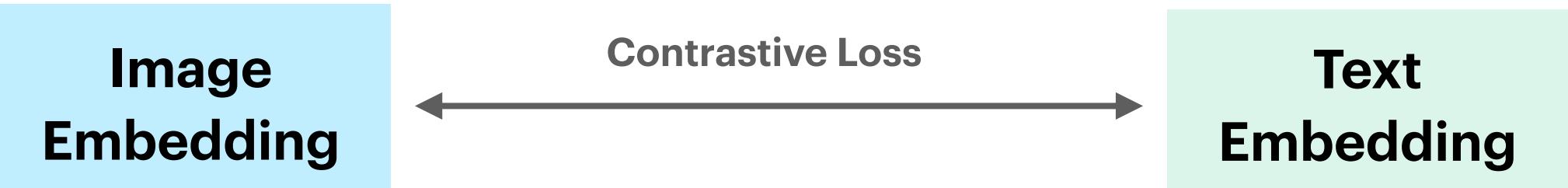
Portable AP chest radiograph. Cardio-mediastinal contours are stable. On the left, there are unchanged areas of basal atelectasis and a moderate left pleural effusion. There is improvement in the pulmonary edema of mid right lung.

Training Stage 1

Goal: Given candidate regions and textual attributes, learn a mapping between these sets.



Standard VLM Training *One-to-One Relationship*



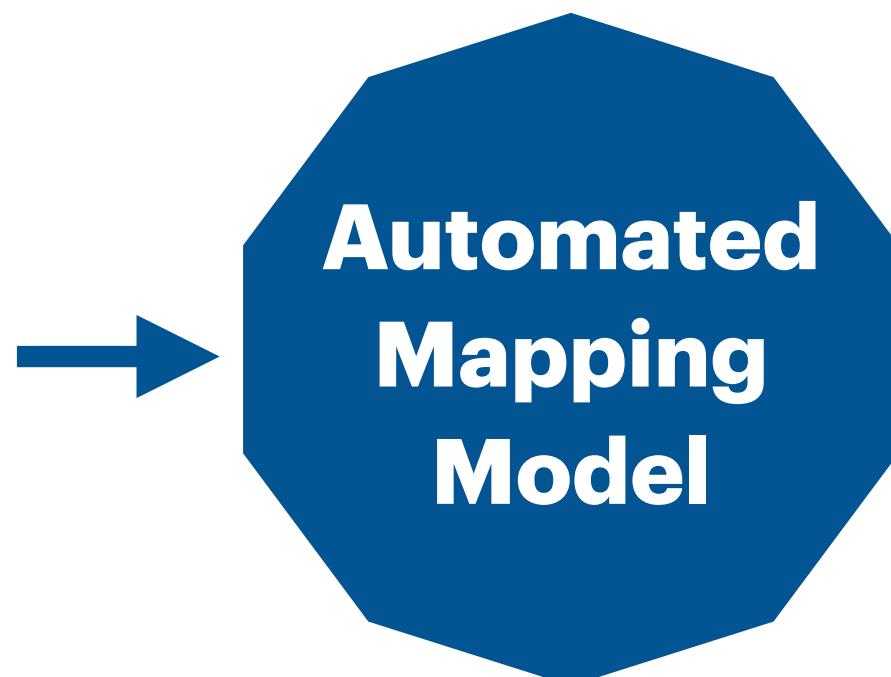
Application 3: Improving Fine-Grained Reasoning

Input

Portable AP chest radiograph. Cardio-mediastinal contours are stable. On the left, there are unchanged areas of basal atelectasis and a moderate left pleural effusion. There is improvement in the pulmonary edema of mid right lung.

Training Stage 1

Goal: Given candidate regions and textual attributes, learn a mapping between these sets.



Standard VLM Training *One-to-One Relationship*

Image Embedding

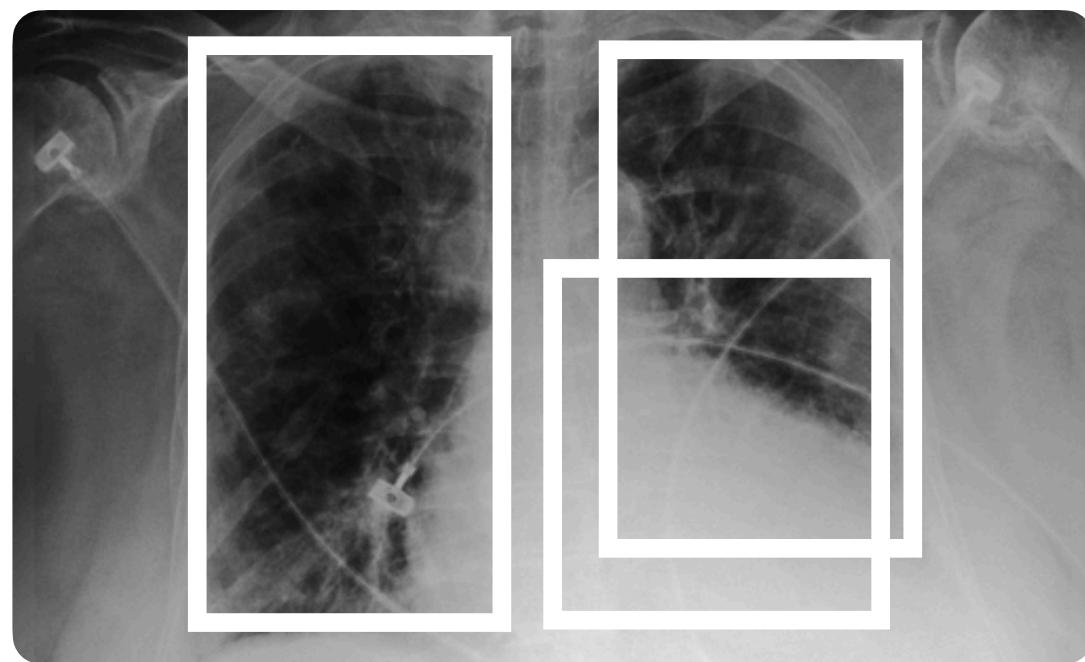
Contrastive Loss

Text Embedding

Our Automated Mapping Model *Many-to-Many Relationship*

Application 3: Improving Fine-Grained Reasoning

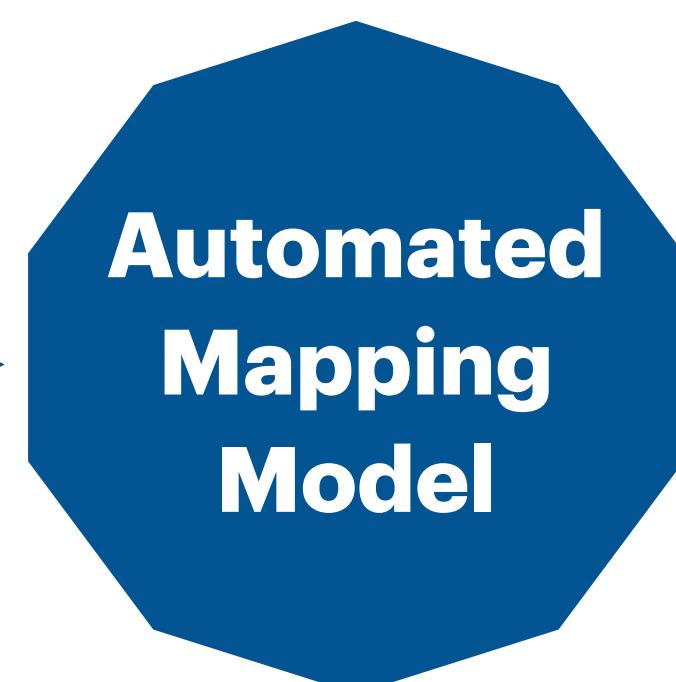
Input



Portable AP chest radiograph. **Cardio-mediastinal contours are stable.** On the left, there are unchanged **areas of basal atelectasis** and a **moderate left pleural effusion**. There is improvement in the **pulmonary edema of mid right lung**.

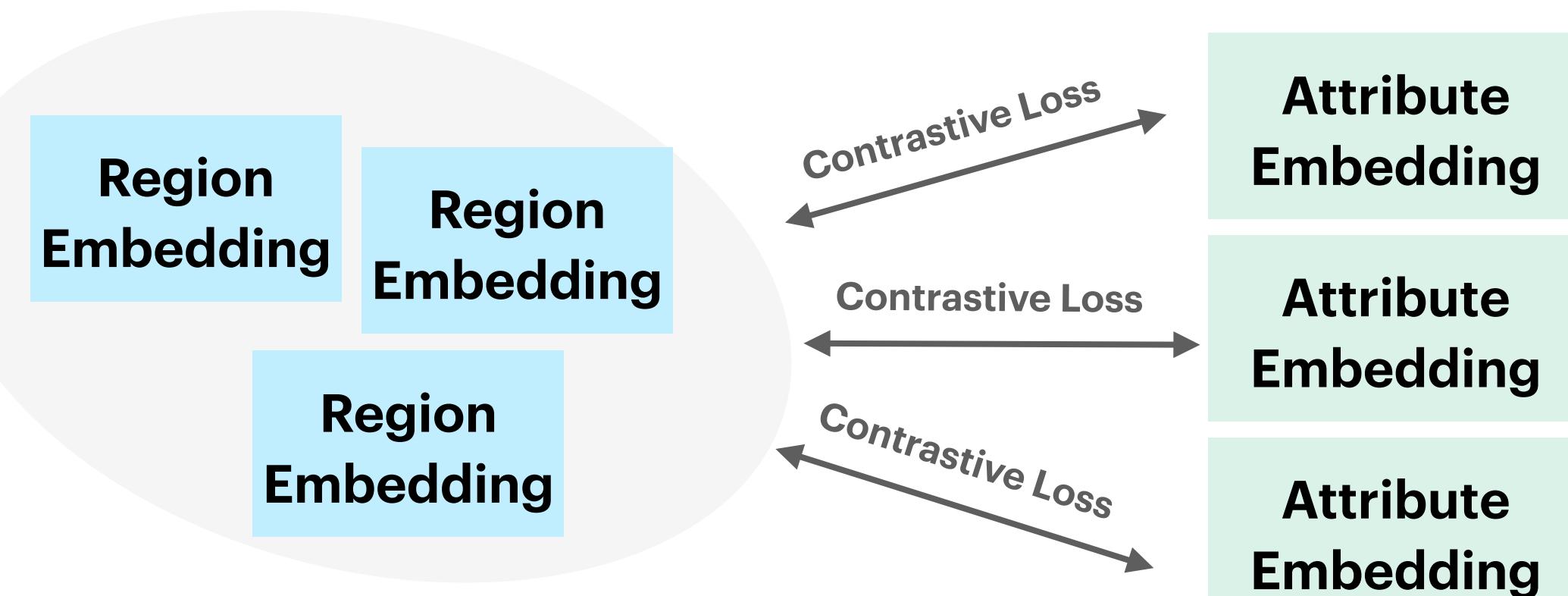
Training Stage 1

Goal: Given candidate regions and textual attributes, learn a mapping between these sets.



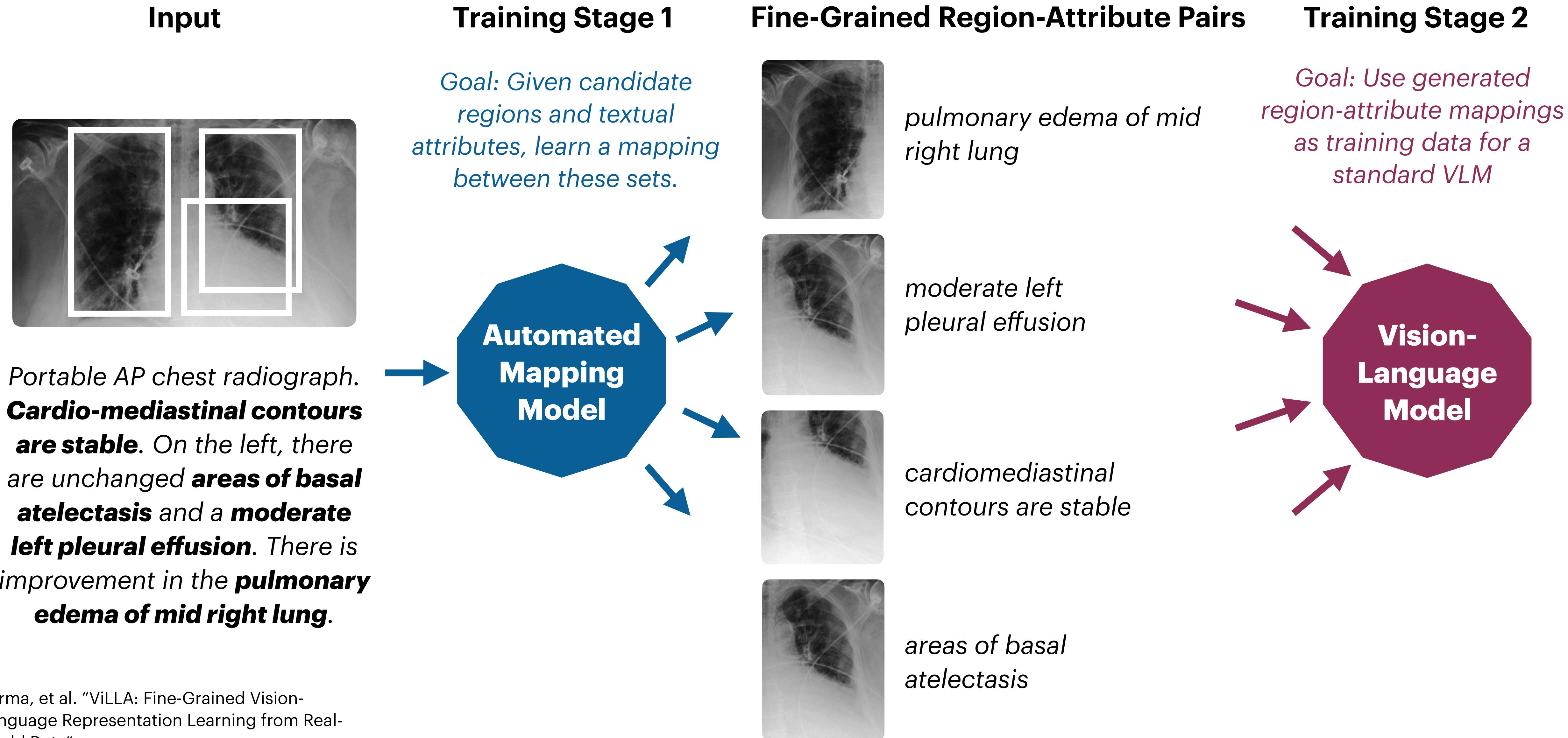
Standard VLM Training *One-to-One Relationship*

Our Automated Mapping Model *Many-to-Many Relationship*



Intuition: Maximum pairwise similarity between region embeddings and each attribute embedding should be **high for positive pairs** and **low for negative pairs**.

Application 3: Improving Fine-Grained Reasoning



Further Reading

3D Vision-Language Representation Learning on Abdominal CTs

Blankemeier et al. “Merlin: A Vision Language Foundation Model for 3D Computed Tomography.” (<https://arxiv.org/abs/2406.06512>)

Extending CLIP to multiple modalities

Saporta et al. “Contrasting with Symile: Simple Model-Agnostic Representation Learning for Unlimited Modalities.” (<https://arxiv.org/abs/2411.01053>)

Adapting CLIP for biomedical data

Zhang et al. “BiomedCLIP: a multimodal biomedical foundation model pretrained from fifteen million scientific image-text pairs.” (<https://arxiv.org/abs/2303.00915>)

Questions?