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Part 1: Pretraining Methods



Data is often inherently multimodal



Can we use language to improve visual representation learning?

Data is often inherently multimodal

Pros

➡ Text is widely available 

➡ Text can provide a form of supervision 
signal. No need for labels!

Cons

➡ Text may not always be available 

➡ Text quality may be highly variable
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Contrastive Language-Image Pretraining (CLIP)
Key Idea: Maximize the similarity between true image-text embedding pairs and 

minimize similarity between mismatched image-text embedding pairs

Radford et al. "Learning Transferable Visual Models From Natural Language Supervision”
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Softmax Function
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OpenCLIP

Ilharco et al. “OpenCLIP” 
Cherti et al. “Reproducible scaling laws for contrastive language-image learning”



ConVIRT
Key Idea: Maximize the similarity between true image-text embedding pairs and 

minimize similarity between mismatched image-text embedding pairs

Zhang et al. "Contrastive Learning of Medical Visual Representations from Paired Images and Text”

Image 
Embedding

Text 
Embedding

Text 
Encoder 

(BERT)

Image 
Encoder 

(ResNet50)



Considerations for CLIP

Batch with N 
image-caption 

pairs

A dog sitting in a 
field

Q: What is the most 
important hyperparameter  

when training CLIP?

A: Batch Size!
CLIP uses a batch size of 32,768 

(trained on up to 592 V100 GPUs)

Can we reduce the need for massive batch sizes?



Negative Image-Text PairsPositive Image-Text Pairs

CLIP Objective: InfoNCE Loss Function

Softmax Function

Batch with N 
image-caption 

pairs

A dog sitting in a 
field

SigLIP Objective: Sigmoid Loss Function

Sigmoid Function
zik = 1 for positive image-text pairs (i.e. k=j)

zik = -1 for negative image-text pairs (i.e. k!=j)

SigLIP: Sigmoid Loss for Language Image Pre-Training

Zhai et al.  Sigmoid Loss for Language Image Pre-Training. ICCV 2023.



SigLIP: Sigmoid Loss for Language Image Pre-Training

Advantages

➡ SigLIP outperforms CLIP at smaller batch sizes 

➡ SigLIP is more memory-efficient than CLIP → avoids materializing a |B| x |B| matrix.



Part 2: Data



General-Domain Data: LAION-5B
LAION-5B contains 5 billion image-text pairs obtained from CommonCrawl

Schumann et al. “LAION-5B: An open large-scale dataset for training next generation image-text models”
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General-Domain Data: LAION-5B
LAION-5B contains 5 billion image-text pairs obtained from CommonCrawl

Content filtering is performed using a pre-trained CLIP model  
(i.e. by computing cosine similarity between the image and text embeddings)

Schumann et al. “LAION-5B: An open large-scale dataset for training next generation image-text models”



Medical-Domain Data
MIMIC-CXR

370k chest X-rays with 
220k reports

Cardiac size cannot be 
evaluated. Large left 

pleural effusion is new. 
Small right effusion is 
new. The upper lungs are 

clear. There is no 
pneumothorax.

Quilt-1M

Large histiocytes with 
abundant cytoplasm 

identified as Rosai-
Dorfman histiocytes

1M histopathology image-
text pairs (Youtube)

cambi pulmonar cronic 
sever. sign fibrosis 

bibasal. sutil infiltr 
pseudonodul milimetr vidri 

deslustr localiz bas. 
cifosis sever

PadChest
160k chest X-rays with 
110k reports (Spanish)

Johnson et al. “MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports.” 
Bustos et al. “PadChest: A large chest x-ray image dataset with multi-label annotated reports” 
Ikezogwo et al. “Quilt-1M: One Million Image-Text Pairs for Histopathology”  
Huang et al. “A visual-language foundation model for pathology image analysis using medical Twitter”

OpenPath
200k histopathology 

image-text pairs (Twitter)



Part 3: Evaluation



Evaluating VLMs

Image 
Embedding

Image 
Encoder 

Let’s consider a standard classification setup for a vision model

Classification 
Layers

softmax

0.90 dog

0.08 cat

0.02 fish

Q: What is undesirable about this approach?

➡ Classification layers need to be trained on an annotated dataset. 

➡ Labels are fixed. Changing the labels requires retraining classification layers. 
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Evaluating VLMs

Text → Image Retrieval
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Encoder
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Image Embedding 1

Image Embedding 2

Image Embedding 3
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between the image and text embeddings

Text 
Embedding



Prompting VLMs
Textual Prompts Visual Prompts

Example text prompts used by CLIP for zero-
shot classification on CIFAR-10

Adding visual signal to images can help with 
targeted retrieval and classification

Radford et al. "Learning Transferable Visual Models From Natural Language Supervision” 
Shtedritski et al. “What does CLIP know about a red circle? Visual prompt engineering for VLMs”



Evaluating Medical VLMs
Classification

Segmentation

Zero-Shot Classification Visual Grounding

Text to Image Retrieval Natural Language Inference

No pneumothorax is seen

Previously-seen pneumothorax is no 
longer visualized

Sentence 1: 

Sentence 2: 

Type: Entailment

Miura et al. “RadNLI: A natural language inference dataset for the radiology domain” 
Zhang et al. "Contrastive Learning of Medical Visual Representations from Paired Images and Text” 
Huang et al. “A visual-language foundation model for pathology image analysis using medical Twitter”

Tiu et al. “Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learning” 
Boecking et al. “Making the Most of Text Semantics to Improve Biomedical Vision–Language Processing”



Part 4: Limitations



Limitations: Contrastive Training
Complex Patterns (e.g. counting) Relational Understanding

Image-to-Text 
Retrieval

Paiss et al. “Teaching CLIP to Count to Ten” 
Yuksekgonul et al. “When and Why Vision-Language Models Behave Like Bags-of-Words and What to Do About it?”



Limitations: Domain-Specific Challenges
Fine-Grained Visual Information Lengthy and Complex Text

Chen*, Varma*, et al. “Toward Expanding the Scope of Radiology Report Summarization to Multiple Anatomies and Modalities"



Part 5: Applications



Application 1: Discovering Systematic Errors
Computer vision models often demonstrate high overall performance…

…yet make systematic errors on specific data subgroups

Classification Performance 
on Class “bird”: 0.95 

Classification Performance 
on subgroup with blue skies: 

 0.98

Classification Performance  
on subgroup with forest backgrounds: 

 0.32



Application 1: Discovering Systematic Errors
Computer vision models often demonstrate high overall performance…

…yet make systematic errors on specific data subgroups

Classification Performance: 0.87 

Classification Performance on 
subgroup with chest tubes: 

 0.94

Classification Performance  
on subgroup without chest tubes: 

 0.77

Oakden-Rayner et al. “Hidden Stratification Causes Clinically Meaningful Failures in Machine Learning for Medical Imaging”

Key Challenge: 
Subgroups are not 

labeled!



Eyuboglu*, Varma*, Saab*, et al. “Domino: Discovering Systematic Errors with Cross-Modal Embeddings”

Application 1: Discovering Systematic Errors
Domino uses vision-language embeddings to identify and describe 

systematic prediction errors.
Key Assumption: Access to validation dataset with 
predictions and ground-truth labels.
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Eyuboglu*, Varma*, Saab*, et al. “Domino: Discovering Systematic Errors with Cross-Modal Embeddings”

Application 1: Discovering Systematic Errors
Domino uses vision-language embeddings to identify and describe 

systematic prediction errors.
Key Assumption: Access to validation dataset with 
predictions and ground-truth labels.

1 Embed inputs with vision-language embeddings

Input Encoder

Text Encoder
green

greensky

forest

Vision-Language Representation Space

bird

dog

sky

Slice to identify high-error regions2

error     
sliceDescribe errors with natural language3

birds in forests



Application 2: Beyond Vision-Language

Girdhar et al. “ImageBind: One Embedding Space to Bind them All”
Animation from https://imagebind.metademolab.com/

Embedding Arithmetic with Images and Audio

Object Detection with Audio
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Language Representation Learning from Real-
World Data”
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Intuition: Maximum pairwise similarity between region embeddings and each attribute 
embedding should be high for positive pairs and low for negative pairs.

Intuition:

Application 3: Improving Fine-Grained Reasoning

Varma, et al. “ViLLA: Fine-Grained Vision-
Language Representation Learning from Real-
World Data”
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Fine-Grained Region-Attribute Pairs

pulmonary edema of mid 
right lung

moderate left 
pleural effusion 

areas of basal 
atelectasis

cardiomediastinal 
contours are stable

Training Stage 2

Vision-
Language  

Model

Goal: Use generated 
region-attribute mappings 

as training data for a 
standard VLM

Application 3: Improving Fine-Grained Reasoning

Varma, et al. “ViLLA: Fine-Grained Vision-
Language Representation Learning from Real-
World Data”



Further Reading
3D Vision-Language Representation Learning on Abdominal CTs

Extending CLIP to multiple modalities

Adapting CLIP for biomedical data

Zhang et al. “BiomedCLIP: a multimodal biomedical foundation model pretrained 
from fifteen million scientific image-text pairs.” (https://arxiv.org/abs/2303.00915) 

Saporta et al. “Contrasting with Symile: Simple Model-Agnostic Representation 
Learning for Unlimited Modalities.” (https://arxiv.org/abs/2411.01053)

Blankemeier et al. “Merlin: A Vision Language Foundation Model for 3D 
Computed Tomography.” (https://arxiv.org/abs/2406.06512)

https://arxiv.org/abs/2303.00915
https://arxiv.org/abs/2411.01053
https://arxiv.org/abs/2406.06512


Questions?


