

Generative AI for Synthesizable Antibiotic Design

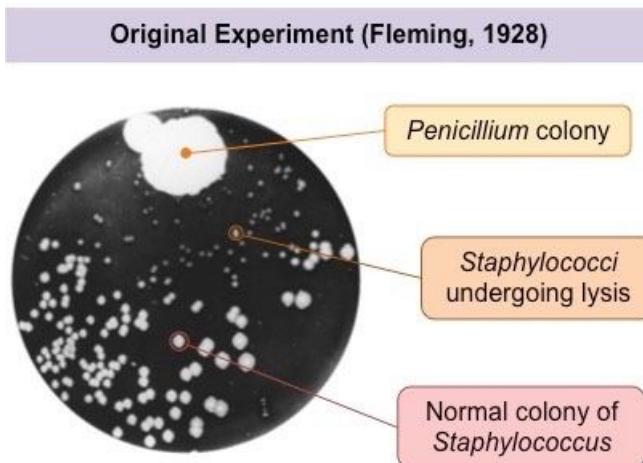
Kyle Swanson, Gary Liu, Denise Catacutan, Autumn Arnold,
James Zou, Jonathan Stokes

Brief history of antibiotics

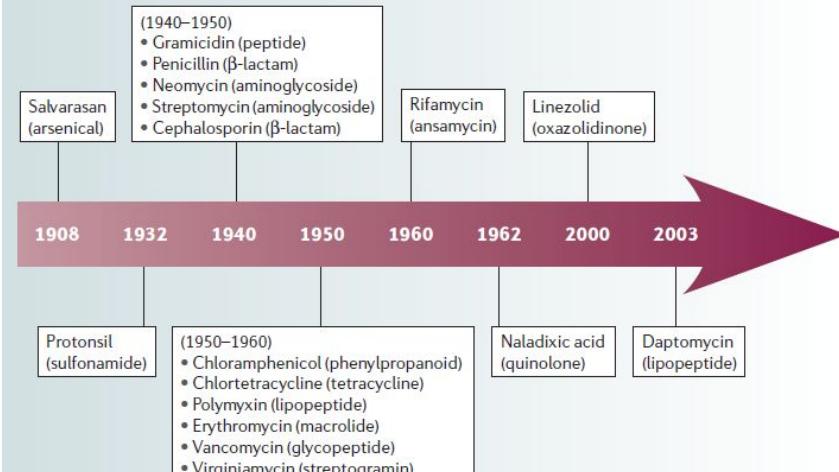
1928: Alexander Fleming discovers penicillin

1940-60: Many new antibiotics discovered

1960-now: Few structurally novel antibiotics



Timeline | Antibiotic drug discovery



The class of the antibiotic is shown in brackets.

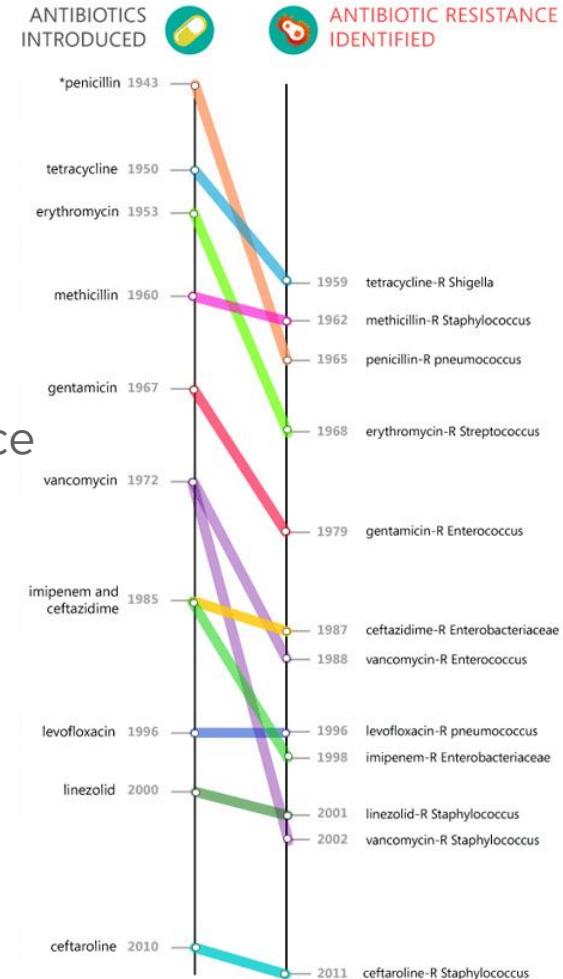
Drug resistant bacteria

Bacteria develop resistance to antibiotics

2019: 1.27 million people likely died from antibiotic resistance

2050: 10 million people may die from resistance annually

Takeaway: We need new antibiotics!

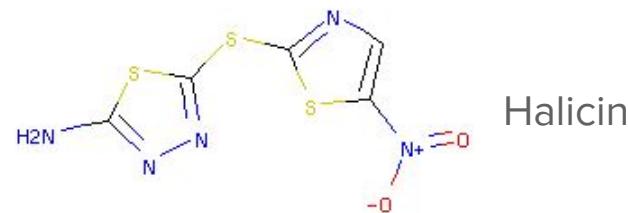


Property prediction

[A Deep Learning Approach to Antibiotic Discovery](#), Stokes, et al., *Cell*, 2020

Train GNN on 2.5K molecules with known *E. coli* inhibition (5% active)

Property prediction

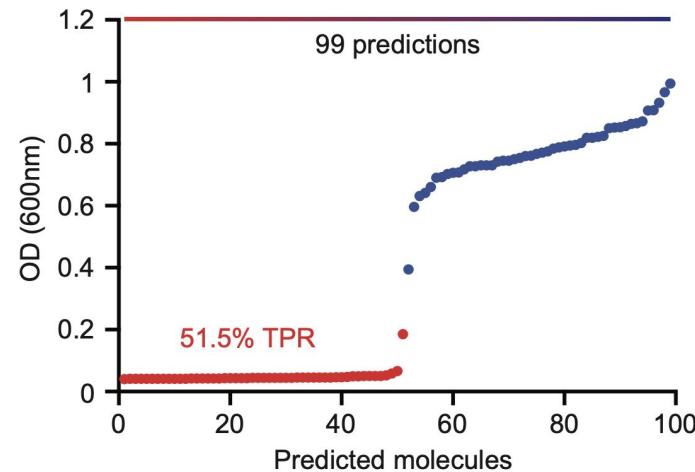


[A Deep Learning Approach to Antibiotic Discovery](#), Stokes, et al., *Cell*, 2020

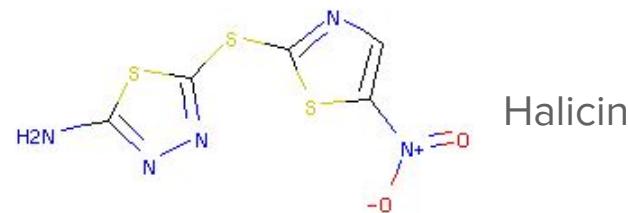
Train GNN on 2.5K molecules with known *E. coli* inhibition (5% active)

Predict on 6K molecules

- 51.5% active among top 99 predictions
- Halicin targets multi-drug resistant bacteria



Property prediction



[A Deep Learning Approach to Antibiotic Discovery](#), Stokes, et al., *Cell*, 2020

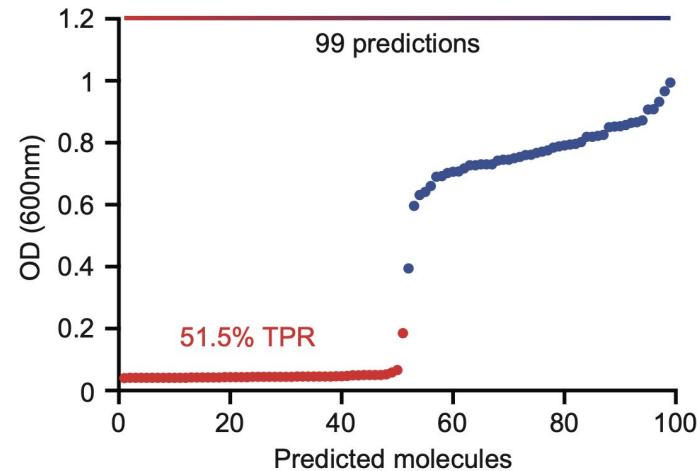
Train GNN on 2.5K molecules with known *E. coli* inhibition (5% active)

Predict on 6K molecules

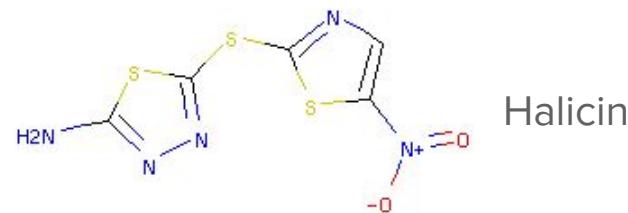
- 51.5% active among top 99 predictions
- Halicin targets multi-drug resistant bacteria

Predict on 107M molecules

- 4 days of computation
- 8 structurally novel antibiotics among top 23



Property prediction



[A Deep Learning Approach to Antibiotic Discovery](#), Stokes, et al., *Cell*, 2020

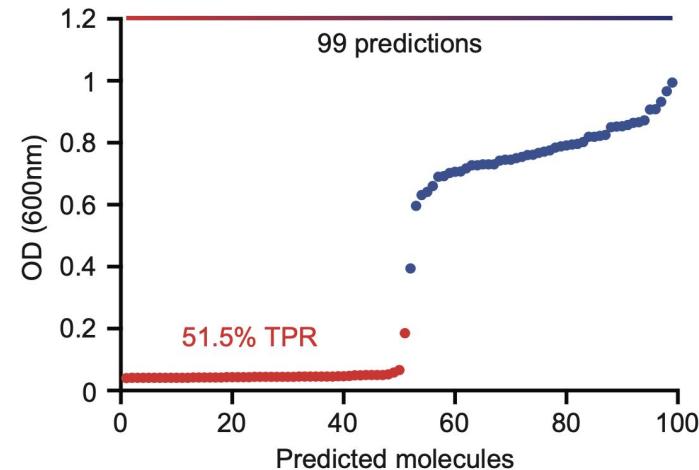
Train GNN on 2.5K molecules with known *E. coli* inhibition (5% active)

Predict on 6K molecules

- 51.5% active among top 99 predictions
- Halicin targets multi-drug resistant bacteria

Predict on 107M molecules

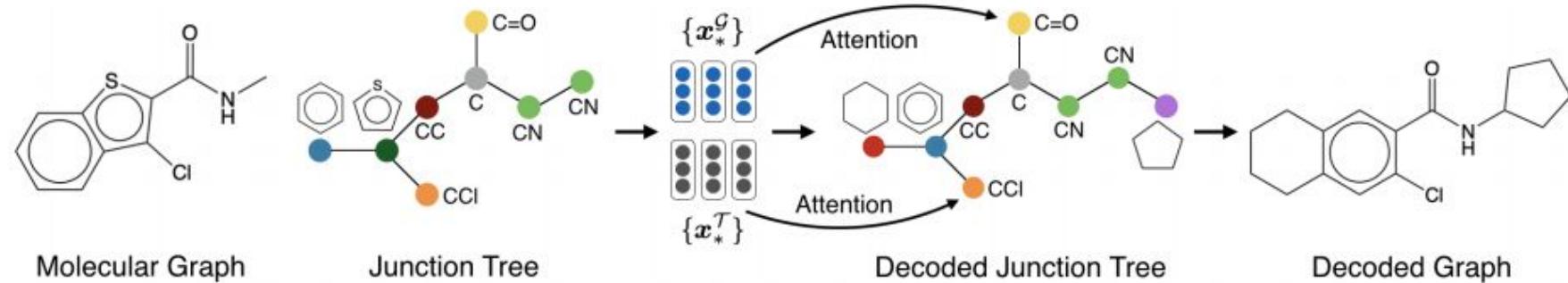
- 4 days of computation
- 8 structurally novel antibiotics among top 23



Limitation: No intelligent search \Rightarrow scales poorly to larger chemical spaces

Generative models

Model: Generative models directly design molecules with desirable properties



Benefit: Rapid design of good molecules without slow search

Limitation: Generated molecules are difficult to synthesize \Rightarrow practically useless

Synthesis-aware generative model

Goals

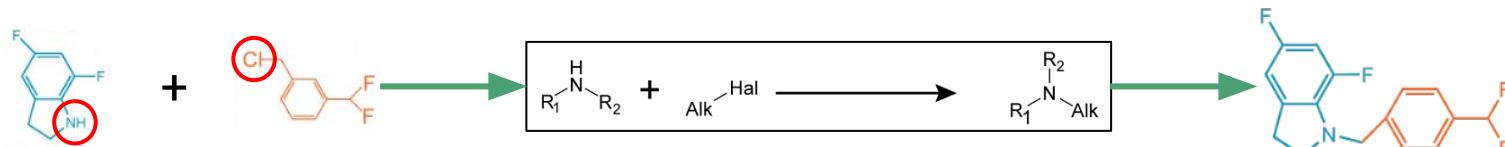
- 1) Build a generative model that guarantees synthesizability
- 2) Generate, synthesize, and experimentally validate generated molecules

Synthesis-aware generative model

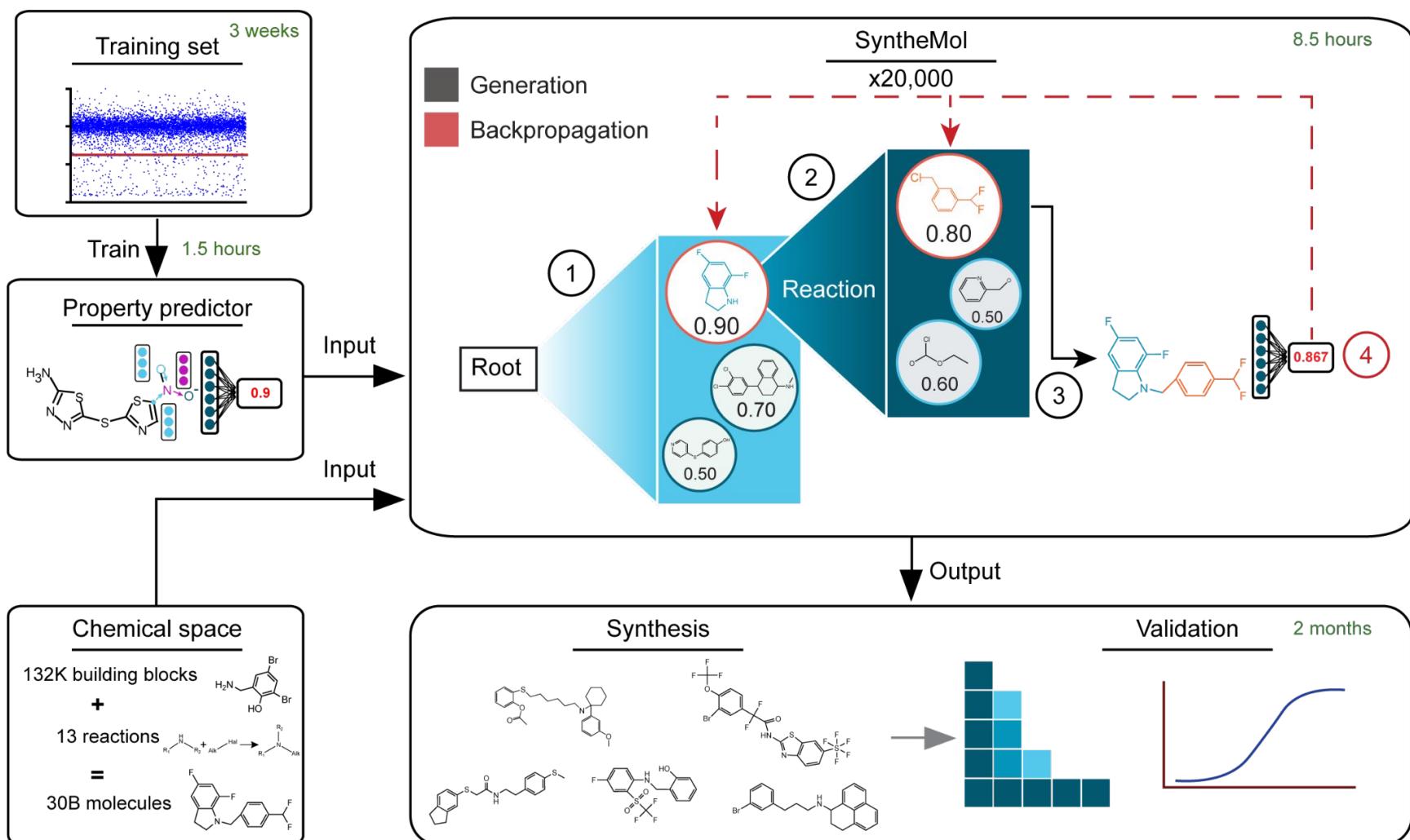
Goals

- 1) Build a generative model that guarantees synthesizability
- 2) Generate, synthesize, and experimentally validate generated molecules

Idea: Design molecules with off-the-shelf building blocks + easy chemical reactions



Application: Generate structurally novel antibiotics



Training set

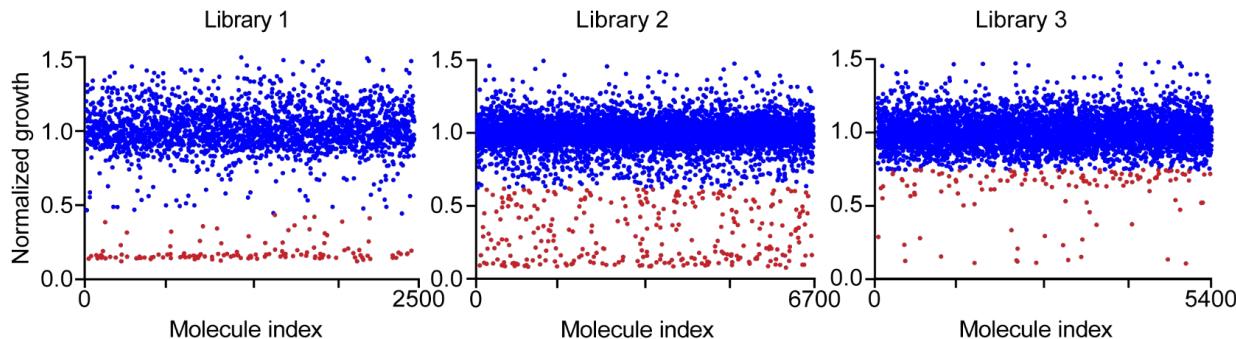
Target: *A. baumannii*

3 libraries

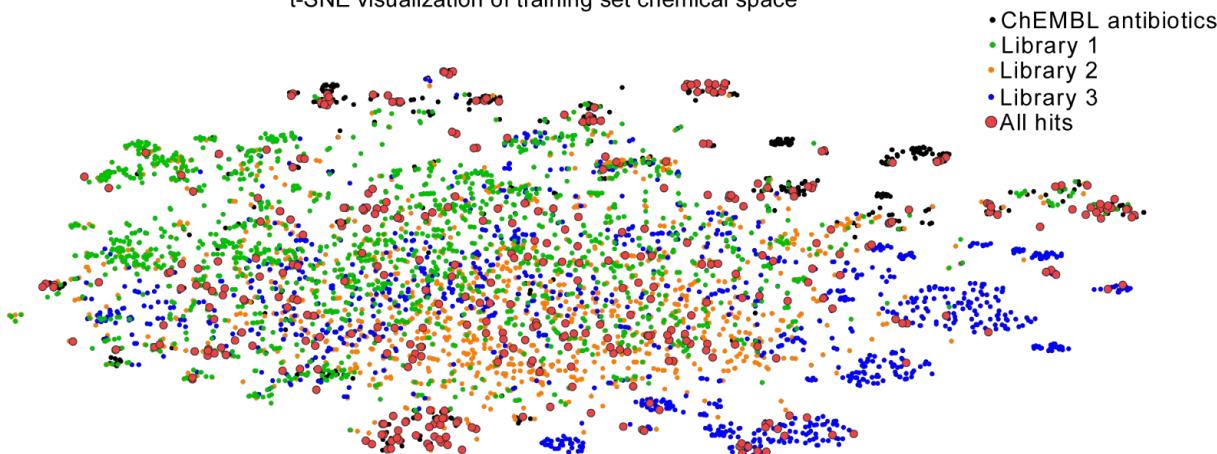
- 2 drug repurposing
- 1 synthetic compounds

13,524 molecules

- 470 active
- 13,054 inactive



t-SNE visualization of training set chemical space



Property predictor

Three models

1) Chemprop

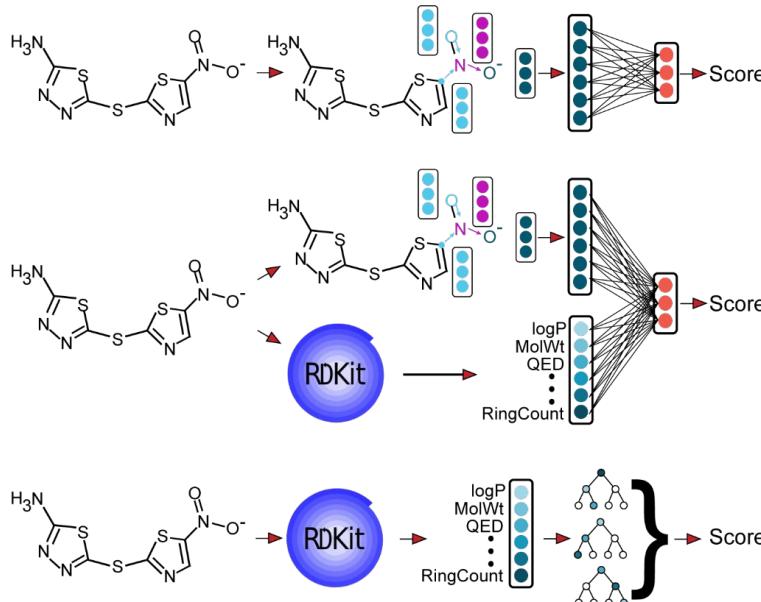
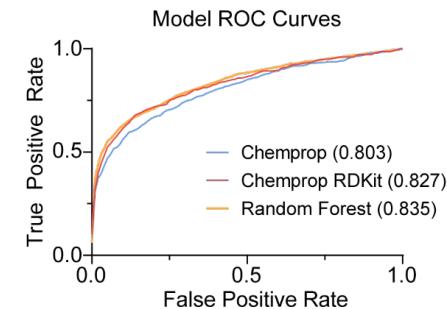
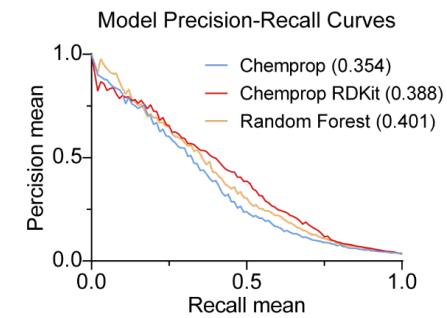
a) GNN

2) Chemprop RDKit

a) GNN + 200 features

3) Random Forest

a) RF on 200 features

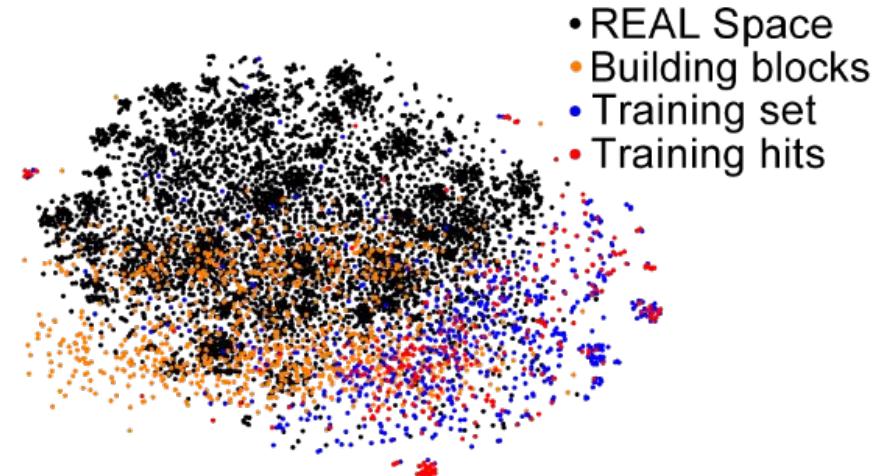


Performance: ROC-AUC = 0.80–0.84 and PRC-AUC = 0.35–0.40 on 10-fold CV

Chemical space

Enamine REAL Space: 31 billion molecules

- 138,000 building blocks
- 169 chemical reactions

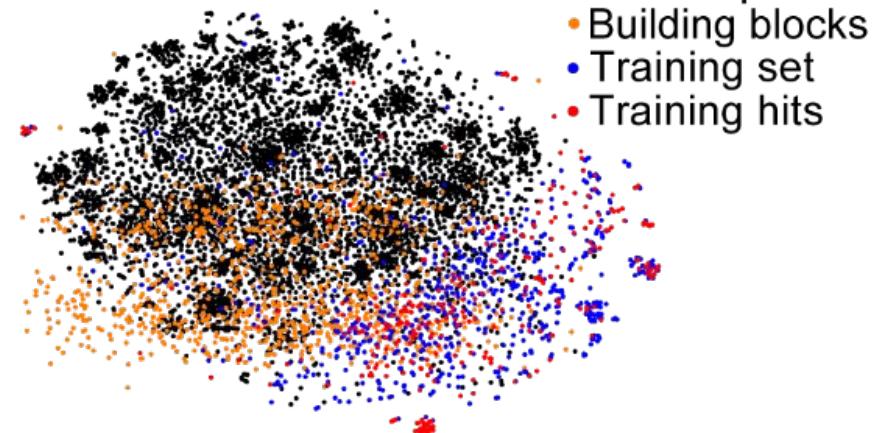


- REAL Space
- Building blocks
- Training set
- Training hits

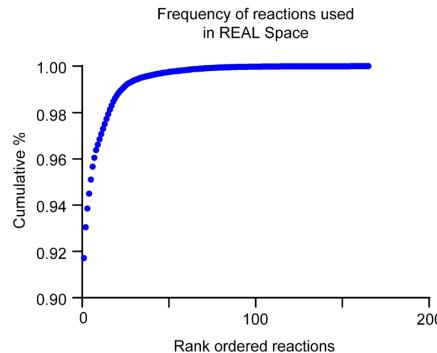
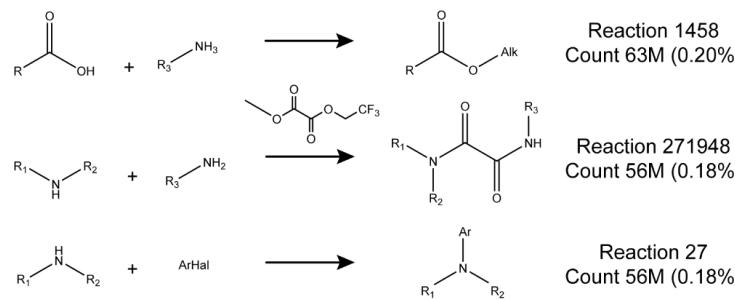
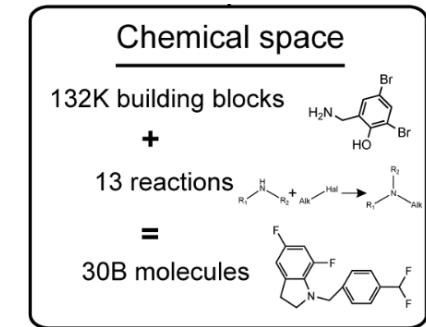
Chemical space

Enamine REAL Space: 31 billion molecules

- 138,000 building blocks
- 169 chemical reactions



Simplification: 96.6% of molecules with 13 reactions

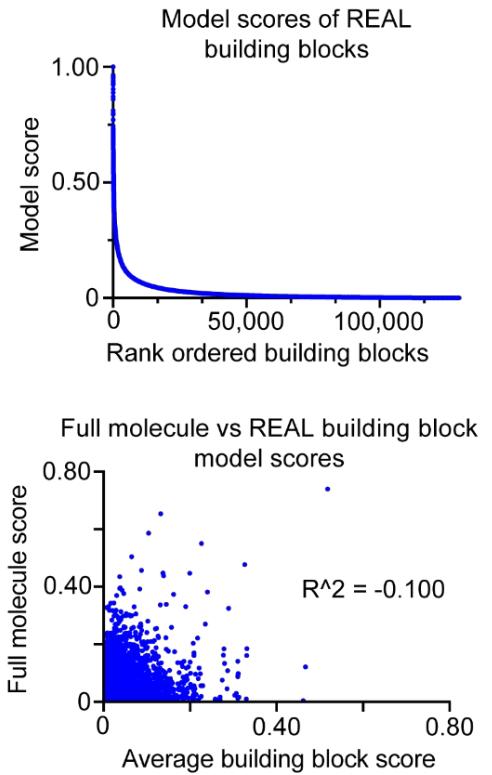


Generative model

Greedy: build molecules with highest scoring building blocks

Problems

- Few building blocks have high scores \Rightarrow low diversity
- Building block scores not correlated with full molecule

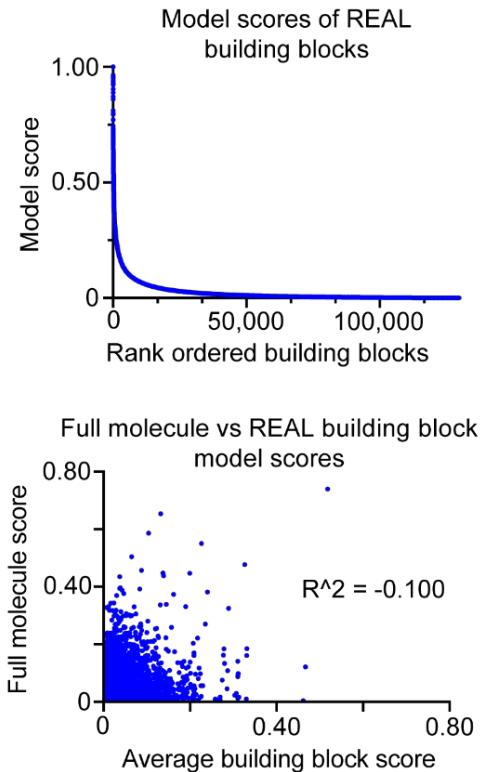


Generative model

Greedy: build molecules with highest scoring building blocks

Problems

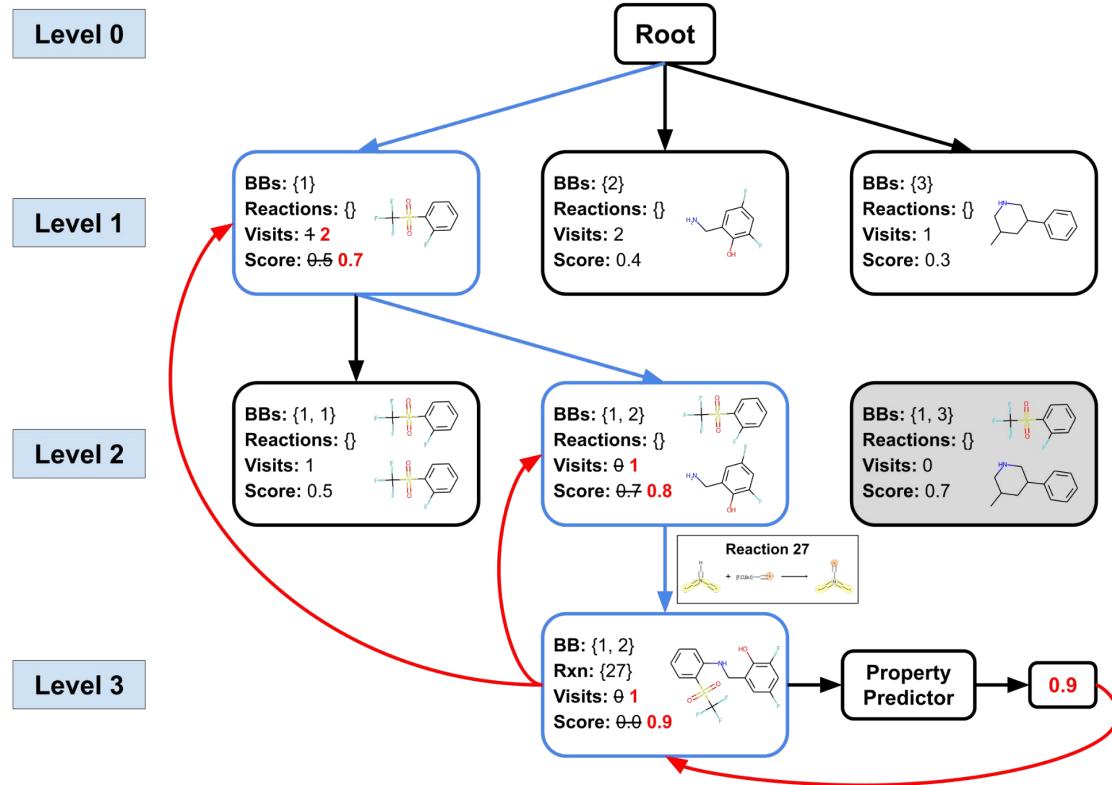
- Few building blocks have high scores \Rightarrow low diversity
- Building block scores not correlated with full molecule



Monte Carlo tree search (MCTS)

- **Exploration:** construct diverse molecules
- **Exploitation:** use full molecule scores to guide search

SyntheMol: MCTS guided by property predictor



$$S(N) = \frac{Q(N) + P(N) \cdot U(N)}{D(N)}$$

$Q(N)$

Exploit: average full molecule score

$P(N)$

Property: average building block score

$U(N)$

Explore: visit count vs sibling nodes

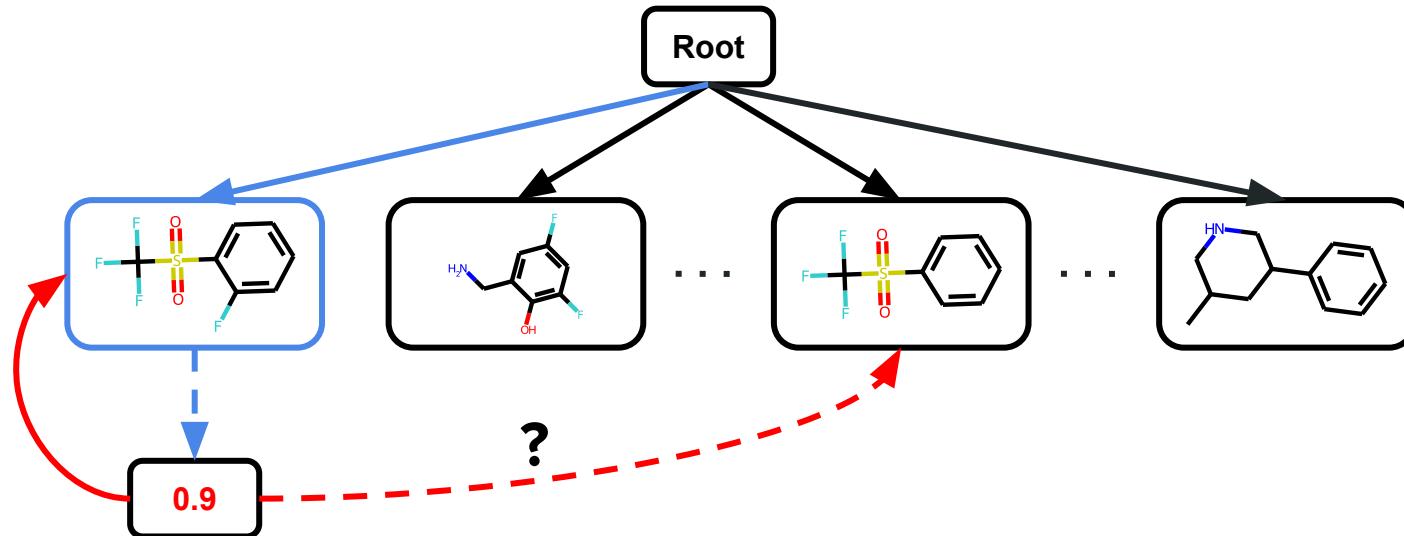
$D(N)$

Diversity: frequency of building block use

Limitations of MCTS

Independence: MCTS treats nodes independently, ignoring chemical similarity

Coverage: First level alone has 132k nodes \Rightarrow cannot test all with 20k rollouts

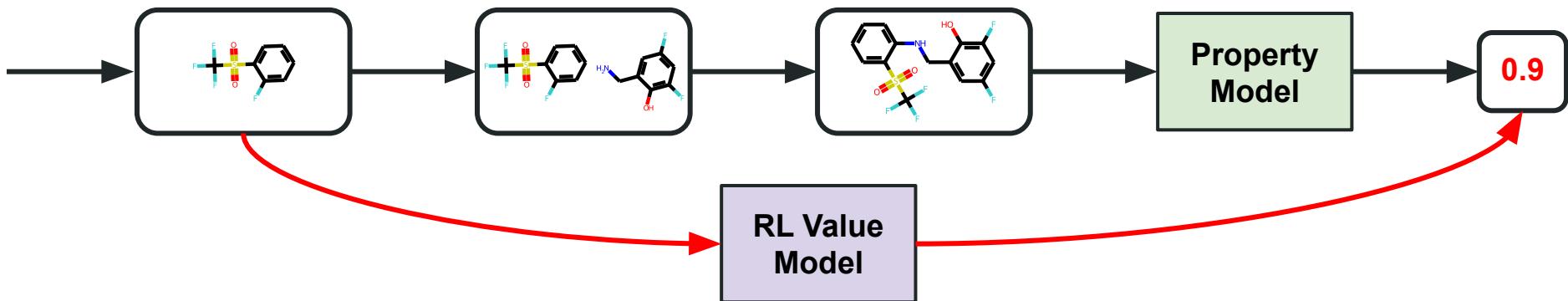


Result: MCTS is not an efficient value function for building blocks

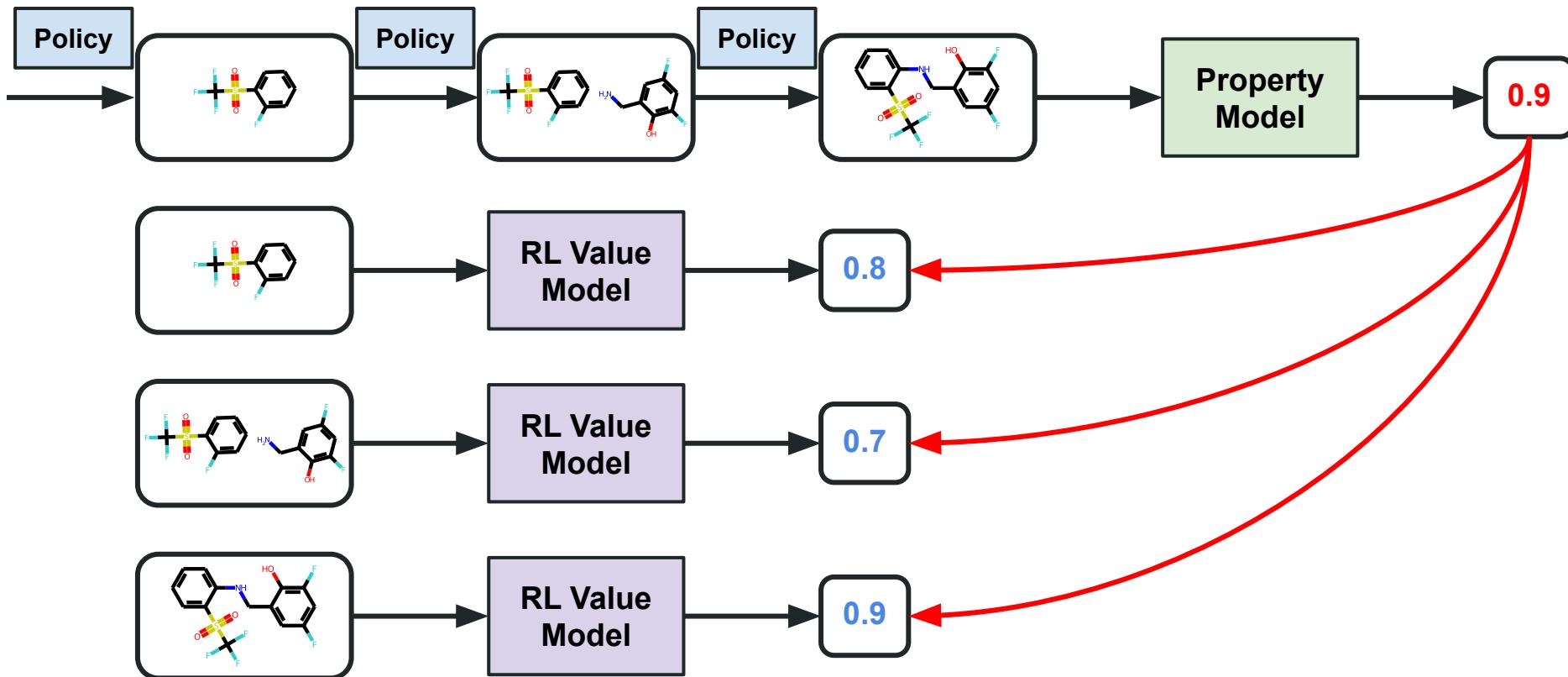
MCTS \Rightarrow RL

Idea: Use reinforcement learning (RL) in place of MCTS

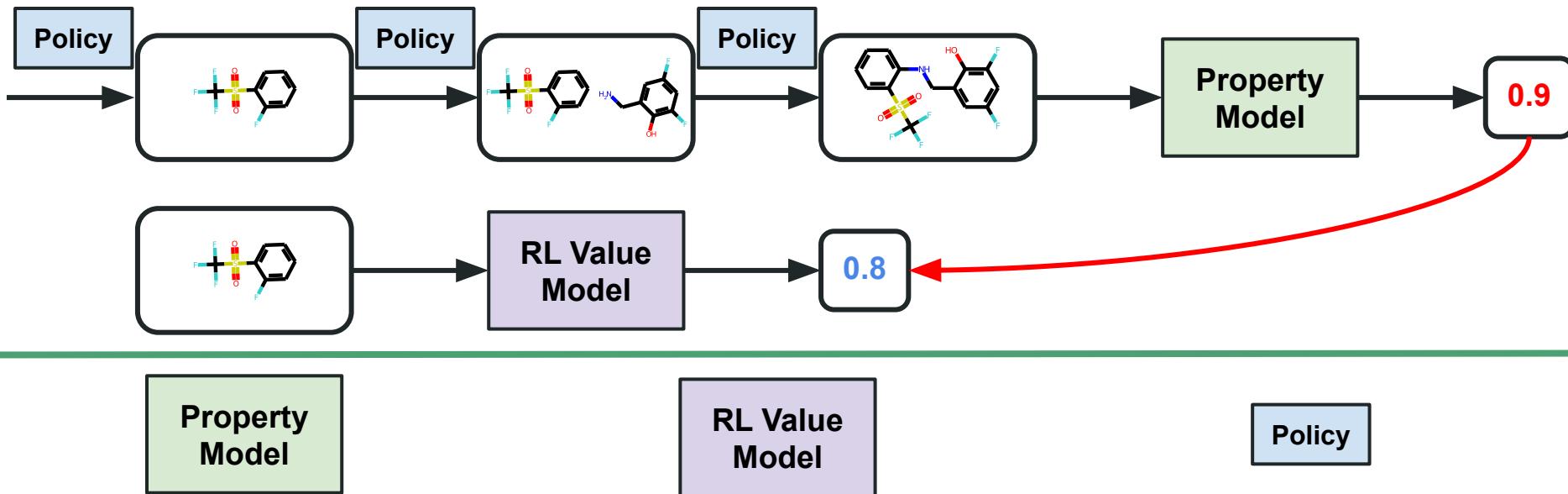
- **MCTS** computes a value for each BB separately
- **RL** learns a value function that generalizes to chemically similar BBs



RL method



RL method



GNN pretrained to predict molecular property (fixed)

GNN trained to predict full molecule score from building block(s)

Sample building blocks proportional to their score with temperature control
$$P(\text{BB}) \propto e^{\text{value}(\text{BB})/T}$$

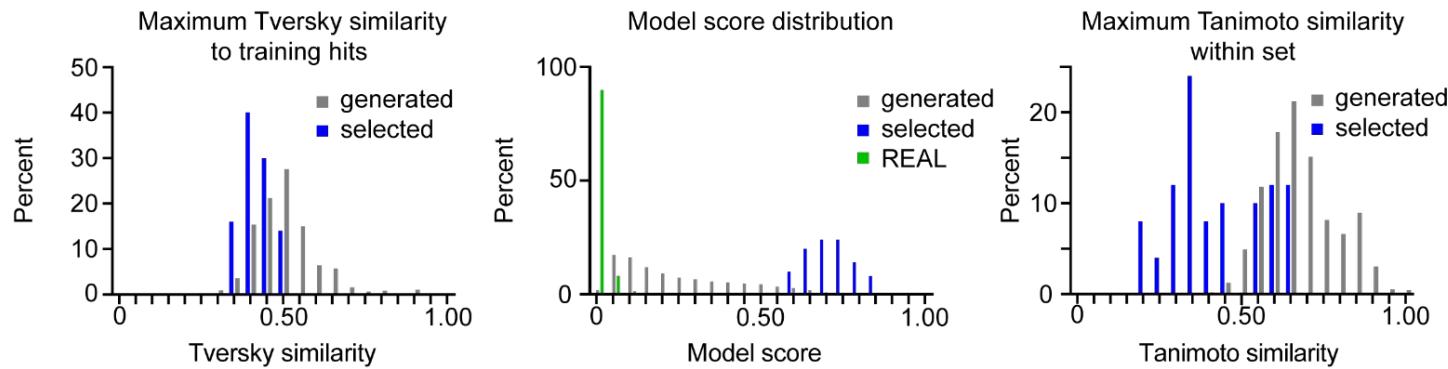
SyntheMol: antibiotic design

Generations: SyntheMol-MCTS for 20,000 rollouts guided by 3 property predictors

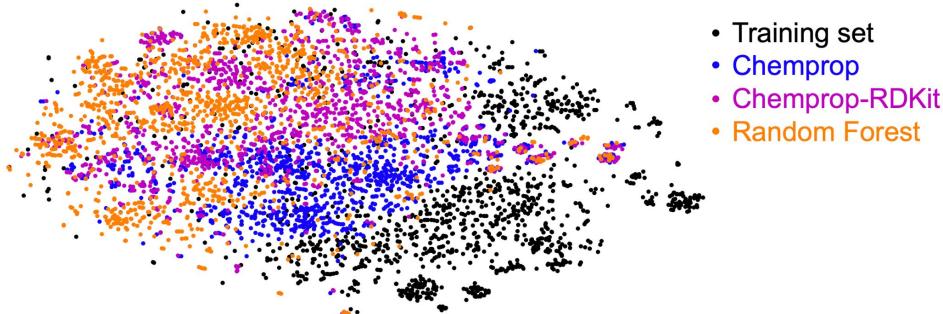
Filters to select optimal molecules

- 1) **Novel:** avoid analogs of known antibiotics
 - a) Tversky similarity(generated, antibiotic) ≤ 0.5
- 2) **Effective:** high property prediction score
 - a) Top 20% of molecules by score
- 3) **Diverse:** avoid analogs of the same compound
 - a) K-means clustering with Tanimoto similarity

SyntheMol: antibiotic generations



t-SNE visualization of training and generated sets



Synthesis

Selected: 150 molecules (50 each from three models)

Requested: 70 molecules

- Not all 150 molecules are available from Enamine
- Reaction templates are overly simple ⇒ not all matches are synthesizable

Synthesized: 58 molecules (83% success) in four weeks

- 26 Chemprop, 22 Chemprop RDKit, 10 random forest

Experimental validation

Experiment: Test generated molecules against *A. baumannii*

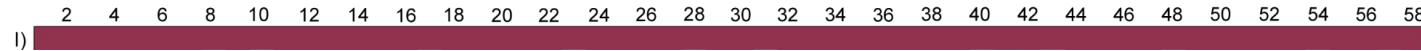
- Same growth inhibition assay as training set creation

Experimental validation

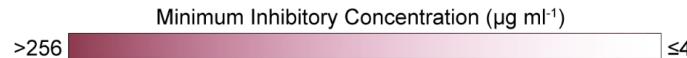
Experiment: Test generated molecules against *A. baumannii*

- Same growth inhibition assay as training set creation

Result: No molecules worked



LEGEND
I) *A. baumannii* ATCC 17978



Experimental validation

Challenge: Killing Gram-negative bacteria like *A. baumannii* requires **two** abilities

- 1) **Permeability:** Pass through double cell wall
- 2) **Activity:** Inhibit an essential component (e.g., protein)

Idea: What if our molecules have activity but lack permeability?

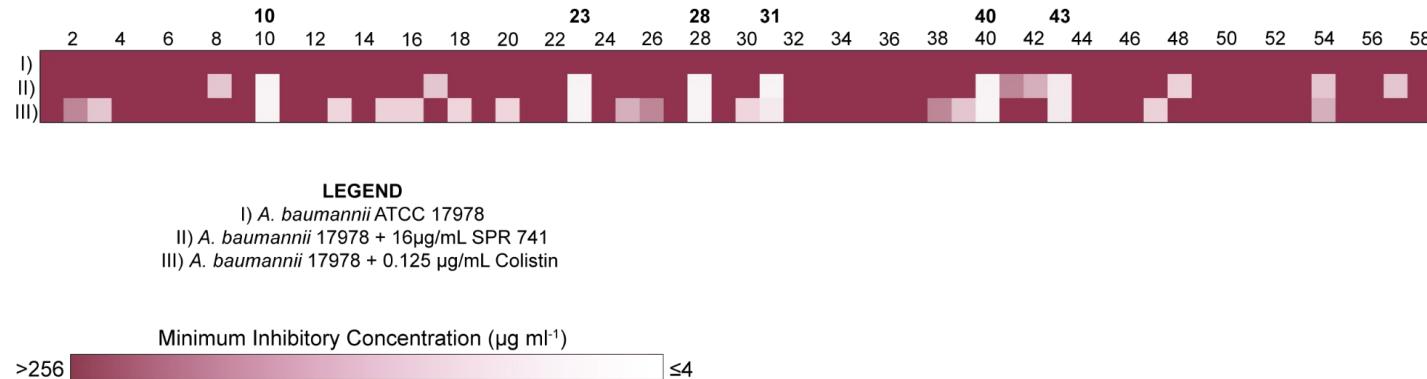
Experimental validation

Experiment: Couple generated molecules with a permeabilizer

Experimental validation

Experiment: Couple generated molecules with a permeabilizer

Result: Six of the molecules are extremely potent



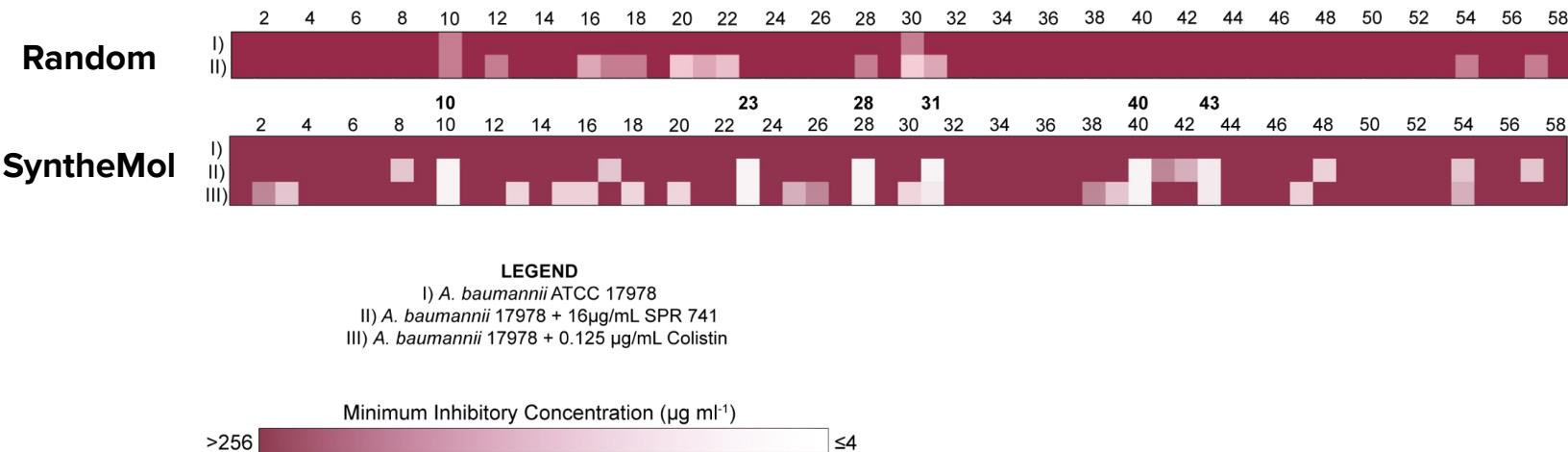
Experimental validation

Experiment: Test randomly selected molecules for comparison

Experimental validation

Experiment: Test randomly selected molecules for comparison

Result: Generated compounds are more effective than random ones



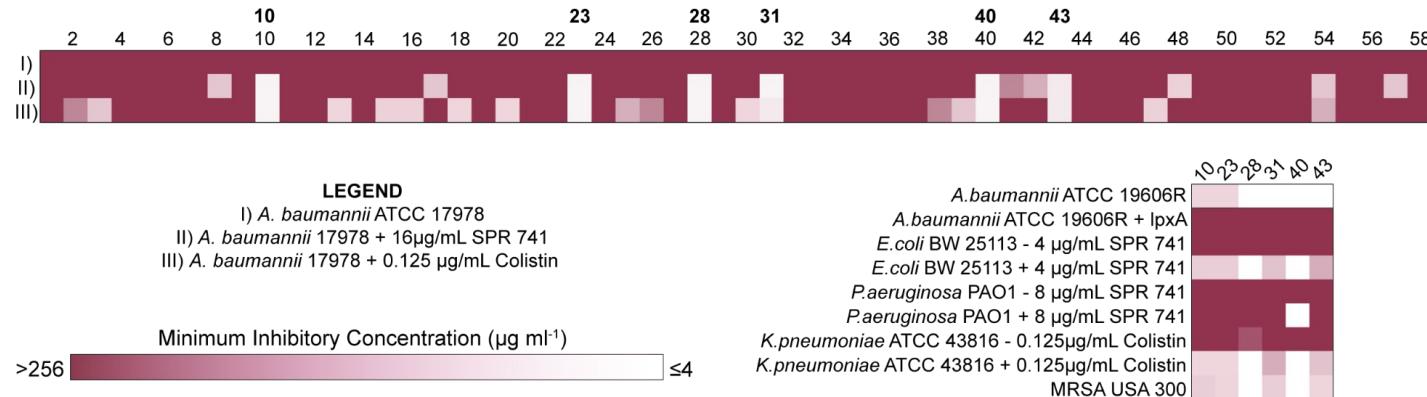
Experimental validation

Experiment: Test generated molecules against other bacterial species

Experimental validation

Experiment: Test generated molecules against other bacterial species

Result: Six potent molecules are broad spectrum (with permeabilizer)



GFlowNet comparison

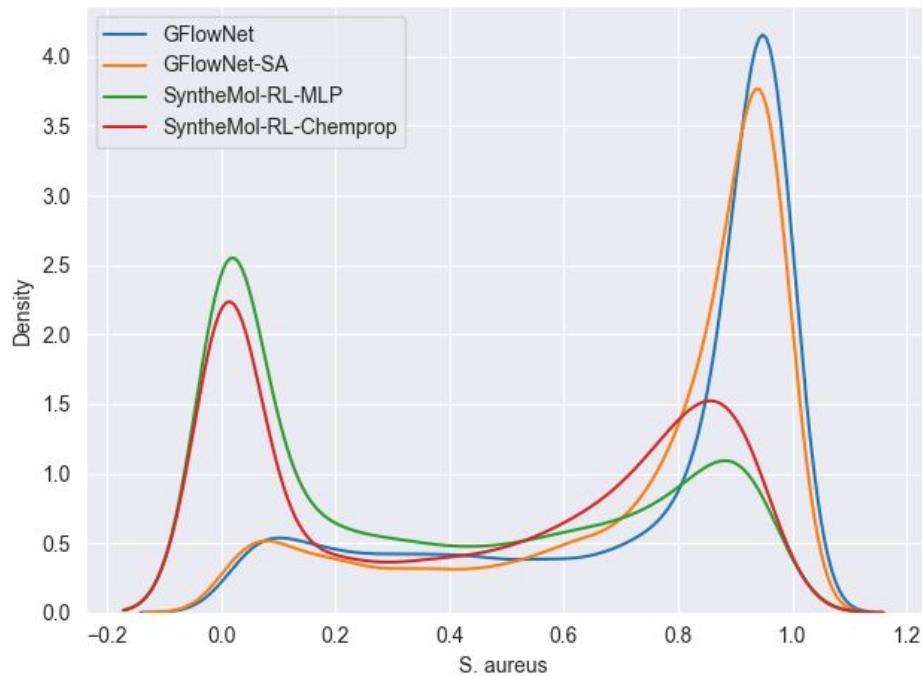
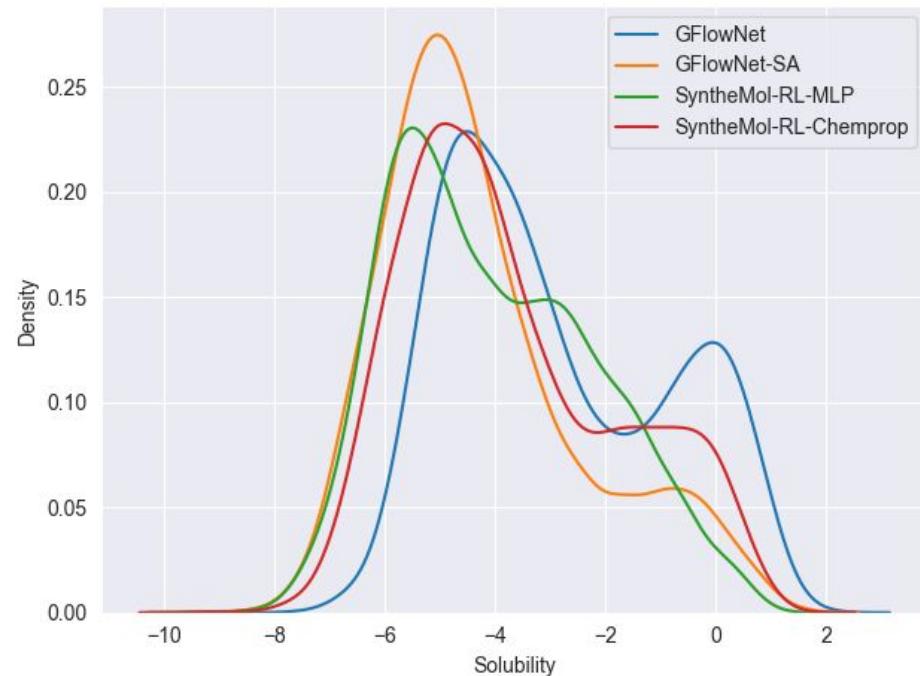
Question: How does SyntheMol compare to other generative models?

Multi-Objective GFlowNets (ICML, 2023)

- GFlowNets use RL + temperature scaling for diverse molecule generation
- Uses arbitrary molecular fragments **not** from known synthetic routes

Experiment: Modified GFlowNet to optimize for antibiotic efficacy (*S. aureus*), solubility, and optionally SAScore (synthesizability)

GFlowNet vs SyntheMol: generated



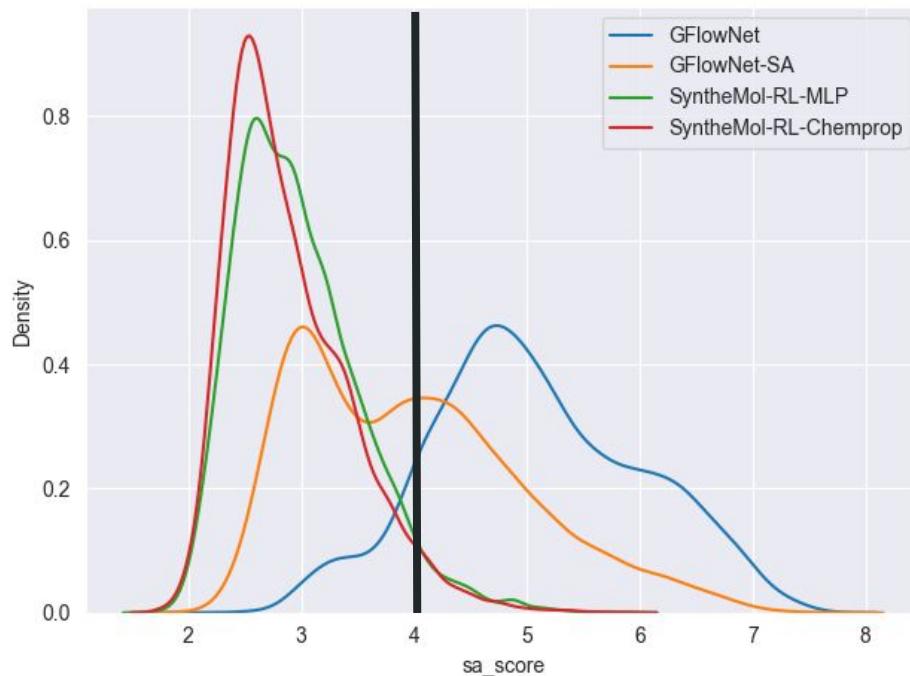
Takeaway: Appears that GFlowNet >> SyntheMol for generating antibiotics

GFlowNet vs SyntheMol: filtering

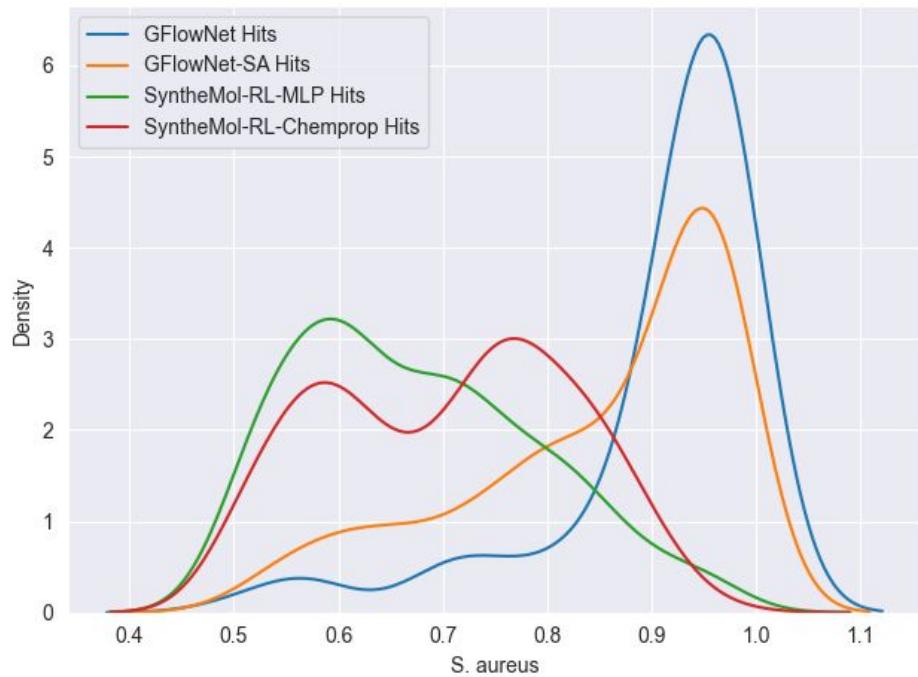
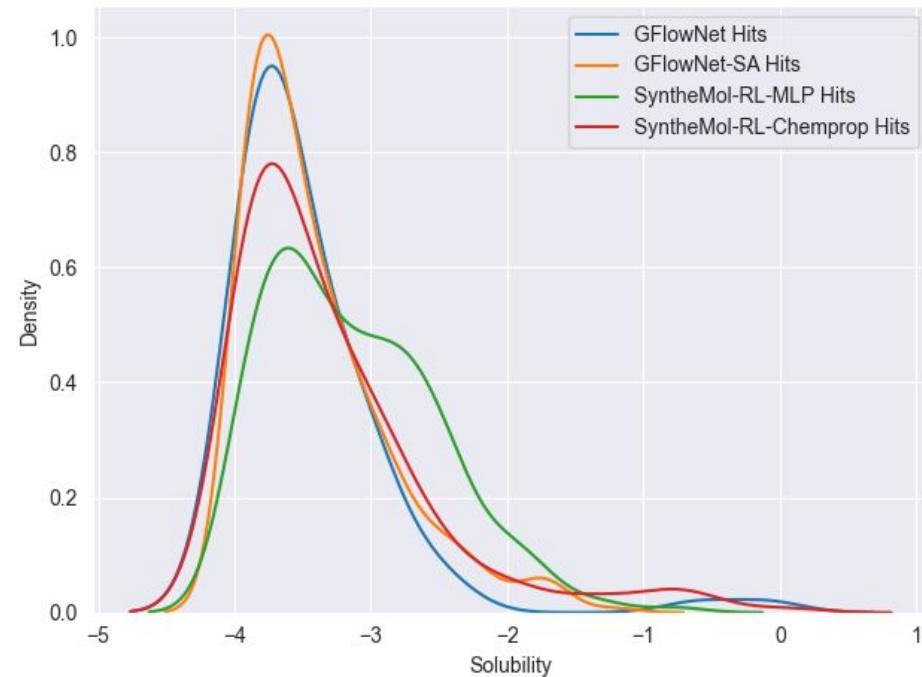
Limitation: GFlowNet molecules are less synthesizability based on SAScore

Synthesis filter: Need synthesizable compounds so filter by SAScore ≤ 4

Selection: Then, apply typical filters for hits, novelty, and diversity



GFlowNet vs SyntheMol: selected



Takeaway: Appears that GFlowNet >> SyntheMol for generating *synthesizable* antibiotics

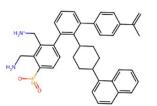
GFlowNet vs SyntheMol: selected

GFlowNet

Molecule 1

Molecule 2

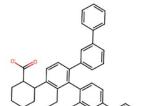
Molecule 11



Molecule 12

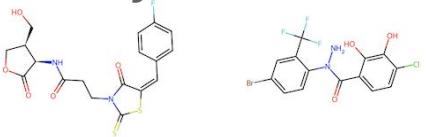
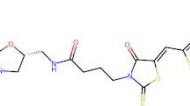
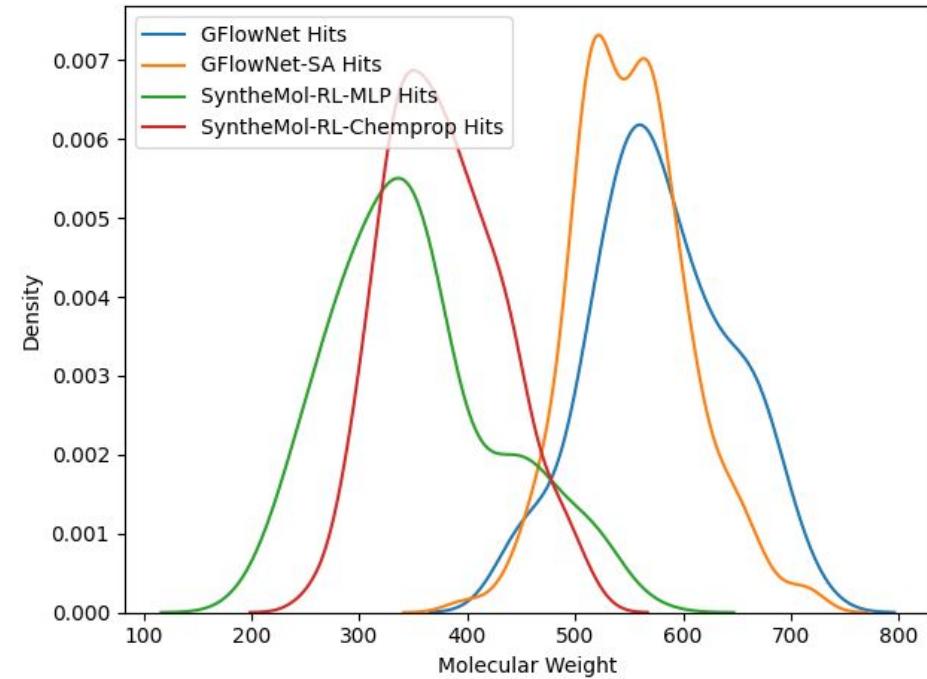


Molecule 21



Molecule 22

SyntheMol



Takeaway: GFlowNet molecules are bulky, not drug-like, and look difficult to synthesize

GFlowNet: synthesis

Test: Sent 300 GFlowNet compounds to Enamine

Enamine: "...our chemistry group has reviewed list of cpds...and, unfortunately, we are not able to propose a synthesis. Our apologies for the inconvenience caused."

Takeaway: GFlowNet designs impressive molecules according to ML-based objectives, but they are **not easily synthesizable** \Rightarrow need SyntheMol!

Conclusion

SyntheMol is a **synthesis-aware generative model** for drug design

⇒ property predictor + MCTS/RL to explore vast chemical spaces

Filters select for **novel**, **effective**, and **diverse** generated molecules

We **synthesized** and **experimentally validated** 58 generated molecules

We discovered **six highly potent** and **structurally novel** antibiotic candidates

Questions?

