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Data Enables Solving Medical Problems

Classification Detection Segmentation  Regression

l

v': Cardiomegaly Ejection
Fraction: 49%



IM =Image

Supervised Learning L =Label

M1 IM2 IM3 L1 L2 L3

M4 IM5 IM6 == 14 L5 L6 Model!

IM7 IM8 IM9 L7 L8 L9




DATA

and so on...

Labels

Dog
Cat
Hot Dog




IM =Image

Label-Starved Learning L -Label

No
Model!




Example Labels in Medical Imaging

[1] Irwin et al. CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. AAAIL 2019
[2] Menze et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE TMI. 2015



Example Labels in Medical Imaging

[1] Irwin et al. CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. AAAI 2019
[2] Menze et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE TMI. 2015



Transfer Learning
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Beyond Supervised Learning

 Semi-Supervised Learning
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Semi-Supervised Learning: Self-Training

[1] Xie et al. Self-training with Noisy Student improves ImageNet classification. CVPR 2020.



Self-Training Terminology

- Teacher Network: Network that creates pseudo labels

- Student Network: Network that learns using pseudo labels



Terminology

» Self-Training: When student network is same/larger sized

than teacher network

- Knowledge Distillation: When student network is

smaller than teacher network



N01sy Student Self Training

ImageNet ImageNet-A

top-1 acc. top-1 acc.
Prev. SOTA 86.4% 61.0%
Ours 88.4% 83.7%

Large accuracy gain for
adversarial examples

]FT (300M examples) |

[1] Xie et al. Self-training with Noisy Student improves ImageNet classification. CVPR 2020.



Adversarial Examples

Dragonfly Fox Squirrel Monarch Butterfly Washing Machine Jay

ImageNet-

¥

Hotdog (99%)

ImageNet-O

[1] Hendrycks et al. Natural Adversarial Examples. CVPR 2021.



Semi-Supervised Transfer Learning
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Self- Supervised Learning

IM1 IM2 IM3 PL1 PL2 PL3
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Pretext Tasks

- Exemplar images

[1] Dosovitskiy et al. Discriminative Unsupervised Feature Learning with Convolutional Neural Networks. NeuRIPS 2014.



Pretext Tasks - Rotation

—» g(X,y=0)

Rotate 0 degrees ‘
Rotated image: X’

> g(X,y=1) — > —

Rotate 90 degreés

Rotated image: X'

> g(X,y=2)

Rotate 180 degrees
Rotated image: X

—» g(Xx,y=3)

Rotate 270 degrees R
Rotated image: X

[1] Gidaris et al. Unsupervised Representation Learning by Predicting Image Rotations. ICLR 2018.



Pretext Tasks - Patching

Example:

[1] Doersch et al. Unsupervised Visual Representation Learning by Context Prediction. ICCV 2015.



What Position Does the Blue Square Occupy?




Image Inpainting

[1] Dominic et al. Improving Data-Efficiency and Robustness of Medical Imaging Segmentation Using Inpainting-Based Self-Supervised Learning. Bioengineering 2021.



BERT Pretraming

[ BERT Masked Language Model
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[1] Dominic et al. Improving Data-Efficiency and Robustness of Medical Imaging Segmentation Using Inpainting-Based Self-Supervised Learning. Bioengineering 2021.



Latest Self-Supervised Learning
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[1] He et al. Masked Autoencoders are Scaling Vision Learners. CVPR 2022.



Latest Self-Supervised Learning

[1] He et al. Masked Autoencoders are Scaling Vision Learners. CVPR 2022.



Contrastive Learning

Match the correct animal

&

[1] Chaudhary A. The Illustrated SimCLR Framework. https://amitness.com/2020/03/illustrated-simclr/ 2020.
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Contrastive Learning

Need similar and different examples
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[1] Chaudhary A. The Illustrated SimCLR Framework. https://amitness.com/2020/03/illustrated-simclr/ 2020.
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Contrastive Learning
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[1] Chaudhary A. The Illustrated SimCLR Framework. https://amitness.com/2020/03/illustrated-simclr/ 2020.
[2] Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.
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Contrastive Learning

£

Original
Image

[1] Chaudhary A. The Illustrated SimCLR Framework. https://amitness.com/2020/03/illustrated-simclr/ 2020.
[2] Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.



https://amitness.com/2020/03/illustrated-simclr/

Contrastive Learning

Preparing similar pairs in a batch

Random Transformation g
Pair 1
Data ) Random
E N— Augmc_erntation Ba}\j:rl zlze Augmentation
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Original Image Transformed Image
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Raw Images Training Data

[1] Chaudhary A. The Illustrated SimCLR Framework. https://amitness.com/2020/03/illustrated-simclr/ 2020.
[2] Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.
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Contrastive

Similarity Calculation of Augmented Images
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[1] Chaudhary A. The Illustrated SimCLR Framework. https://amitness.com/2020/03/illustrated-simclr/ 2020.

[2] Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.
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Noise Contrastive Estimation Loss

- Compute over both pairs to account for asymmetry

. exp(si ;
I(3,7) = —log—5x (5:4)
k1 k=i exp(sik)

esimilarity( lm ‘ )
I(m’i) =-Iog( eSimiIarity(m ra ) esimilarity(E) * esimilarity() )

[1] Chaudhary A. The Illustrated SimCLR Framework. https://amitness.com/2020/03/illustrated-simclr/ 2020.
[2] Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.
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SIMCLR Technique
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[1] Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.



SIMCLR Augmentations
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(a) Original (b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

[1] Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.



Transfer Learning

Dataset 1 —> Task 1
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Benetits of Scaling
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[1] Zhai et al. Scaling Vision Transformers. CVPR 2022.



Latest Self-Supervised Learning
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[1] He et al. Masked Autoencoders are Scaling Vision Learners. CVPR 2022.



Latest Self-Supervised Learning

[1] He et al. Masked Autoencoders are Scaling Vision Learners. CVPR 2022.



Extensions of Prior Approaches
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[1] Feichtenhofer et al. Masked Autoencoders As Spatiotemporal Learners. NeurIPS 2022.



Tube Masking for Video MAE
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keeping masking

[1] Tong et al. VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training. NeurIPS 2022.



Masking for Multi-Modal Learning
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[1] Li et al. Scaling Language-Image Pre-training via Masking. CVPR 2023.



Adaptations to Medical Imaging

. * » Architectures inspired by the SimSiam method
- X =Image
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[1] van der Sluijs et al. Exploring Image Augmentations for Siamese Representation Learning with Chest X-Rays. MIDL 2023
[2] Chen et al. Exploring Simple Siamese Representation Learning. CVPR 2021



Siamese Masked Autoencoders
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[1] Gupta et al. Siamese Masked Autoencoders. NeurIPS 2023.



Augmentations for Medical Imaging
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[1] van der Sluijs et al. Exploring Image Augmentations for Siamese Representation Learning with Chest X-Rays. MIDL 2023.



Suggested Reading

A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen' Simon Kornblith! Mohammad Norouzi' Geoffrey Hinton '

Masked Autoencoders Are Scalable Vision Learners

Kaiming He*' Xinlei Chen* Saining Xie YanghaoLi Piotr Dollir Ross Girshick
*equal technical contribution Tproject lead

Facebook AI Research (FAIR)



Questions?
akshaysc@stanford.edu
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