Lecture 2 Machine learning framework: terms, definitions, jargon

Serena Yeung BIODS 388

Machine Learning

- A family of statistical and mathematical modeling techniques that uses a variety of approaches to automatically learn and improve the prediction of a target objective, without explicit programming.

Machine Learning

- A family of statistical and mathematical modeling techniques that uses a variety of approaches to automatically learn and improve the prediction of a target objective, without explicit programming.

- Concisely: systems that improve their performance in a given task, through exposure to experience, or data.

Different paradigms of machine learning

- Supervised learning
- Unsupervised learning
- Reinforcement learning

Different paradigms of machine learning

- Supervised learning
- Unsupervised learning
- Reinforcement learning

In a man which the hard which which

ST elevation myocardial infarction (heart attack)

Traditional computer programming approach: Write rules to process the inputs to produce the outputs

def example (x): y = x^2 return y

def example (x): $y = x^{2}$ return y def example2 (ECG_data): #### #### Fill in lots of steps #### of processing ! return diagnosis

(Supervised) machine learning approach: Collect a dataset of examples linking inputs to outputs, and search for (i.e., *learn*) a function that can accurately map this data of inputs to the correct outputs

have appressing the property

have and in a fight

10 10					1.0	i
aVR	- tr	v1	1	v4		
Inh	-h-		-m	m	In	J
aVL		v2	1	¹ v5		
-land	nha	ho	m	fm	In	J
aVF		v3		v6		
-h-h	ha	h	hr	pr-	In	

have approximation of the

111

In la	m	ma	ym	- ma	_lr_
dVR		VI			
inde	- Ann	- ten	in	in	In
aVL		v2	1	v5	
men	h	-lo	m	fm	In
aVF		v3		v6	
la la	. 1.		1.	10	10

.....

.....

.....

.....

Zooming back out... supervised machine learning

- Once we have performed supervised machine learning and obtained a "trained" model, the model can be used to take new inputs, and produce new outputs (predictions)
- This replaces the need for the hand-written rules in traditional computer programming!

New ECG input

Learned Function

New ECG input

Learned Function

New ECG input

Learned Function

record data

Learned Function

Electronic health record data

Learned Function

Mortality, readmission, diagnosis labels

Going deeper into some machine learning terminology...

In which we want the second se

In sur what to many hard to a sur a

_mh				In	N
aVR	1.5	v1 '	v4		
Inh	-h-	mor	m	h	N
aVL		v2	v5		
-h-h	-h-	-lo-fr	-p-	h	J
aVF		v3	v6		
In	h	- la Ja	m	h	_

In and the stand of the stand o

111

la da			1a	IJ
aVR	v1	v4		
Inter	man	m	hr	_1
aVL	v2	v5		
-hand	-inth	-fr-	hr	J
aVF	v3	v6		
-minh	_u_h	h	ha	

.....

.....

.....

Heart attack?

NO

In and the second secon

aVR			T _{v4}	h	
aVL		v2 fr	-1v5	_h_	
-h-h	-h-	-lo-fr	h	h	J
aVF		v3	v6		
_l~_l~	-hr-	-h-h	-h-	h	

In and the second secon

111

la da			· · · · · · ·	1a	J
aVR	. 10	v1	v4		
men	- dra-	- done of	~	In	J
aVL		v2 1	v5		
In le	-h-	-lo-h	np	h	J
aVF		v3	v6		
en la	10	1. 1	. 10	1a	

Features

.....

.....

Heart attack?

YES

YES

NO

YES

NO

In and the second secon

~~~~~			h	_](
_h_	v2 f	115	h	_)(
~h~	-l-h	h	h	JJ
	v3	v6		
			v1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	v2 / 1/v4 / / / / / / / / / / / / / / / / / /

In and the second secon

111

1. 1.				1.	IF
aVR	- Yv	v1	v4	-dum	
Inde	- din-	you or	m	In	_15
aVL		v2 1	v5		
-l-li	h	-logh	m	hr	1
aVF		v3	v6		
_h_h	ander	uh	-h-	ha	_

Features

.....

.....

NO











<b>ECG</b> examples	Н	eart attack?
In some of the state of the solution of the so		YES
In and the second of the secon		YES
ave var		NO
prost water and a grant of the set of the se		YES
ave vs vs		NO
Features		Labels




**Training set:** examples used to learn function







# Model training

Training loop:

- 1. Start the program, initialize model with random function
  - Set model best performance = 0
- 2. Expose the model to training examples, to update function
- 3. Evaluate the function on the validation set
  - If performance > previous best, update this and save model
- 4. Repeat steps 2 and 3 until validation performance no longer improves

# Model training

Training loop:

- 1. Start the program, initialize model with random function
  - Set model best performance = 0
- 2. Expose the model to training examples, to update function
- 3. Evaluate the function on the validation set
  - If performance > previous best, update this and save model
- 4. Repeat steps 2 and 3 until validation performance no longer improves

Hyperparameter tuning: repeat training loop for various hyperparameter settings (design choices in program and model)

# Model training

Training loop:

- 1. Start the program, initialize model with random function
  - Set model best performance = 0
- 2. Expose the model to training examples, to update function
- 3. Evaluate the function on the validation set
  - If performance > previous best, update this and save model
- 4. Repeat steps 2 and 3 until validation performance no longer improves

Hyperparameter tuning: repeat training loop for various hyperparameter settings (design choices in program and model)

Assess final model performance on test set

More on input features: numeric data representing the input, that are given to the model in order to make a prediction



#### Heart attack?

 $\square$ 

10.3

Lab values



#### Unstructured data



"...PMH of metastatic breast cancer, R lung malignant effusion, and R lung empyema who presents with increased drainage from **R lung pleurx** tract..."

#### Heart attack?

 $\square$ 

Diagnosis code

10.3

Lab values



#### Unstructured data



"...PMH of **metastatic breast cancer, R lung malignant** effusion, and **R lung empyema** who presents with increased drainage from **R lung pleurx** tract..."

]]	2	1	1	37	1	10	66	60	77	94	78	69	64	23	12	45	28	45]
1	58	1	9	13	17	29	56	72	65	64	59	58	39	18	15	12	7	1]
í	71	49	53	38	30	41	73	73	80	71	69	69	72	45	45	49	36	591
Î	88	60	73	50	59	59	54	51	71	81	69	50	54	75	56	61	80	67]
1	94	91	86	59	65	57	57	52	64	88	66	56	55	54	70	64	109	114]
I	94	95	84	74	70	41	48	55	74	85	84	60	50	46	70	82	92	122]
1	85	85	95	83	54	37	59	60	84	97	82	50	38	44	56	92	111	112]
Ĩ	81	87	94	92	54	54	56	54	79	96	79	48	36	44	62	103	107	145]
I	67	83	91	87	60	59	61	71	91	108	86	65	53	40	63	101	110	121]
I	49	73	88	72	66	73	78	84	107	120	102	71	57	39	56	89	114	103]
I	31	61	84	65	73	80	92	103	117	128	114	76	66	57	52	89	111	91]
I	6	51	82	84	92	90	92	114	128	135	122	109	73	69	69	84	109	66]
I	2	44	72	87	95	104	113	124	138	141	130	122	96	77	68	76	104	10]
I	0	37	74	84	102	113	115	131	146	146	133	124	113	94	83	96	90	1]
l	0	33	67	90	113	126	130	140	148	147	136	130	117	95	91	81	71	1]
ſ	0	33	68	98	122	139	141	144	153	149	135	127	122	108	96	76	65	1]
I	0	36	81	105	127	144	151	151	155	149	125	114	113	121	105	76	49	1]
1	0	39	90	114	131	151	155	157	161	153	122	96	102	107	110	66	50	01

#### Heart attack?



#### Unstructured data



"...PMH of **metastatic breast cancer, R lung malignant** effusion, and **R lung empyema** who presents with increased drainage from **R lung pleurx** tract..."





11	2	1	1	37	1	10	66	60	77	94	78	69	64	23	12	45	28	45]
1	58	1	9	13	17	29	56	72	65	64	59	58	39	18	15	12	7	1]
Ĩ	71	49	53	38	30	41	73	73	80	71	69	69	72	45	45	49	36	591
Ĩ	88	60	73	50	59	59	54	51	71	81	69	50	54	75	56	61	80	67]
1	94	91	86	59	65	57	57	52	64	88	66	56	55	54	70	64	109	114]
Ĩ	94	95	84	74	70	41	48	55	74	85	84	60	50	46	70	82	92	122]
Ĩ	85	85	95	83	54	37	59	60	84	97	82	50	38	44	56	92	111	112]
Ĩ	81	87	94	92	54	54	56	54	79	96	79	48	36	44	62	103	107	145]
Ĩ	67	83	91	87	60	59	61	71	91	108	86	65	53	40	63	101	110	121]
Ĩ	49	73	88	72	66	73	78	84	107	120	102	71	57	39	56	89	114	103]
]	31	61	84	65	73	80	92	103	117	128	114	76	66	57	52	89	111	91]
I	6	51	82	84	92	90	92	114	128	135	122	109	73	69	69	84	109	66]
Ĩ	2	44	72	87	95	104	113	124	138	141	130	122	96	77	68	76	104	10]
1	0	37	74	84	102	113	115	131	146	146	133	124	113	94	83	96	90	1]
Ĩ	0	33	67	90	113	126	130	140	148	147	136	130	117	95	91	81	71	1]
Ĩ	0	33	68	98	122	139	141	144	153	149	135	127	122	108	96	76	65	1]
1	0	36	81	105	127	144	151	151	155	149	125	114	113	121	105	76	49	1]
I	0	39	90	114	131	151	155	157	161	153	122	96	102	107	110	66	50	0]]









Examples of machine learning tasks corresponding to different types of desired outputs (labels)

## REGRESSION

Real Numbers

## **CLASSIFICATION**

Categories

Let's look at some first examples of traditional machine learning algorithms for these tasks

	WEIGHT	ВМІ
0	159	22.02
1	214	19.70
2	163	24.09
3	205	26.97
4	150	21.51
62	143	22.51
63	165	23.69
64	93	15.08
65	163	22.64
66	207	36.57









A poorly trained or (poorly fitted) model has high cumulative loss



has high cumulative loss

minimizes the cumulative loss.

# y = mx + b



#### Examples:

INPUT FEATURES	LABELS
Image pixels	What is present in the image: lung nodule, skin cancer, knee arthritis, etc.

#### Examples:

INPUT FEATURES	LABELS						
Image pixels	What is present in the image: lung nodule, skin cancer, knee arthritis, etc.						
Structured data (e.g. lab values, diagnosis codes, age)	Heart attack, sepsis, mortality, etc.						

#### Examples:

INPUT FEATURES	LABELS
Image pixels	What is present in the image: lung nodule, skin cancer, knee arthritis, etc.
Structured data (e.g. lab values, diagnosis codes, age)	Heart attack, sepsis, mortality, etc.
Unstructured text in nursing notes or pathology reports	Final diagnosis: stroke, appendicitis, etc.

	<b>K</b> X	
	SIZE	ABNORMALITY
0	4.093385	0
1	9.764256	1
2	7.187037	1
3	2.320848	0
4	6.273131	1
5	2.088424	0
6	3.380568	0
7	2.306047	0
8	6.427853	1

	K X	
	SIZE	ABNORMALITY
0	4.093385	0
1	9.764256	1
2	7.187037	1
3	2.320848	0
4	6.273131	1
5	2.088424	0
6	3.380568	0
7	2.306047	0
8	6.427853	1









Tumor Size Vs. Tumor Abnormality



Tumor Size Vs. Tumor Abnormality
### **EXAMPLE:** Using tumor size to classify as normal or abnormal



1 Feature = One-Dimensional				
		8 (9) (9)		
	SIZE	ABNORMALITY		
0	4.093385	0		
1	9.764256	1		
2	7.187037	1		
3	2.320848	0		
4	6.273131	1		
5	2.088424	0		
6	3.380568	0		
7	2.306047	0		
8	6.427853	1,		

ABNORMALITY



Tumor Size Vs. Tumor Abnormality

2 Features = Two-Dimensional					
	60		6 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
	WBCs	ТЕМР	ABNORMALITY		
0	9797	100.181966	1		
1	6562	97.604826	0		
2	11449	101.491047	1		
3	9250	97.778775	0		
4	11520	100.401656	1		
75	6357	98.461273	0		
76	9139	98.748056	0		
77	7675	98.614009	0		
78	8515	98.181348	0		
79	12679	100.529730	1		



	2 Features = Two-Dimensional				
	80		6 (9)		
	WBCs	ТЕМР	ABNORMALITY		
0	9797	100.181966	1		
1	6562	97.604826	0		
2	11449	101.491047	1		
3	9250	97.778775	0		
4	11520	100.401656	1		
		•••			
75	6357	98.461273	0		
76	9139	98.748056	0		
77	7675	98.614009	0		
78	8515	98.181348	0		
79	12679	100.529730	1		
	x	×	V		











2-dimensional classification problems are often displayed in this flattened manner showing only the decision boundary.

# Different paradigms of machine learning

- Supervised learning
- Unsupervised learning
- Reinforcement learning

# Different paradigms of machine learning

- Supervised learning
- Unsupervised learning
- Reinforcement learning

## **Unsupervised learning:**

# Finding patterns and underlying structure in **unlabeled** data as opposed to those with pre-determined labels





Pheno-group #1Pheno-group #2Pheno-group #3

Kaplan-Meier survival curves for the combined outcome of heart failure hospitalization, cardiovascular hospitalization, or death, stratified by the unsupervised clustering method of 397 patients using EMR data (67 clinical features)

## **Reinforcement learning:**

Paradigm of model as an "agent" interacting with an environment, continuously observing the current state of the environment and making decisions based on it

### **REINFORCEMENT LEARNING**

Agent

Environment







#### **BEATING HUMANS ON THE GAME OF GO**



Objective : Win the game! State: Position of all pieces Action: Where to put the next piece down Reward: 1 if win at the end of the game, 0 otherwise



# Summary

Today we covered:

- The machine learning paradigm, and machine learning vs. traditional computer programming
- ML terminology and the ML training loop
- First ML models for regression (linear regression) and classification (logistic regression)
- Different machine learning paradigms: supervised learning, unsupervised learning, reinforcement learning

Coming up: Diving deeper into traditional methods for supervised learning, and then deep learning methods