
Waste Not, Want Not

Susan	Holmes
http://www-stat.stanford.edu/˜susan/

Bio-X and	Statistics, Stanford	University ABabcdfghiejkl
August	9, 2015

. .. .. .. .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



Challenges	for	those	of	us	working	from	the	ground
up

▶ Heteroscedasticity.
▶ Information	Leaks.

. .. .. .. .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



Part I

Heteroscedasticity: Mixtures
and how to Normalize them

. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



Some real data (Caporoso et al, 2011)

> GlobalPatterns

phyloseq-class experiment-level object

otu_table() OTU Table: [ 19216 taxa and 26 samples ]

sample_data()Sample Data: [ 26 samples by 7 sample variables ]

tax_table()Taxonomy Table: [ 19216 taxa by 7 taxonomic ranks ]

phy_tree() Phylogenetic Tree:[ 19216 tips and 19215 internal nodes ]

. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



otu_table(GlobalPatterns)[45:55,1:10]

OTU Table: [11 taxa and 10 samples]

taxa are rows

CL3 CC1 SV1 M31Fcsw M11Fcsw M31Plmr M11Plmr F21Plmr M31Tong M11Tong

573586 0 0 0 0 0 0 0 0 0 0

568724 0 0 0 0 0 0 0 0 0 0

175045 0 0 0 0 1 0 0 2 0 0

552540 0 0 0 0 0 0 0 0 0 0

546313 72 153 11232 0 1 1 0 1 1 0

548602 0 0 16 0 0 0 0 0 0 0

564501 0 0 3 0 0 0 0 0 0 0

47778 1 14 207 0 0 0 5 0 0 0

54107 2 87 746 0 0 0 3 35 0 0

25116 1 4 169 0 0 0 0 1 0 0

71074 93 341 11788 1 0 23 48 58 2 0

. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



> sample_sums(GlobalPatterns)

CL3 CC1 SV1 M31Fcsw M11Fcsw M31Plmr M11Plmr F21Plmr

864077 1135457 697509 1543451 2076476 718943 433894 186297

.....

NP3 NP5 TRRsed1 TRRsed2 TRRsed3 TS28 TS29 Even1

1478965 1652754 58688 493126 279704 937466 1211071 1216137

> summary(sample_sums(GlobalPatterns))

Min. 1st Qu. Median Mean 3rd Qu. Max.

58690 567100 1107000 1085000 1527000 2357000

. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



How	to	deal	with	different	numbers	of	reads?

. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



Very	popular: qiime

2,300	citations.
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Current	Method: Rarefying

Ad	hoc library	size	normalization	by	random	subsampling
without	replacement.
1. Select	a	minimum	library	size, NL,min. This	has	also	been

called	the rarefaction	level.
2. Discard	libraries	(microbiome	samples)	that	have	fewer

reads	than NL,min.
3. Subsample	the	remaining	libraries	without	replacement

such	that	they	all	have	size NL,min.
Often NL,min is	chosen	to	be	equal	to	the	size	of	the	smallest
library	that	is	not	considered defective, and	the	process	of
identifying	defective	samples	comes	with	a	risk	of
subjectivity	and	bias. In	many	cases	researchers	have	also
failed	to	repeat	the	random	subsampling	step	(3)	or	record
the	pseudorandom	number	generation	seed/process	---	both
of	which	are	essential	for	reproducibility.

. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



Reduction	of	Data	to	Proportions

Many	software	programs	automatically	reduce	the	data	to
relative	proportions, losing	the	information	about	library	sizes
or	read	counts.
This	makes	comparisons	very	difficult.

Statistical	Formulation: When	making	a	(testing)	decision,
reducing	results	from	a	Binomial	distribution	into	a	proportion
does	not	give	an admissible procedure.
Definition:An	admissible	rule	is	an	optimal	rule	for	making	a
decision	in	the	sense	that	there	is	no	other	rule	that	is
always	better	than	it.

. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



How	to	compress	the	data?

.

LOST    INFORMATION

Original
         Data

Final
Results

...without	losing	too	much	information?
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The	proportion	is	not	a sufficient statistic	for	the
Binomial.

� A statistic	T(X) is	called	sufficient	for θ if	it	contains	all
the	information	in	X about θ.
Standard	statistical	viewpoint:
The	joint	probability	distribution	of	the	data	conditional	on
the	value	of	a	sufficient	statistic	for	a	parameter, does	not
depend	on	that	parameter: Pθ(X|T(X) = T) does	not	depend
on θ. Wiki

. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .

http://en.wikipedia.org/wiki/Sufficient_statistic


Equivalent	Definitions

Mutual	Information:

I(X,Y) =
∑
x∈X

∑
y∈Y

P(x, y)log P(x, y)
P(x)P(y) = K(P(x, y),P(x)P(y))

A function	of	the	data T(X) is	a	sufficient	statistic	for	the
distribution	if

I(θ,X) = I(θ,T(X))

for	all	distributions	on θ.
Note:
For	a	Bayesian, no	matter	what	prior	one	uses, one	only	has
to	consider	the	sufficient	statistic	for	making	inference,
because	the	posterior	distribution	given T = T(x) is	the	same
as	the	posterior	given	the	data X = x.

. .. .. .. .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



Aim	of	the	studies: Differential	Abundance

Like	differentially	expressed	genes, a	species/OTU is
considered	differentially	abundant	if	its	mean	proportion	is
significantly	different	between	two	or	more	sample	classes	in
the	experimental	design.
Optimality	Criteria:
Sensititivity	or	Power True	Positive	Rate.
Specificity True	Negative	Rate.

We	have	to	correct	for	many	sources	of	error	(blocking,
modeling, control, etc..)

. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



Rarefaction	and	Reduction	to	Proportions	are
Inadmissible

The	following	is	a	minimal	example	to	explain	why	rarefying	is
statistically	inadmissible, especially	with	regards	to	variance
stabilization.
Suppose	we	want	to	compare	two	different	samples, called A
and B,	comprised	of	100	and	1000	reads, respectively. In
these	hypothetical	communities	only	two	types	of	microbes
have	been	observed, OTU1 and OTU2

. .. .. .. .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



According	to	Table 1, Left.

Table: A minimal	example	of	the	effect	of	rarefying	on	power.

Original	Abundance
A B

OTU1 62 500
OTU2 38 500
Total 100 1000

Rarefied	Abundance
A B

OTU1 62 50
OTU2 38 50

100 100
Standard	Tests	for	Difference

P-value χ2 Prop Fisher
Original 0.0290 0.0290 0.0272
Rarefied 0.1171 0.1171 0.1169

Hypothetical	abundance	data	in	its	original	(Top-Left)	and	rarefied
(Top-Right)	form, with	corresponding	formal	test	results	for	differentiation
(Bottom).

. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



Formally	comparing	the	two	proportions	according	to	a
standard	test	is	done	either	using	a χ2 test	(equivalent	to	a
two	sample	proportion	test	here)	or	a	Fisher	exact	test. This
requires	knowledge	of	the	number	of	trials.
By	rarefying	(Table 1, top-right)	so	that	both	samples	have
the	same	number	of	counts, we	are	no	longer	able	to
differentiate	between	them.
This	loss	of	power	is	completely	attributable	to	reducing	the
size	of B by	a	factor	of	10, which	also	increases	the
confidence	intervals	corresponding	to	each	proportion	such
that	they	are	no	longer	distinguishable	from	those	in A,	even
though	they	are	distinguishable	in	the	original	data.
The	variance	of	the	proportion's	estimate p̂ is	multiplied	by	10
when	the	total	count	is	divided	by	10.

. .. .. .. .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



Equalization	of	variances

In	this	binomial	example	the	variance	of	the	proportion
estimate	is Var(Xn ) =

pq
n =

q
nE(

X
n ), a	function	of	the	mean.

This	is	a	common	occurrence	and	one	that	is	traditionally
dealt	with	in	statistics	by	applying	variance-stabilizing
transformations.
However, in	order	to	find	the	right	transformation, we	need	a
good	model	for	the	error.

. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



Variance	Stabilization

Prefer	to	deal	with	errors	across	samples	which	are
independent	and	identically	distributed.
In	particular	homoscedasticity	(equal	variances)	across	all	the
noise	levels.
This	is	not	the	case	when	we	have	unequal	sample	sizes	and
variations	in	the	accuracy	across	instruments.
A standard	way	of	dealing	with	heteroscedastic	noise	is	to
try	to	decompose	the	sources	of	heterogeneity	and	apply
transformations	that	make	the	noise	variance	almost	constant.
These	are	called variance	stabilizing	transformations.

. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



Take	for	instance	different	Poisson	variables	with	mean µi.
Their	variances	are	all	different	if	the µi are	different.
However, if	the	square	root	transformation	is	applied	to	each
of	the	variables, then	the	transformed	variables	will	have
approximately	constant	variance.
Actually	if	we	take	the	transformation x −→ 2

√
x we	obtain	a

variance	approximately	equal	to	1..

. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



var = µ+ cµ2

. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .
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Modeling	read	counts

If	technical	replicates	have	same	number	of	reads: sj.
Poisson	variation	with	mean µ = sjui.
Taxa i having	an	incidence	proportion ui.
Number	of	reads	for	the	sample j and	taxa i would	be

Kij ∼ Poisson (sjui)

. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



Negative	Binomial	with	the	two	parameters: the	mean m and
r = 1−p

p m, then	the	probability	is:

X ∼ NB(m; r)

P(X = k) =

(
k+ r− 1

k

)(
r

r+ m

)r( m
r+ m

)k

=
Γ(k+ r)
k!Γ(r)

(
r

r+ m

)r( m
r+ m

)k

The	variance	is Var(X) = m(m+r)
r = m+ m2

r , we	will	also	use
ϕ = 1

r and	call	this	the	overdispersion	parameter, giving
Var(X) = m+ ϕm2. When ϕ = 0 the	distribution	of X will	be
Poisson(m). This	is	the	(mean=m,overdispersion=ϕ)
parametrization	we	will	use	from	now	on.

. .. .. .. .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



Modeling	Counts

For	biological	replicates	within	the	same	group	--	such	as
treatment	or	control	groups	or	the	same	environments	--	the
proportions ui will	be	variable	between	samples.
Call	the	two	parameters ri and ϕ =

pi
1−pi .

So	that Uij the	proportion	of	taxa i in	sample j is	distributed
according	to	Gamma(ri, ϕ =

pi
1−pi ).

Kij have	a	Poisson-Gamma	mixture	of	different	Poisson
variables	each	with	its	own	parameter	generated	from	the
Poisson.
This	gives	the	Negative	Binomial	with	parameters (m = uisj)
and ϕi as	a	satisfactory	model	of	the	variability.

. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



Different	Conditions
Samples	belong	to	different	conditions	such	as	treatment	and
control	or	different	environments.
Estimate	the	values	of	the	parameters	separately	for	each	of
the	different	biological	replicate	conditions/classes.
Use	the	index c for	the	different	conditions, we	then	have
the	counts	for	the	taxa i and	sample j in	condition c having	a
Negative	Binomial	distribution	with mc = uicsj and ϕic so	that
the	variance	is	written

uicsj + ϕics2ju2ic (1)
Estimate	the	parameters uic and ϕic from	the	data	for	each
OTU and	sample	condition.
The	end	result	provides	a	variance	stabilizing	transformation
of	the	data	that	allows	a	statistically	efficient	comparisons
between	conditions.
This	application	of	a	hierarchical	mixture	model	is	very
similar	to	the	random	effects	models	used	in	the	context	of
analysis	of	variance. . .. .. .. .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



Using	RNA-seq	implementation	: DESeq2

McMurdie	and	Holmes	(2014)	``Waste	Not, Want	Not: Why
rarefying	microbiome	data	is	inadmissible'', PLOS
Computational	Biology, Methods.
Examples	of	Overdispersion	in	Microbiome	Data.
Common-Scale	Variance	versus	Mean	for	Microbiome	Data.
Each	point	in	each	panel	represents	a	different	OTU's
mean/variance	estimate	for	a	biological	replicate	and	study.
The	data	in	this	figure	come	from	the Global	Patterns
surveyand	the Long-Term	Dietary	Patterns study(Right)
Variance	versus	mean	abundance	for	rarefied	counts.
(Left)	Common-scale	variances	and	common-scale	means,
estimated	according	to	the	DESeq2	package.
The	dashed	gray	line	denotes	the σ2 = µ case	(Poisson;
ϕ = 0). The	cyan	curve	denotes	the	fitted	variance	estimate
using	DESeq.

. .. .. .. .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .

http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003531
http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003531


Code

. .. .. .. .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .

http://joey711.github.io/waste-not-supplemental/dispersion-survey/dispersion.html
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Normalizations	in	Simulation
For	each	simulated	experiment	we	used	the	following
normalization	methods	prior	to	calculating	sample-wise
distances.
1. DESeqVS.	Variance	Stabilization	implemented	in	the

DESeq	package.
2. None. Counts	not	transformed. Differences	in	total

library	size	could	affect	the	values	of	some	distance
metrics.

3. Proportion. Counts	are	divided	by	total	library	size.
4. Rarefy. Rarefying	is	performed	as	defined	in	the

introduction, using rarefy_even_depth implemented	in
the	phyloseq	package. with NL,min set	to	the
15th-percentile	of	library	sizes	within	each	simulated
experiment.

5. UQ-logFC.	The Upper-Quartile	Log-Fold	Change
normalization	implemented	in	the	edgeR package, coupled
with	the top-MSD distance.

. .. .. .. .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



Distances	in	Simulation
For	each	of	the	previous	normalizations	we	calculated
sample-wise	distance/dissimilarity	matrices	using	the
following	methods, if	applicable.
1. Bray-Curtis. The	Bray-Curtis	dissimilarity	first	defined	in

1957	for	forest	ecology.
2. Euclidean. The	euclidean	distance	treating	each	OTU as

a	dimension.
√∑n

i=1(Ki1 − Ki2)2, is	the	distance	between
samples 1 and 2,n the	number	of	distinct	OTUs.

3. PoissonDist. Our	abbreviation	of PoissonDistance, a
sample-wise	distance	implemented	in	the	PoiClaClu
package (Witten,2011).

4. top-MSD.	The	mean	squared	difference	of	top	OTUs, as
implemented	in	edgeR.

5. UniFrac-u. The	Unweighted	UniFrac
distance (Lozupone,2005).

6. UniFrac-w. The	Weighted	UniFrac
distance (Lozupone,2007). . .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



In	order	to	consistently	evaluate	performance	in	this	regard,
we	generated	microbiome	counts	by	sampling	from	two
different	multinomials	that	were	based	on	either	the Ocean
or Feces microbiomes	of	the Global	Patterns empirical	dataset.
An	equal	number	of	simulated	microbiome	samples	was
generated	from	each	multinomial. The Ocean and Feces
sample	classes	have	negligible	overlapping	OTUs.
Mixing	them	by	a	defined	proportion	allows	control	over	the
difficulty	of	the	clustering	task	from	trivial	(no	mixing)	to
impossible	(both	multinomials	evenly	mixed).
Clustering	was	performed	independently	for	each	combination
of	simulated	experiment, normalization	method, and	distance
measure	using	partitioning	around	medoids	(PAM).
The	accuracy	is	the	fraction	of	simulated	samples	correctly
clustered; worst	possible	accuracy	is	50%	if	all	samples	are
clustered. (Rarefying	procedure	omits	samples, so	its
accuracy	can	be	below	50%)

. .. .. .. .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



Improvement	in	Power	and	FDR

Performance	of	differential	abundance	detection	with	and
without	rarefying	summarized	by	“Area	Under	the	Curve”
(AUC) metric	of	a	Receiver	Operator	Curve	(ROC) (vertical
axis).
Briefly, the	AUC value	varies	from	0.5	(random)	to	1.0
(perfect).
The	horizontal	axis	indicates	the	effect	size, shown	as	the
factor	applied	to	OTU counts	to	simulate	a	differential
abundance.
Each	curve	traces	the	respective	normalization	method’s
mean	performance	of	that	panel, with	a	vertical	bar
indicating	a	standard	deviation	in	performance	across	all
replicates	and	microbiome	templates.

. .. .. .. .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



The	right-hand	side	of	the	panel	rows	indicates	the	median
library	size, N,	while	the	darkness	of	line	shading	indicates
the	number	of	samples	per	simulated	experiment.
Color	shade	and	shape	indicate	the	normalization	method.
Detection	among	multiple	tests	was	defined	using	a	False
Discovery	Rate	(Benjamini-Hochberg)	significance	threshold
of	0.05.

. .. .. .. .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



DESeq2 − nbinomWaldTest DESeq − nbinomTest edgeR − exactTest metagenomeSeq − fitZig two sided Welch t−test
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Improvements	of	Distance	based	clustering

Clustering	accuracy	in	simulated	two-class	mixing.
Clustering	accuracy	(with	PAM:vertical	axis)	following
different	normalization	and	distance	methods.
Points	denote	the	mean	values	of	replicates, with	a	vertical
bar	representing	one	standard	deviation	above	and	below.
The	horizontal	axis	is	the	effect	size.
Each	multinomial	is	derived	from	two	microbiomes	that	have
negligible	overlapping	OTUs	(Fecal	and	Ocean	microbiomes	in
the	Global	Patterns	dataset	).
Higher	values	of	effect	size	indicate	an	easier	clustering	task.
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Bray − Curtis Euclidean PoissonDist top − MSD UniFrac − u UniFrac − w

●
●●

●
●

●

●

●

●
●● ●

●

●

●
●

●●●

●

●

●
●

●

●
●●

●
●

●

●
●

●
●

●
●

●

●

● ●

●●●

●

●

● ● ●

●
●

●

●
●

● ● ●

●
●

●

●

● ●
● ●

●

●

● ● ●
● ●

●

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

N ~
L

=
1

0
0

0
N ~

L
=

2
0

0
0

N ~
L

=
1

0
0

0
0

1.15 2.00 3.00 1.15 2.00 3.00 1.15 2.00 3.00 1.15 2.00 3.00 1.15 2.00 3.00 1.15 2.00 3.00

Effect Size

A
c
c
u

ra
c
y

Normalization Method: ● DESeqVS None Proportion Rarefy UQ−logFC

. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. . . .. .. .



Examples	using	Phyloseq:
http://joey711.github.io/phyloseq-extensions/

DESeq2.html
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Benefitting	from	the	tools	and	schools	of
Statisticians.......
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phyloseq

Joey	McMurdie	(joey711	on	github).
Available	in	Bioconductor.
How	can	I (my	students, my	postdocs...) learn	more?
Google: wiki	phyloseq	deseq2
http://www-stat.stanford.edu/˜susan/
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