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Challenges for those of us working from the ground
up

> Heteroscedasticity.
» Information Leaks.
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Some real data (Caporoso et al, 2011)
> GlobalPatterns

phyloseg-class experiment-level object

otu_table() OTU Table: [ 19216 taxa and 26 samples ]
sample data()Sample Data: [ 26 samples by 7 sample vari:
tax table()Taxonomy Table: [ 19216 taxa by 7 taxonomic ra
phy tree() Phylogenetic Tree:[ 19216 tips and 19215 intern



otu_table(GlobalPatterns)[45:55,1:10]
OTU Table: [11 taxa and 10 samples]
taxa are rows
CL3 CC1 SVl M31Fcsw M11Fcsw M31Plmr M11PIlmr F21

573586 0 0 0 0 0 0 0
568724 0 0 0 0 0 0 0
175045 0 0 0 0 1 0 0
552540 0 0 0 0 0 0 0
546313 72 153 11232 0 1 1 0
548602 0 0 16 0 0 0 0
564501 0 0 3 0 0 0 0
47778 1 14 207 0 0 0 5
54107 2 87 746 0 0 0 3
25116 1 4 169 0 0 0 0
71074 93 341 11788 1 0 23 48



> sample sums(GlobalPatterns)
CL3 Ccc1 SVl M31Fcsw Ml1llFcsw M31Plmr M11Plmr F
864077 1135457 697509 1543451 2076476 718943 433894
NP3 NP5 TRRsedl TRRsed2 TRRsed3 TS28 TS29 ]
1478965 1652754 58688 493126 279704 937466 1211071

> summary(sample sums(GlobalPatterns))
Min. 1lst Qu. Median Mean 3rd Qu. Max.
58690 567100 1107000 1085000 1527000 2357000



How to deal with different numbers of reads?

rarefaction curves

Sanders 1968
non-parametric richness
estimate coverage
Normalize?

Speces

Sanders, H. L. (1968). Marine
benthic diversity: a comparative 0 % 100 1% 200
study. American Naturalist Sample Sze



Very popular: giime

Nature Methods 7, 335-336 (1 May 2010) | doi:10.1038/nmeth.f.303

QIIME allows analysis of high-throughput
community sequencing data

J Gregory Caporaso , Justin Kuczynski , Jesse Stombaugh , Kyle
Bittinger , Frederic D Bushman , Elizabeth K Costello , Noah Fierer ,
Antonio Gonzalez Pefia , Julia K Goodrich , Jeffrey I Gordon , Gavin A
Huttley , Scott T Kelley , Dan Knights , Jeremy E Koenig , Ruth E Ley ,
Catherine A Lozupone , Daniel McDonald , Brian D Muegge , Meg Pirrung
, Jens Reeder , Joel R Sevinsky , Peter J Turnbaugh , William A Walters ,
Jeremy Widmann , Tanya Yatsunenko , Jesse Zaneveld & Rob Knight

2,300 citations.



Current Method: Rarefying

Ad hoc library size normalization by random subsampling
without replacement.

1. Select a minimum library size, N_ nin. This has also been
called the rarefaction level.

2. Discard libraries (microbiome samples) that have fewer
reads than Ni min.

3. Subsample the remaining libraries without replacement
such that they all have size Ni_ min.

Often N min is chosen to be equal to the size of the smallest
library that is not considered defective, and the process of
identifying defective samples comes with a risk of
subjectivity and bias. In many cases researchers have also
failed to repeat the random subsampling step (3) or record
the pseudorandom number generation seed/process --- both
of which are essential for reproducibility.



Reduction of Data to Proportions

Many software programs automatically reduce the data to
relative proportions, losing the information about library sizes
or read counts.

This makes comparisons very difficult.

Statistical Formulation: When making a (testing) decision,
reducing results from a Binomial distribution into a proportion
does not give an admissible procedure.

Definition:An admissible rule is an optimal rule for making a
decision in the sense that there is no other rule that is
always better than it.



How to compress the data?

b 6 Final
b Results

..without losing foo much information?



The proportion is not a sufficient statistic for the
Binomial.

0 A statistic T(X) is called sufficient for 6 if it contains all

the information in X about 6.

Standard statistical viewpoint:

The joint probability distribution of the data conditional on
the value of a sufficient statistic for a parameter, does not
depend on that parameter: Py(X|T(X) = T) does not depend
on 0. Wiki


http://en.wikipedia.org/wiki/Sufficient_statistic

Equivalent Definitions

Mutual Information:

IXY) = 37 3 P(x, ylog - V) — k(P(x, y), P(x)P(y))

vy (x)P(y)

A function of the data T(X) is a sufficient statistic for the
distribution if
1(6,X) = (0, T(X))

for all distributions on 6.

Note:

For a Bayesian, no matter what prior one uses, one only has
to consider the sufficient statistic for making inference,
because the posterior distribution given T = T(x) is the same
as the posterior given the data X = x.



Aim of the studies: Differential Abundance

Like differentially expressed genes, a species/OTU is
considered differentially abundant if its mean proportion is
significantly different between two or more sample classes in
the experimental design.
Optimality Criteria:
Sensititivity or Power True Positive Rate.

Specificity True Negative Rate.

We have to correct for many sources of error (blocking,
modeling, control, etc..)



Rarefaction and Reduction to Proportions are
Inadmissible

The following is a minimal example to explain why rarefying is
statistically inadmissible, especially with regards fo variance
stabilization.

Suppose we want to compare two different samples, called A
and B, comprised of 100 and 1000 reads, respectively. In
these hypothetical communities only two types of microbes
have been observed, OTUl and OTU2



According to Table 1, Left.

Table: A minimal example of the effect of rarefying on power.

Original Abundance

Rarefied Abundance

A B

A B

OoTuUl 62 500
oTuz 38 500

OTuUl 62 50
OoTuUZ 38 50

Total 100 1000

100 100

Standard Tests for Difference

P-value %

Prop  Fisher

Original 0.0290
Rarefied 0.1171

0.0290 0.0272
0.1171  0.1169

Hypothetical abundance data in its original (Top-Left) and rarefied
(Top-Right) form, with corresponding formal test results for differentiation

(Bottom).



Formally comparing the two proportions according to a
standard test is done either using a x? test (equivalent to a
two sample proportion test here) or a Fisher exact test. This
requires knowledge of the number of trials.

By rarefying (Table 1, top-right) so that both samples have
the same number of counts, we are no longer able to
differentiate between them.

This loss of power is completely attributable to reducing the
size of B by a factor of 10, which also increases the
confidence intervals corresponding to each proportion such
that they are no longer distinguishable from those in A, even
though they are distinguishable in the original data.

The variance of the proportion's estimate p is multiplied by 10
when the fotal count is divided by 10.



Equalization of variances

In this binomial example the variance of the proportion
estimate is Var(X) = B = 3g(X), a function of the mean.
This is a common occurrence and one that is traditionally
dealt with in statistics by applying variance-stabilizing
transformations.

However, in order to find the right transformation, we need a

good model for the error.



Variance Stabilization

Prefer to deal with errors across samples which are
independent and identically distributed.

In particular homoscedasticity (equal variances) across all the
noise levels.

This is not the case when we have unequal sample sizes and
variations in the accuracy across instruments.

A standard way of dealing with heteroscedastic noise is to
try to decompose the sources of heterogeneity and apply
transformations that make the noise variance almost constant.
These are called variance stabilizing transformations.



Take for instance different Poisson variables with mean ;.
Their variances are all different if the p; are different.
However, if the square root transformation is applied fo each
of the variables, then the transformed variables will have
approximately constant variance.

Actually if we take the transformation x — 2./x we obtain a
variance approximately equal to 1..



var = u + cp’

The additive-multiplicative error
model
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Trey Ideker et al.: JCB (2000)
David Rocke and Blythe Durbin: JCB (2001), Bioinformatics (2002)

For robust afﬁne regression normalisation: W. Huber et al. Biocinformatics (2002)
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variance

Two component
error models
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Microarrays

var(y) = b + c-p?

b: background

c: asymptotic coefficient of
variation

Sequencing counts
early edgeR:

var(y) = p + a-p?

p: from Poisson

a: dispersion

DESeq

var(y) = p + a(u)-p?
DESeq parametric option
a(y) = a1/p + ao o

var(y) = 4 + ar'yg + ao"p?
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Modeling read counts

If technical replicates have same number of reads: s;.
Poisson variation with mean ;1 = sju;.

Taxa i having an incidence proportion u;.

Number of reads for the sample j and taxa i would be

Kij ~ Poisson (sjui)



Negative Binomial with the two parameters: the mean m and
r= %m, then the probability is:

X ~ NB(m;r)

1 r k
= = (7 () (59)
k r+m r+m
 T(k+r) r\"/ m \*
 KID(r) \r+m r+m
The variance is Var(X) = m =m+ ”‘72 we will also use
¢ =1 and call this the overdispersion parameter, giving
Var(X) = m+ ¢m?. When ¢ = 0 the distribution of X will be
Poisson(m). This is the (mean=m,overdispersion=¢)

parametrization we will use from now on.




Modeling Counts

For biological replicates within the same group -- such as
treatment or control groups or the same environments -- the
proportions u; will be variable between samples.

Call the two parameters r; and ¢ = 1BiPi'

So that Uj; the proportion of taxa i in sample j is distributed
according to Gamma(ri, ¢ = 1E‘Pi).

Kij have a Poisson-Gamma mixture of different Poisson
variables each with its own parameter generated from the
Poisson.

This gives the Negative Binomial with parameters (m = u;s;)

and ¢; as a satisfactory model of the variability.




Different Conditions

Samples belong to different conditions such as treatment and
control or different environments.

Estimate the values of the parameters separately for each of
the different biological replicate conditions/classes.

Use the index c for the different conditions, we then have
the counts for the taxa i and sample j in condition ¢ having a
Negative Binomial distribution with m¢ = u;cs; and ¢ic so that
the variance is written

UicS; + PicS] Uit (1)
Estimate the parameters uj. and ¢ic from the data for each
OTU and sample condition.
The end result provides a variance stabilizing transformation
of the data that allows a statistically efficient comparisons
between conditions.
This application of a hierarchical mixture model is very
similar to the random effects models used in the context of
analysis of variance.



Using RNA-seq implementation : DESeq2

McMurdie and Holmes (2014) “Waste Not, Want Not: Why
rarefying microbiome data is inadmissible", PLOS
Computational Biology, Methods.

Examples of Overdispersion in Microbiome Data.
Common-Scale Variance versus Mean for Microbiome Data.
Each point in each panel represents a different OTU's
mean/variance estimate for a biological replicate and study.
The data in this figure come from the Global Patterns
surveyand the Long-Term Dietary Patterns study(Right)
Variance versus mean abundance for rarefied counts.

(Left) Common-scale variances and common-scale means,
estimated according to the DESeq2 package.

The dashed gray line denotes the o2 = i case (Poisson;

¢ = 0). The cyan curve denotes the fitted variance estimate
using DESeq.


http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003531
http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003531

Code


http://joey711.github.io/waste-not-supplemental/dispersion-survey/dispersion.html
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A

B

Microbiome Clustering Simulation
samples
15/ 15/ 161: o of o o
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Simulated Ocean
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library size.

Differential Abundance Simulation

samples
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2. Sample from
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test null \
Repeat for each environ-

ment, number of sam-
ples, effect size, and

median library size.

4. Perform differential

abundance tests,

evaluate performance.



Normalizations in Simulation

For each simulated experiment we used the following
normalization methods prior to calculating sample-wise
distances.

1. DESeqVS. Variance Stabilization implemented in the
DESeq package.

2. None. Counts not transformed. Differences in total
library size could affect the values of some distance
metrics.

3. Proportion. Counts are divided by total library size.

4. Rarefy. Rarefying is performed as defined in the
introduction, using rarefy_even_depth implemented in
the phyloseq package. with N_ min set to the
15t -percentile of library sizes within each simulated
experiment.

5. UQ-logFC. The Upper-Quartile Log-Fold Change
normalization implemented in the edgeR package, coupled
with the top-MSD distance.



Distances in Simulation

For each of the previous normalizations we calculated
sample-wise distance/dissimilarity matrices using the
following methods, if applicable.

L.

Bray-Curtis. The Bray-Curtis dissimilarity first defined in
1957 for forest ecology.

. Euclidean. The euclidean distance treating each OTU as

a dimension. \/E. 1(Ki1 —Ki2)2, is the distance between
samples 1 and 2,n the number of distinct OTUs.

. PoissonDist. Our abbreviation of PoissonDistance, a

sample-wise distance implemented in the PoiClaClu
package (Witten,2011).

. top-MSD. The mean squared difference of top OTUs, as

implemented in edgeR.

. UniFrac-u. The Unweighted UniFrac

distance (Lozupone,2005).

. UniFrac-w. The Weighted UniFrac

distance (Lozupone,2007).



In order to consistently evaluate performance in this regard,
we generated microbiome counts by sampling from two
different multinomials that were based on either the Ocean
or Feces microbiomes of the Global Patterns empirical dataset.
An equal number of simulated microbiome samples was
generated from each multinomial. The Ocean and Feces
sample classes have negligible overlapping OTUs.

Mixing them by a defined proportion allows control over the
difficulty of the clustering task from trivial (no mixing) to
impossible (both multinomials evenly mixed).

Clustering was performed independently for each combination
of simulated experiment, normalization method, and distance
measure using partitioning around medoids (PAM).

The accuracy is the fraction of simulated samples correctly
clustered; worst possible accuracy is 50% if all samples are
clustered. (Rarefying procedure omits samples, so its
accuracy can be below 50%)



Improvement in Power and FDR

Performance of differential abundance detection with and
without rarefying summarized by “Area Under the Curve”
(AUC) metric of a Receiver Operator Curve (ROC) (vertical
axis).

Briefly, the AUC value varies from 0.5 (random) to 1.0
(perfect).

The horizontal axis indicates the effect size, shown as the
factor applied to OTU counts to simulate a differential
abundance.

Each curve traces the respective normalization methods
mean performance of that panel, with a vertical bar
indicating a standard deviation in performance across all
replicates and microbiome templates.



The right-hand side of the panel rows indicates the median
library size, N, while the darkness of line shading indicates
the number of samples per simulated experiment.

Color shade and shape indicate the normalization method.
Detection among multiple tests was defined using a False
Discovery Rate (Benjamini-Hochberg) significance threshold
of 0.05.



Specificity

Sensitivity

Number Samples per Class:

DESeq2 - nbinomWaldTest

—_—3—5—10

DESeq - nbinomTest

Normalization Method:

edgeR - exactTest
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Improvements of Distance based clustering

Clustering accuracy in simulated two-class mixing.

Clustering accuracy (with PAM:vertical axis) following
different normalization and distance methods.

Points denote the mean values of replicates, with a vertical
bar representing one standard deviation above and below.
The horizontal axis is the effect size.

Each multinomial is derived from two microbiomes that have
negligible overlapping OTUs (Fecal and Ocean microbiomes in
the Global Patterns dataset ).

Higher values of effect size indicate an easier clustering task.



Accuracy

Normalization Method:  —— DESeqVS —— None —#— Proportion —— Rarefy —#- UQ-logFC
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Examples using Phyloseq:
http://joey711.github.io/phyloseqg-extensions/
DESeg2.html


http://joey711.github.io/phyloseq-extensions/DESeq2.html
http://joey711.github.io/phyloseq-extensions/DESeq2.html

Benefitting from the tools and schools of
Statisticians.......

Thanks to the R community:

Chessel, Jombart, Dray, Thioulouse ade4 , Wolfgang Huber,
Michael Love for DESeqg2, Gordon Smyth and his team for
edgeR and Emmanuel Paradis for ape.
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phyloseq

Joey McMurdie (joey711 on github).

Available in Bioconductor.

How can I (my students, my postdocs...) learn more?
Google: wiki phyloseq deseq2
http://www-stat.stanford.edu/ susan/
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	 Handwriting - Dakota Heteroscedasticity: Mixtures and how to Normalize them

