Assignment: Ordering a 9-Square Grid

Description

OBJECTIVES
- Create 9 modules and experiment with combining the modules.
- Experiment with a proportional spacing system of either ABCBA or BCBA.
- Emphasize the use of both additive and subtractive thinking (or skeletal and solid walls).
- Experiment with expressions of elements of the plan on the façades.
- Explore the ideas of intervention, rotation, and collision.
- Experiment with pushing modules together as well as spacing them apart to explore potential massing possibilities.

HOW TO BEGIN
Recognizing that you will have to construct more than 9 cubes to arrive at your best solution, we will begin by applying a single objective to each module. All modules are fundamentally to be 12’x12’x12’ (at ¼ “= 1”-0”). However, in some cases (as with additive and subtractive studies) you will be reducing or adding to this fundamental module. You must construct a flat roof but not a floor.

1 Clark & Pause p.234
PART 1
Studies applied to individual modules. Do the project in the following order.

A. Proportional slices
In the case of the first module or cube of essentially 12’x12’x12’ you are to explore a proportional spacing system of either ABCBA or BCBA. Below is a study by Peter Eisenman that illustrates the intent of this exercise.

B. Additive/subtractive thinking
In the construction of your second module you are to focus on the potential of thinking in both additive and subtractive terms. Emphasize the use of both skeletal and solid walls. Experiment with columns as well as walls in order to promote the idea of variation between skeletal and load bearing wall construction. You may want to introduce materials that represent ready-made columns (balsa wood, strips of foam core, etc.).
C. Superimposition of plans and Plan to façade

Explore expressions of elements of the plan on the façades and the superimposition of two plans.

Superimposition:
Construct at scale the basic floor plan of module 1: proportional slices. Construct a floor plan of your additive/subtractive model. Overlay these two plans, but keep them at right angles to each other. Trace the inherent result.

Plan to façade:
Change your perception of the floor plan to a proposal for a façade of your module. Explore some of the divisions or random elements that are suggested. Since the superimposed plans may be too complex, you should also try each individual plan as a source of inspiration for dividing up a façade.

D. Intervention, rotation, and collision

Construct a rectangular form at 5’x7’x10’ and quickly construct two simple square forms at 12’x12’x12’ (OMIT THE FLAT ROOFS in this particular experiment).

First, use the rectangular form to intervene in some way inside or between the two squares. Next, explore rotation and collision between these three forms. What do these studies suggest to you in terms of the other design variables you have explored; for example can an intersection suggest a place of change? An intersection might be an appropriate place for the application of additive/subtractive principles; the first floor might remain solid while the second floor might display a negative corner?
PART 2
Combining the modules explore the relative aesthetics; choose the strongest direction for the whole; simplify themes; and explore various combinations and degrees of separation between cubes. At this point you will break away from the idea of creating individual modules centered on a different design incentive and you will begin to pull together your strongest ideas. At this point you will construct additional modules that have as their cornerstone the essence of the most successfully designed modules you have built so far.

DELIVERABLES
- Nine modules that closely relate to each other while not necessarily repeating each other.
- A clear explanation through a 5-minute presentation of the formal design theme(s) you used to create the 9 modules.
- A final placement of the modules that yields an aesthetically pleasing massing for a building.