\[R_p = k_p [M] (f k_d [I]/k_t) \frac{1}{2} \]

The integrated form of this equation is
\[-\ln \left(\frac{[m]}{[m]_0} \right) = \frac{2k_d}{k_t} \left(\frac{f [I]_0}{k_d} \right)^{1/2} \left(1 - \exp \left(-\frac{k_d t}{k_t} \right) \right) = -\ln (1 - P) \]

At \(t \to \infty \), \([m] \to [m]_\infty \), \(p \to p_\infty \)
\[-\ln (1 - p_\infty) = \frac{2k_d}{k_t} \left(\frac{f [I]_0}{k_d} \right)^{1/2} \]

The question asked how a change in \([M]_0\) could be used to increase \(P_\infty\). Regarding the equation above then the question is how \([M]_0\) affects the rate constants \(k_d, k_t, k_p \), since \(f \) and \([I]_0\) are independent of the initial monomer concentration. \(k_d \) depends on the initiator chemistry, temperature or light only and to first order not on monomer concentration (this could be different if for example the monomer and initiator both absorbed at the wavelength used to initiate). \(k_t \) depends on the ability of two radical chains to come into proximity and then to react. This should not be affected by the amount of monomer present or provided viscosity affected by the amount of monomer present (one could argue that with increasing monomer concentration a radical chain is less likely to react with another chain and more likely to react with a monomer, just statistically). Speaking, but this effect is included in \(R_p \) already by \([M]_0\) term.

So we are led to conclude that we cannot modify \(P_\infty \) by changing \([M]_0\).

Note that \(P_\infty = 1 - \frac{[M]_\infty}{[M]} \). Since \([M]_\infty\) does not change \(P_\infty \) we must conclude that \([M]_0\) scales with \([M]_0\).
3.5 b) We can use the dead-end technique to answer this portion of the question. In the problem it is clear that steady state applies since we are only 10–20% converted. So
\[R_t = R_e \text{ and } \frac{d[M_2]}{dt} = 0. \]

From the rate equation for propagation,
\[-\frac{d[m]}{dt} = R_p = k_p \frac{[M]}{K_t} \left(\frac{f [I]}{k_d [I]} \right)^{1/2}. \]

Assume initiation is first order in [I]. So
\[-\frac{d[I]}{dt} = k_d [I] \text{ and } [I] = [I]_0 e^{-k_d t}. \]

Substituting into \(\mathbf{1} \) and integrating with the initial condition \([M] = [M_0]\) at \(t = 0\),
\[-\ln \frac{[m]}{[M_0]} = \frac{2k_p}{k_t} \left(\frac{f [I]_0}{k_d} \right)^{1/2} \left(1 - e^{-k_d t} \right) \]

We consider for this problem \(t \rightarrow \infty \), so the exponential term disappears:
\[\boxed{\frac{2k_p}{k_t} \left(\frac{f [I]_0}{k_d} \right)^{1/2} = \frac{2k_p \left(\frac{f}{k_d k_t} \right)^{1/2}}{[I]_0^{1/2}}}. \]

Case 1: \(P_{oo} = 0.1 \)

By definition, \(P_{oo} = \frac{[M] - [M_e]}{[M_0]} \), so \(\frac{[M_e]}{[M_0]} = 1 - P_{oo} \)

\[-\ln \left(\frac{0.9}{[I]_0^{1/2}} \right) = 2k_p \left(\frac{f}{k_d k_t} \right)^{1/2} \]

\[\text{Rate constants and } f \text{ do not depend on concentration of initiator to first approximation, so these two quantities are equal.} \]

Case 2: \(P_{oo} = 0.2 \)

\[-\ln \left(\frac{0.8}{[I]_0^{1/2}} \right) = 2k_p \left(\frac{f}{k_d k_t} \right)^{1/2} \]

\[\frac{\ln (0.9)}{[I]_0^{1/2}} / \frac{\ln (0.8)}{[I]_0^{1/2}} = 1 \Rightarrow \text{over} \]
\[\frac{[I_0]^2}{[I_n]} = \left(\frac{\ln(0.8)}{\ln(0.9)} \right)^2 = 4.4856 \]

So we need to increase the initiator concentration by \(\approx 4.4856\) times to increase conversion. This result is consistent with intuition which says we need more initiator to polymerize more monomer if the kinetic chain length is fixed.

Effects on \(R_p, \overline{Dp} \)?

\[R_p \Rightarrow \text{Increases } R_p \text{ by a factor of } \sqrt{\frac{[I_0]}{[I_n]}} = 2.12 \]

\[\overline{Dp} = \frac{k_p}{R_p} \left(\frac{[I_n]^{1/2}}{k_t} \right) \propto \frac{1}{R_p} \quad \text{(Hudin, eqn 6.64)} \]

So the degree of polymerization decreases by a factor of 2.12.

C) **Temperature:**

Temperature affects \(k_d\) exponentially if the initiator is thermally homolysed. But it also affects all the rates, so we need to consider \(k_t\) and \(k_i\) as well.

Returning to \(x\), we can take the ratio for the 10% and 20% conversion rates:

\[A \equiv \frac{\ln(0.9)}{\ln(0.8)} = \left(\frac{k_p}{(k_d k_t)^{1/2}} \right)_{10\%} \]

\[\text{Taking the log of both sides and noting that all the } k_p \text{ behavior is } \ln A = \ln \left(\frac{A_p(Ad)^{1/2}}{A_d} \right)_{10\%} - \ln \left(\frac{\text{Exp}}{RT} \right)_{10\%} - \ln \left(\frac{A_p(Ad)^{1/2}}{A_d} \right)_{20\%} + \left(\frac{\text{Exp}}{RT} \right)_{20\%} \]

The \(A_p/Ad/A_d\) values should be independent of temperature.

Also: \(\text{Exp} = \text{total activation energy for polymerization rate} \)
independent of temperature, so

\[\ln A = \frac{E_R \left[\frac{1}{T_{20\%}} - \frac{1}{T_{10\%}} \right]}{R} \]

We are given values for \(E_d, E_t \) and \(E_R \), so we can calculate \(E_R \):

\[E_R = 32 - 32 - 4 = -4 \text{ kJ/mol} \]

Let \(T_{20\%} = f T_{10\%} \). We wish to see whether \(f > 1 \) or \(f < 1 \).

\[\ln A = \frac{E_R}{R} \left[\frac{T_{10\%} - T_{20\%}}{T_{10\%} T_{20\%}} \right] = \frac{E_R}{R} \left[\frac{1 - f}{f T_{10\%}} \right] \]

Solving for \(f \):

\[
\frac{R \ln A}{E_R} = \frac{f T_{10\%} + f}{1} = 1
\]

\[f = \frac{1}{\frac{R \ln A}{E_R} T_{10\%} + 1} \]

Plugging in values,

\[f \approx \frac{1}{1.368 \times 10^3 T + 1} \]

Note that we cannot determine \(f \) exactly without knowing the reference temperature.

\[f \]

\(f \) is > 1 for all values of \(T \). Therefore \(T_{20\%} > T_{10\%} \) and we need to decrease the temperature.

Photochemically Initiated:

Temperature has no effect on \(K_d \) in the ideal case.

So we proceed in the same manner, but \(K_d_{10\%} = K_d_{20\%} \)

\[\ln A = \frac{E_p - E_t}{2} \left[\frac{1 - f}{f T_{10\%}} \right] \]

where now \(E_p - E_t = 28 \text{ kJ/mol} \).
So basically since \(E_p - E_t > 0 \) an increase in temperature will have the desired effect to increase corrosion. However if may need to be large in this case because there is no effect on the initiator.

3.6

\[
f = 1.3 = \frac{\text{number of propagating propagating (prior to coupling/dispersionation)}}{\text{number of polymer molecules}}
\]

\[
a = \text{fraction of propagating chains undergoing coupling}
\]

\[
1 - a = \text{fraction of propagating chains undergoing disproportionation}
\]

Then for a system w/ \(n \) propagating polymer molecules,

\[
f = \frac{an + (1-a)n}{\frac{an}{2} + (1-a)n} = \frac{2}{2-a}
\]

\[
disproportionation \quad \text{yields} \quad (1-a)n \quad \text{fragments per molecule}
\]

\[
coupling \quad \text{yields} \quad an \quad \text{fragments per} \quad \frac{an}{2} \quad \text{molecule}
\]

\[
\therefore \quad a = \frac{2f-2}{f}
\]

\[
= \frac{2(1.3) - 2}{1.3}
\]

\[
= 0.462
\]

\[
\therefore \quad 46.2\% \quad \text{coupling}
\]

\[
53.8\% \quad \text{disproportionation}
\]
Problem 3-7

Given

\[[m]_0 = 0.2 \text{ m} \]
\[[I]_0 = 4 \times 10^{-3} \text{ m} \]
\[T = 60^\circ \text{ C} \]
\[k_p = 145 \text{ L/mol s} \]
\[k_t = 7 \times 10^{-7} \text{ L/mol s} \]
\[f = 1 \]
\[t_{1/2} = 44 \text{ hr.} \]

\[k_d = \frac{\ln 2}{t_{1/2}} = 0.0158 \text{ hr}^{-1} = \frac{hr}{60^\circ \text{ C}} = 4.376 \times 10^{-6} \text{ s}^{-1} \]

Determine time to 50% conversion.

\[-\ln \left(\frac{[m]}{[m]_0} \right) = \frac{2k_p}{(k_t)^{1/2}} \left(\frac{f[I]_0}{k_d} \right)^{1/2} \left(1 - e^{-k_t t/2} \right) \]

\[-\ln (1-p_c) = \frac{2(145) L}{\sqrt{7} \times 10^{-7} \text{ L/mol s}^1} \cdot \left(\frac{1 - 4 \times 10^{-3} \text{ mol L}^{-1}}{4.376 \times 10^{-6} \text{ s}^{-1}} \right)^{1/2} \left(1 - e^{-k_d t/2} \right) \]

\[t = 137.5 \text{ hr} \]

\[
\begin{align*}
eq & \text{eqn1} := -\ln (1-p) = 2k_p\sqrt{k_t} \cdot (f[I]_0/k_d)^{1/2} \left(1 - e^{-k_t t/2} \right) \\
\text{eqn2} := & 4p \int \frac{\frac{1}{k_d} \left(1 - e^{-k_d t} \right)^{1/2}}{\sqrt{t}} \\
\text{solve} := & \text{solve(eq1, t)} \text{ at } 60^\circ \text{ C} \]
\]

\[\approx 3.15 \times 10^{-11} \approx 0.0000000000 \]

\[1.37 \times 10^2 \]
Problem 3.17

a) Determine time for Case 4...

The integrated form of the polymerization rate equation can be written as

\[-\ln \left(\frac{[m]}{[n_0]} \right) = 2 k_p \left(\frac{f [I_0]}{k_d} \right)^{1/2} \left(1 - \exp \frac{-k_d t/2}{1 - \rho} \right)\]

Let \(V = \frac{k_p f^{1/2}}{(k_d)^{1/2}} \), and \(\frac{[m]}{[n_0]} = 1 - \rho \) conversion

\[-\ln (1 - \rho) = 2 \frac{V [I_0]^{1/2}}{k_d^{1/2}} \left(1 - \exp \frac{-k_d t/2}{1 - \rho} \right)\]

Consider cases #1 and #3. We use both at 60°C, and we can use the given values for \(\rho, [I_0] \) and \(t \) to solve for \(V \) and \(k_d \). This is done on the attached maple spreadsheet.

The formulas are reproduced below:

(1) \[-\ln (0.5) = 2 \frac{V}{k_d^{1/2}} \left(2.5 \times 10^{-1} \right)^{1/2} \left(1 - \exp \frac{-k_d (500 \times 60)}{2} \right)\]

(2) \[-\ln (0.6) = 2 \frac{V}{k_d^{1/2}} \left(1 \times 10^{-3} \right)^{1/2} \left(1 - \exp \frac{-k_d (600 \times 60)}{2} \right)\]

Solving for \(V \) and \(k_d \) yields

\[k_d = 2.0778 \times 10^{-5} \text{ Hz}\]

\[V = 0.118 \left(\frac{L}{mol \cdot s} \right)^{1/2}\]

Now consider case 4. These values should be the same for this case since temperature is the same. Thus for 4 we have

\[-\ln (0.5) = 2 \left(0.118 \left(\frac{L}{mol \cdot s} \right)^{1/2} \times 10^{-2} \left(\frac{mol}{L} \right) \right)^{1/2} \left(1 - \exp \frac{-2.0778 \times 10^{-5} t}{2} \right)\]
\[\rho_0 = \rho \]

\[\begin{align*}
\text{eqnA} & : = - \ln(1 - p1) = 2 \cdot \sqrt{V/kd^*(1/2) \cdot I1^*(1/2) \cdot (1 - \exp(-kd*t1/2))} \\
\text{eqnB} & : = - \ln(1 - p2) = 2 \cdot \sqrt{V/kd^*(1/2) \cdot I2^*(1/2) \cdot (1 - \exp(-kd*t2/2))} \\
\text{p1} & : = .5 \\
\text{p2} & : = .4 \\
\text{t1} & : = 500 \times 60 \\
\text{t2} & : = 600 \times 60 \\
\text{I1} & : = 2.5 \times 10^{-3} \\
\text{I2} & : = 1.10^{-3} \\
\text{eqnA} & : = 0.6931471806 = 100000000 \cdot \sqrt{V(1 - e^{-(1000 \cdot kd)}} \\
\text{eqnB} & : = 0.5103256238 = \frac{1 \cdot \sqrt{1000 \cdot (1 - e^{-(1000 \cdot kd)}}}{500} \\
\text{solve} & : = (\text{eqnA}, \text{eqnB}), (kd, V) \\
\{V : = 0.1439549775 + .00056236635 \cdot I1, kd : = .000133435371 + .000456694167 \cdot I1 \}, \\
\{V : = 0.1179915251, kd : = .000207784670 \} \\
\text{V} & : = 0.1179915251 \\
\text{kd} & : = 0.2077846770 \times 10^{-4} \\
\text{eqnC} & : = - \ln(1 - p3) = 2 \cdot \sqrt{V/kd^*(1/2) \cdot I3^*(1/2) \cdot (1 - \exp(-kd*t3/2))} \\
\text{p3} & : = .5 \\
\text{I3} & : = 10 \times 10^{-3} \\
\end{align*} \]
\[R_p = k_p [m] \left(\frac{f(k[I])}{k_t} \right)^2 \]

Since \(k_p = A_p \exp \left(\frac{-E_A}{RT} \right) \) (Arrhenius), then

\[\ln R_p = \ln \left(A_p \left(\frac{A_d}{A_t} \right)^\frac{1}{2} \right) + \ln \left(f[k[I]] \right) - \frac{E_A}{RT}, \text{ with } E_A = \text{ the desired activation energy.} \]

It should be clear from this equation that we need to use the data given at two different temperatures. Subtracting \(\ln R_p \) at 80°C from that at 60°C gives

\[(\ln R_p)_{60°C} - (\ln R_p)_{80°C} = \ln \left(\frac{f[k[I]]^{\frac{1}{2}} [m]}{f[k[I]]^{\frac{1}{2}} [m]} \right)_{60°C} = \frac{E_A}{R} \left(\frac{1}{333} - \frac{1}{353} \right) \]

\[\ln \frac{(R_p)_{60°C}}{(R_p)_{80°C}} = \ln \left(\frac{2.5 \times 10^{-3}(1)}{(10^{-3})^{0.5}} \right) - E_A \left(2.046 \times 10^{-5} \right) \]

\[\ln \frac{(R_p)_{60°C}}{(R_p)_{80°C}} = 1.15127 - E_A \left(2.046 \times 10^{-5} \right) \]

Now to be fully rigorous we'd need to know \((R_p)_{60°C}\) and \((R_p)_{80°C}\). To former we can already calculate from the information obtained in solving part a).

\[(R_p)_{60°C} = [m] V [J]^{\frac{2}{2}} ky^{\frac{1}{2}} = \left(\frac{m}{c} \right) \left(2.5 \times 10^{-3} \frac{mol}{L} \right)^{\frac{1}{2}} \left(0.118 \right) \left(\frac{L}{mol \cdot L} \right)^{\frac{1}{2}} \left(2.077 \times 10^{-5} \right) \]

\[(R_p)_{60°C} = 2.6874 \times 10^{-5} \frac{mol}{L s} \]

*
However to obtain the latter we'd need to determine V and k_d as in part a) at 80°C. This would require another row in the table with time, $[m]$ and $[I]$ all at 80°C.

Plugging these values back into $(R_p)_{80°C}$ and substituting into the above would allow us to rigorously obtain E_k.

A less exact/rigorous treatment is to estimate R_p values using the definition $R_p = -\frac{d[m]}{dt}$. Assuming R_p is constant over the interval specified du, $R_p = \frac{-\Delta m}{\Delta t}$.

$$R_p = \frac{-([m] - [m_o])}{t}$$

$$R_p = \frac{-([m] - [m_o])(1 - p)}{t}$$

$$R_p = \frac{-[m_o](1 - p - 1)}{t} = \frac{p[m_o]}{t}$$

$$R_p(60°C) = \frac{0.5 \times \frac{1.5}{t}}{500 \text{ min}} = 0.001 \frac{m}{L \text{min}} = 1.67 \times 10^{-5} \frac{m}{L \text{s}}$$

$$R_p(80°C) = \frac{0.75 \times \frac{0.5}{t}}{700 \text{ min}} = 5.35 \times 10^{-5} \frac{m}{L \text{min}}$$

Solving for E_k from x gives $E_k \approx 25.76 \text{ kJ/mol}$.
6-3. Use the simple copolymer equation (e.g. Rudin 7-14)

\[F_1 = \frac{r_1 f_1^2 + f_1 f_2}{r_1 f_1^2 + 2 f_1 f_2 + r_2 f_2}, \quad F_2 = 1 - F_1 \]

Here \(f_1 = f_2 = 0.5 \).

The compositions in each case are shown in the table below:

<table>
<thead>
<tr>
<th>Case</th>
<th>r1</th>
<th>r2</th>
<th>F1</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.478</td>
<td>0.522</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>10</td>
<td>0.091</td>
<td>0.909</td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
<td>3</td>
<td>0.216</td>
<td>0.784</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0.3</td>
<td>0.435</td>
<td>0.565</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0.500</td>
<td>0.500</td>
</tr>
<tr>
<td>6</td>
<td>0.8</td>
<td>2</td>
<td>0.375</td>
<td>0.625</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>15</td>
<td>0.111</td>
<td>0.889</td>
</tr>
</tbody>
</table>

\(r_1 = 0.5 \)
\(r_2 = 0.5 \)

Problem 6-7

Styrene = 1, \([1.5M] \) \(f_1 = \frac{1.5}{3+1.5} = \frac{1}{3} \)

Methyl Acrylate = 2, \([3.0M] \) \(f_2 = \frac{3}{4.5} = \frac{2}{3} \)

From solid, Table 6-2 \(r_1 = 0.19 \)
\(r_c = 0.80 \)

\[F_1 = \frac{r_1 f_1^2 + f_1 f_2}{r_1 f_1^2 + 2 f_1 f_2 + r_2 f_2} \]

\[F_1 = 29.6\% \text{ Styrene} \]
\[F_2 = 70.4\% \text{ methyl acrylate} \]

The composition will be independent of initiator concentration.
Problem #6-8

Determine the tendency toward alternation of the given monomers with 1,3 butadiene.

We need to calculate \(r_1 \) and \(r_e \) values, where

\[
r_1 = \frac{Q_1}{Q_2} \exp[-e_1(e_1-e_2)]
\]

\[
r_2 = \frac{Q_2}{Q_1} \exp[-e_2(e_2-e_1)]
\]

\[r_1 r_2 = \exp[-(e_1-e_2)^2]\]

Note that this is an empirical, approximate method, but it should show the trends we need to answer the question.

There is an excellent table in Odlan, p. 491 (1951 version) which has all the info needed. So let \(r_1 = \) butadiene and \(r_2 = 2nd \) monomer.

<table>
<thead>
<tr>
<th>Monomer1</th>
<th>Q</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3 butadiene</td>
<td>1.7</td>
<td>-0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monomer2</th>
<th>Q</th>
<th>(e)</th>
<th>(r_1)</th>
<th>(r_2)</th>
<th>(r_1 r_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-butyl vinyl ether</td>
<td>0.038</td>
<td>-1.5</td>
<td>73.759</td>
<td>0.005</td>
<td>0.368</td>
</tr>
<tr>
<td>methyl methacrylate</td>
<td>0.78</td>
<td>0.4</td>
<td>1.390</td>
<td>0.320</td>
<td>0.445</td>
</tr>
<tr>
<td>methyl acrylate</td>
<td>0.45</td>
<td>0.64</td>
<td>2.136</td>
<td>0.128</td>
<td>0.273</td>
</tr>
<tr>
<td>styrene</td>
<td>1</td>
<td>-0.8</td>
<td>1.975</td>
<td>0.463</td>
<td>0.914</td>
</tr>
<tr>
<td>maleic anhydride</td>
<td>0.86</td>
<td>3.69</td>
<td>0.243</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>vinyl acrylate</td>
<td>0.026</td>
<td>-0.88</td>
<td>79.066</td>
<td>0.011</td>
<td>0.866</td>
</tr>
<tr>
<td>acrylonitrile</td>
<td>0.48</td>
<td>1.23</td>
<td>1.491</td>
<td>0.034</td>
<td>0.050</td>
</tr>
</tbody>
</table>

When, for example \(r_1 > 1 \), this means a radical ending in a butadiene monomer will prefer to add another butadiene molecule rather than monomer-2. Thus \(n \)-butyl vinyl ether and vinyl acetate would expect to get mostly blocks of butadiene. The case will be worse w/ n-butyl vinyl ether as its \(r_2 \) value is lower. The best alternator will be maleic anhydride, for which \(r_1 , r_2 < 0 \) and \(r_1 r_2 > 0 \), we would expect a very high
degree of alternation in this case. In other five or more complicated, we cannot simply rank them according to \(r_1 r_2 \) products being close to zero because these only works when both \(r_1 \) and \(r_2 \) are less than zero. Otherwise there is a tendency for block formation, as in this case butadiene is favored to add to radical ends terminating in either butadiene or monomer two. We would expect that these pairs being closest to ideal \((r_1 \sim r_2 \sim 1, r_1 r_2 = 1) \) to be better alternation as they obey bornoulli statistics and will tend less towards higher butadiene incorporation.

\[\text{Alternating} \quad \text{Maleic Anhydride} \]
\[\text{Styrene} \]
\[\text{methyl} \quad \text{methylacrylate} \]
\[\text{methyl} \quad \text{acrylate} \]
\[\text{acrylonitrile} \]
\[\text{vinyl acetate} \]
\[\text{n-butyl vinyl ether} \]

\[\text{Homopolymer} \]