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Thermodynamics of Polymer Blends:
Part 2

!! To develop the classicalTo develop the classical  Flory-Huggins  theory for the freetheory for the free
energy of mixing of polymer solutions based on aenergy of mixing of polymer solutions based on a
statistical approach on a regular lattice.statistical approach on a regular lattice.

!! To describe the criteria for To describe the criteria for phase stability and illustrate and illustrate

     typical phase diagrams for polymer blends and solutions.     typical phase diagrams for polymer blends and solutions.

Objectives



Outline

! Phase Equilibria

"" Free energy of mixing for a phase-separated systemFree energy of mixing for a phase-separated system

"" SpinodalSpinodal and and binodal binodal curves in the curves in the Flory Flory--HugginsHuggins
modelmodel

"" Qualitative results from equation-of-state theoryQualitative results from equation-of-state theory



Geometric Mean Mixing Rule
For the systems in which ∆Hm > 0, it is common to express ∆Hm

in terms of the cohesive energy density, or solubility parameter.
Analyze by first considering the (1,1) and (2,2) interactions.

∆U ZN wv i A ii, =
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Change in internal energy of 
vaporization of one mole of (i)

To evaluate the (1,2) cross interactions, invoke the geometric
mean mixing rule:

w w w12 11 22≅

This approximation will be most accurate when both the (1,1)
and (2,2) forces are either London dispersion or dipole-dipole. It
breaks down for hydrogen bonding or strong specific interactions.
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Cohesive Energy Density

∆ ∆H ZN wm =





1
2 1 2ϕ ϕRecall that

− =

















−



































∆
∆ ∆

w
U

ZN

U

ZN

v v, ,1

1

2

2

1

2

2

1
2

1
2

∆ ∆ ∆U H P Vv v= −

∆ ∆U H P V Vv v g l= − −( )
∆ ∆U H PVv v g≅ −

∆ ∆U H RTv v≅ −
Rewrite on a “per unit volume” basis 

∆
∆ ∆

H V
U

V

U

Vm
v
o

v
o=









 −



























ϕ ϕ1 2
1

1

1

2
2

2

1

2

2

, ,
∆U

V
v i

i
o

,
Cohesive
energy
density
(CED)



Solubility Parameter
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Solvent CED (cal cm-3) δ (cal cm-3)1/2

Cyclohexane 67.2 8.2
Carbon tetrachloride 74.0 8.6
Toluene 79.2 8.9
Benzene 84.6 9.2
Methyl acetate 92.2 9.6
Acetone 98.0 9.9
Cyclohexanone 98.0 9.9
Acetic acid 102.0 10.1
Cyclohexanol 130.0 11.4
Methanol 210.3 14.5
Water 547.6 23.4



Polymer Solubility Parameters

Polymer δ (cal cm-3)1/2

Polyisobutylene 7.5-8.0
Polyethylene 7.7-8.2
Natural rubber 8.1-8.5
Polystyrene 9.1-9.4
Poly(ethylene terephthalate) 9.3-9.9
Polyacrylonitrile 12.0-14.0
Nylon-6,6 13.5-15.0

Solubility parameters for polymers must be determined indirectly,
typically by intrinsic viscosity measurements of solutions or by
swelling of a crosslinked polymer.



Criterion for Phase Equilibrium

Consider the increment in Gibbs free energy G associated with
transfer of dni moles of (i) from phase α to phase β at constant
temperature T and pressure P.
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Free Energy of Mixing for a Single Phase
Recall ∆ ∆ ∆G x xm = +1 1 2 2µ µ
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∆µ µ µi i i
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Plot ∆Gm vs x2:

Plot ∆Gm vs x1:
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Intercept at x2 = 0 is ∆µ1

Intercept at x1 = 0 is ∆µ2
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∆Gm for a Phase-Separated System
Suppose that ∆Hm > 0 and ∆Sm > 0.  This may lead to the following:

x20 1

∆Gm

∆µ1

∆µ2

C D

P

QA
B

The common tangent to the ∆Gm curve at P and Q implies that
phases of compositions (x2

P, x1P) and (x2
Q, x1Q) have the same

values of ∆µ1 and ∆µ2, i.e. µ1P =  µ1Q and µ2
P =  µ2

Q.  Thus, P and
Q are in equilibrium, and any mixture having composition
between P and Q will phase separate into phases with
compositions x2

P  and x2
Q .



Regions of Phase Stability

For C-P and Q-D regions, all mixtures are stable against
separation into different phases.

Stable Mixtures

Metastable Mixtures

For P-A and B-Q regions, where A and B denote inflection
points, ∂
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and the mixture will be stable against separation into 
neighboring phases differing only slightly in composition 
but not against separation into phases of composition P and Q.

Unstable Mixtures

For the A-B region, 
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and all mixtures are unstable to infinitesimal perturbations.



Spinodal and Binodal Curves
Spinodal Curve

The boundary between the absolutely unstable and the 
metastable regions is defined by 
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The locus of all such A, B inflection points as a function of
temperature generates the spinodal curve.

Binodal Curve
The locus of all points of common tangency P and Q as a
function of temperature generates the binodal curve.

Critical Point
The critical point is characterized by convergence of the points
of common tangency and the inflection points such that
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Phase Equilibria in Polymer Solutions
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Phase Behavior for the Flory-Huggins Model
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Phase Behavior for the Flory-Huggins Model

Spinodal Curve
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Post Flory-Huggins Thermodynamics

•  Flory equation-of-state and Sanchez lattice fluid theories
•  LCST behavior is characteristic of exothermic mixing
    (which could arise from specific chemical interactions)
    and negative excess entropy (which arises due to 
    densification of the polymers on mixing).  Neither one of
    these phenomena is included in the Flory-Huggins theory.



Typical Phase Diagrams

T

Composition

T

Composition

Upper
Critical
Solution
Temp.

Lower
Critical
Solution
Temp.

Binodal

Spinodal

Typical for 
Polymer Blend

Typical for
Polymer Solution



Mechanisms of Phase Separation
Nucleation and Growth

•  Initial fragment of more stable
    phase forms
•  Free energy determined by work
   required to form the surface and
   the work gained in forming the
   interior
•  Concentration in the immediate
   vicinity of the nucleus is
   reduced and diffusion is downhill
   (diffusion coefficient is positive)
•  Droplet size increases by growth
    initially
•  Requires activation energy

T

Composition

Nucleation and growth
between the binodal and

spinodal curves



Mechanisms of Phase Separation

T

Composition

Spinodal Decomposition

•  Initial small-amplitude 
    composition fluctuations
•  Amplitude of wavelike composition
    fluctuations increases with time
•  Diffusion is uphill from the low
    concentration region into the domain
    (negative diffusion coefficient)
•  Unstable process; no activation
    energy required
•   Phases are interconnected at early
    time

Spinodal decomposition
inside the spinodal curve


