Chemical Engineering 160/260 Polymer Science and Engineering

Lecture 9 - Flory-Huggins Model for Polymer Solutions
February 5, 2001

Read Sperling, Chapter 4

Objectives

- To develop the classical **Flory-Huggins** theory for the free energy of mixing of polymer solutions based on a statistical approach on a regular lattice.
- To describe the criteria for phase stability and illustrate typical phase diagrams for polymer blends and solutions.

Outline

- **■** Lattice Theory for Solutions of Small Molecules
 - ◆ Thermodynamic probability and the Boltzmann Equation
 - **♦** Ideal solution
- **Flory-Huggins Theory of Polymer Solutions**
 - ◆ Placement of a new polymer molecule on a partially filled lattice
 - Entropy of mixing
 - Enthalpy of mixing (for dispersive or dipole-dipole interactions)
 - Cohesive energy density and solubility parameter
 - Free energy of mixing

Lattice Theory for Solutions of Small Molecules

Assume that a **solution** may be formed by distributing the pure components on the sites of a regular **lattice**. Further assume that there are N_1 molecules of Type 1, N_2 molecules of Type 2, and that Type 1 and Type 2 molecules are indistinguishable but identical in size and interaction energy.

- Small molecule of Type 1 (e.g. solvent)
- Small molecule of Type 2 (e.g. solute)

Thermodynamic Probability

Place the molecules on the $N = N_1 + N_2$ sites of a three-dimensional lattice.

Total no. different ways of arranging molecules of Types 1 and 2 on the lattice

Total number of arrangements of N molecules

Interchanging the 1's or 2's makes no difference.

 Ω is the **thermodynamic probability**, which counts the number of ways that a particular state can come about.

Boltzmann Equation

The thermodynamic probability (or the number of ways that the system may come about)may be related to the entropy of the system through a fundamental equation from statistical thermodynamics that is known as the Boltzmann Equation.

$$S = k \ln \Omega$$

Configurational Entropy

Apply the Boltzmann Equation to the mixing process:

$$\Delta S = S_2 - S_1 = k \ln \left(\frac{\Omega_2}{\Omega_1} \right)$$

$$\Omega_2 > \Omega_1 \implies \Delta S > 0$$

$$\begin{array}{ccc}
\Omega_2 > \Omega_1 & \longrightarrow & \Delta S > 0 \\
\Omega_2 < \Omega_1 & \longrightarrow & \Delta S < 0
\end{array}$$

Consider the entropy of the mixture:

$$S_{mix} = k \ln \Omega = k (\ln N! - \ln N_1! - \ln N_2!)$$

Stirling's approximation:
$$\ln y! \cong y \ln y - y$$
 $N \equiv N_A$

$$N \equiv N_A$$

$$S_{mix} = -k \left[N_1 \ln \left(\frac{N_1}{N} \right) + N_2 \ln \left(\frac{N_2}{N} \right) \right]$$
 Multiply r.h.s.by $\frac{N_A}{N_A}$

$$S_{mix} = -R(x_1 \ln x_1 + x_2 \ln x_2)$$

$$\Delta S_m = S_{mix} - S_1 - S_2 = -R \sum_i x_i \ln x_i \qquad S_{mix} = \Delta S_m$$

 S_{mix} is that part of the total entropy of the mixture arising from the mixing process itself. This is the **configurational entropy**.

Ideal Solution of Small Molecules

What entropy effects can you envision other than the configurational entropy?

$$\Delta S_m = -R \sum x_i \ln x_i$$

If the 1-1, 2-2, and 1-2 interactions are equal, then

$$\Delta H_m = 0$$

 $\Delta H_m = 0$ (athermal mixing)

If the solute and the solvent molecules are the same size,

$$\Delta V_m = 0$$

The thermodynamics of mixing will be governed by the Gibbs free energy of mixing.

$$\Delta G_m = -RT \sum x_i \ln x_i$$

Do you expect a polymer solution to be ideal?

Lattice Approach to Polymer Solutions

To place a macromolecule on a lattice, it is necessary that the polymer segments, which do not necessarily correspond to a single repeat unit, are situated in a contiguous string.

Macromolecule of Type 2 (solute)

Flory-Huggins Theory of Polymer Solutions

Assume (for now) that the polymer-solvent system shows athermal mixing. Let the system consist of N_1 solvent molecules, each occupying a single site and N_2 polymer molecules, each occupying n lattice sites.

$$N_1 + nN_2 = N$$

What assumption about molecular weight distribution is implicit in the system chosen?

Placement of a New Polymer Molecule on a Partially Filled Lattice

Let (i) polymer molecules be initially placed on an empty lattice and determine the number of ways that the (i + 1)st polymer molecule can be placed on the lattice.

How can we get the (i+1)st molecule to fit on the lattice?

Placement of Polymer Segments on a Lattice

Placement of first segment of polymer (i + 1):

N-ni=

Number of remaining sites Number of ways to add segment 1

Number of sites occupied by initial i polymer molecules

Placement of second segment of polymer (i + 1):

Let Z = coordination number of the lattice

 $Z\left(\frac{N-ni}{N}\right) =$

Number of ways to add segment 2

Number of lattice sites adjacent to the first segment

Average fraction of vacant sites on the lattice as a whole (When is this most valid?)

Probability of Placement of the (i)th Molecule

Placement of third segment (and all others) of polymer (i + 1):

$$(Z-1)\left(\frac{N-ni}{N}\right) =$$
 Number of ways to add segment 3

One site on the coordination sphere is occupied by the second segment

Ignore contributions to the average site vacancy due to segments of molecule (i + 1)

Thus, the (i + 1)st polymer molecule may be placed on a lattice already containing (i) molecules in ω_{i+1} ways.

$$\omega_{i+1} = (N - ni)Z\left(\frac{N - ni}{N}\right) \left[(Z - 1)\left(\frac{N - ni}{N}\right) \right]^{n-2}$$

$$\omega_{i+1} = Z(Z-1)^{n-2} N\left(\frac{N-ni}{N}\right)^n$$

For the (i)th molecule:

$$\omega_i = Z(Z-1)^{n-2} N \left(\frac{N - n(i-1)}{N}\right)^n$$

Total Number of Ways of Placing N₂ **Polymer Molecules on a Lattice**

$$\Omega = \frac{\omega_1 \omega_2 \, \square \, \omega_i \, \square \, \omega_{N_2}}{N_2!} = \frac{1}{N_2!} \prod_{i=1}^{N_2} \omega_i$$

Apply Boltzmann's Equation $S_{mix} = k \ln \left(\frac{1}{N_2!} \prod_{i=1}^{N_2} \omega_i \right)$ Substitute for ω_i to obtain

Substitute for ω_i to obtain:

$$\Omega = \frac{Z^{N_2} (Z-1)^{N_2(n-2)}}{N_2! N^{N_2(n-1)}} \prod_{i=1}^{N_2} [N - n(i-1)]^n$$

Examine the product:

$$\frac{nN}{n} = N$$

$$= N \prod_{i=1}^{N_2} [N - n(i-1)]^n = n^{nN_2} \prod_{i=1}^{N_2} (\frac{N}{n} + 1 - i)^n$$

Entropy of the Mixture

Write out several terms in the product expression:

$$\prod = \left(\frac{N}{n} + 1 - 1\right)^{n} \left(\frac{N}{n} + 1 - 2\right)^{n} \left(\frac{N}{n} + 1 - 3\right)^{n} \left(\frac{N}{n} + 1 - N_{2}\right)^{n}$$

Note that:

$$\frac{\left(\frac{N}{n}\right)!}{\left(\frac{N}{n} - N_2\right)!} = \frac{(1)(2)(3) L\left(\frac{N}{n} - N_2\right)\left(\frac{N}{n} - N_2 + 1\right) L\left(\frac{N}{n}\right)}{(1)(2)(3) L\left(\frac{N}{n} - N_2\right)}$$

Thus

$$\Pi = \left[\frac{\left(\frac{N}{n} \right)!}{\left(\frac{N}{n} - N_2 \right)!} \right]^n \Omega = \frac{Z^{N_2} (Z - 1)^{N_2(n-2)} n^{nN_2}}{N_2! N^{N_2(n-1)}} \left[\frac{\left(\frac{N}{n} \right)!}{\left(\frac{N}{n} - N_2 \right)!} \right]^n$$

Apply Stirling's approximation to obtain:

$$\frac{S_{mix}}{k} = -N_2 \ln\left(\frac{nN_2}{N}\right) - N_1 \ln\left(\frac{N_1}{N}\right)$$
$$+N_2 \left[\ln Z + (n-2)\ln(Z-1) + (1-n) + \ln n\right]$$

Flory-Huggins Entropy of Mixing

Calculate entropy of pure solvent and pure polymer:

Pure solvent:

$$N_2 = 0$$

$$S_1 = 0$$

Pure polymer: $N_1 = 0$

$$N_1 = 0$$

Entropy of the disordered polymer when it fills the lattice

$$S_2 = kN_2 \left[\ln Z + (n-2)\ln(Z-1) + (1-n) + \ln n \right]$$

$$\Delta S_m = S_{mix} - S_2 - S_1$$

$$\Delta S_m = S_{mix} - S_2 - S_1$$

$$\Delta S_m = -k \left[N_1 \ln \left(\frac{N_1}{N} \right) + N_2 \ln \left(\frac{nN_2}{N} \right) \right]$$

Multiply and divide r.h.s. by N_1+N_2 and assume $N_1+N_2=N_A$

Calculate entropy of mixing:

$$\Delta S_m = -R \left[x_1 \ln \left(\frac{N_1}{N} \right) + x_2 \ln \left(\frac{nN_2}{N} \right) \right] \qquad \frac{N_1}{N} = \varphi_1 \qquad \frac{nN_2}{N} = \varphi_2$$

$$\frac{N_1}{N} = \varphi_1$$

$$\frac{nN_2}{N} = \varphi_2$$

Flory-Huggins Theory for an Athermal Solution

Entropy of mixing:

$$\Delta S_m = -R \left[x_1 \ln \varphi_1 + x_2 \ln \varphi_2 \right]$$

Enthalpy of mixing:

$$\Delta H_m = 0$$

Gibbs free energy of mixing:

$$\Delta G_m = -RT \left[x_1 \ln \varphi_1 + x_2 \ln \varphi_2 \right]$$

Concentration Conversions

$$\frac{\varphi_2}{\varphi_1} = \frac{nN_2}{N_1}$$

$$\frac{N_2}{N_1} = \frac{1}{n} \left(\frac{\varphi_2}{\varphi_1} \right)$$

$$= \frac{nN_2}{N_1} \qquad \frac{N_2}{N_1} = \frac{1}{n} \left(\frac{\varphi_2}{\varphi_1}\right) \qquad x_2 = \frac{N_2}{N_1 + N_2} = \frac{\frac{N_2}{N_1}}{1 + \frac{N_2}{N_1}} = \frac{\frac{1}{n} \left(\frac{\varphi_2}{\varphi_1}\right)}{1 + \frac{1}{n} \left(\frac{\varphi_2}{\varphi_1}\right)}$$

$$x_1 + x_2 = 1$$

$$\varphi_1 + \varphi_2 = 1$$

$$x_2 = \frac{\left(\frac{1}{n}\right)\left(\frac{\varphi_2}{1 - \varphi_2}\right)}{1 + \left(\frac{1}{n}\right)\left(\frac{\varphi_2}{1 - \varphi_2}\right)}$$

$$\varphi_2 = \frac{x_2}{\left(\frac{1}{n}\right) + x_2\left(1 - \left(\frac{1}{n}\right)\right)}$$

Flory-Huggins Enthalpy of Mixing

Use the same lattice model as for the entropy of mixing, and consider a quasi-chemical reaction:

$$(1,1) + (2,2) \longrightarrow 2(1,2)$$

1 represents a solvent and 2 represents a polymer repeat unit The **interaction energy** is then given by:

$$\Delta w = 2w_{12} - w_{11} - w_{22}$$

$$\frac{\Delta w}{2}$$
 = Change in interaction energy per (1,2) pair

Define the system to be a filled lattice with Z nearest neighbors. Each polymer segment is then surrounded by $Z\phi_2$ polymer segments and $Z\phi_1$ solvent molecules.

Contributions to the Interaction Energy

Contributions of polymer segments

Interaction of a polymer segment with its neighbors yields

$$Z\varphi_2 w_{22} + Z\varphi_1 w_{12}$$

The total contribution is

Remove double counting

$$\left(\frac{1}{2}\right)Z\varphi_2N\left[\left(1-\varphi_1\right)w_{22}+\varphi_1w_{12}\right]$$

Contributions of solvent molecules

Each solvent molecule is surrounded by $Z\varphi_2$ polymer segments and $Z\varphi_1$ solvent molecules. Interaction of the solvent with its neighbors then yields $Z\varphi_2w_{12} + Z\varphi_1w_{11}$

The total contribution is

Remove double counting

$$\left(\frac{1}{2}\right)Z\varphi_1N\left[\varphi_2w_{12}+\left(1-\varphi_2\right)w_{11}\right]$$

Flory-Huggins Enthalpy of Mixing

$$\Delta H_m = \left(\frac{1}{2}\right) ZN \left(2\varphi_1 \varphi_2 w_{12} - \varphi_1 \varphi_2 w_{11} - \varphi_1 \varphi_2 w_{22}\right)$$

$$\Delta H_m = \left(\frac{1}{2}\right) Z N \varphi_1 \varphi_2 \Delta w$$

Let
$$\left(\frac{1}{2}\right)Z\Delta w = \chi RT$$

Flory-Huggins interaction parameter (the "chi" parameter)

$$\chi = 0$$
 For athermal mixtures
 $\chi > 0$ For endothermic mixing
 $\chi < 0$ For exothermic mixing

$$\Delta H_m = N\varphi_1\varphi_2\chi RT = N_1\varphi_2\chi RT$$

Flory-Huggins Free Energy of Mixing: General Case

$$\Delta G_m = \Delta H_m - T \Delta S_m$$

$$\Delta H_m = N \varphi_1 \varphi_2 \chi RT$$

$$\Delta S_m = -R \left[x_1 \ln \phi_1 + x_2 \ln \phi_2 \right]$$

$$\Delta G_m = RT \left[N\varphi_1 \varphi_2 \chi + \left(x_1 \ln \varphi_1 + x_2 \ln \varphi_2 \right) \right]$$

