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Read Sperling, Chapter 4



Objectives

!! To develop the classicalTo develop the classical  FloryFlory--HugginsHuggins  theory for the freetheory for the free
energy of mixing of polymer solutions based on aenergy of mixing of polymer solutions based on a
statistical approach on a regular lattice.statistical approach on a regular lattice.

!! To describe the criteria for phase stability and illustrateTo describe the criteria for phase stability and illustrate

     typical phase diagrams for polymer blends and solutions.     typical phase diagrams for polymer blends and solutions.



Outline

!! Lattice Theory for Solutions of Small MoleculesLattice Theory for Solutions of Small Molecules

"" Thermodynamic probability and the Thermodynamic probability and the Boltzmann Boltzmann EquationEquation

"" Ideal solutionIdeal solution

!! FloryFlory--Huggins Huggins Theory of Polymer SolutionsTheory of Polymer Solutions

"" Placement of a new polymer molecule on a partially filled latticePlacement of a new polymer molecule on a partially filled lattice

"" Entropy of mixingEntropy of mixing

"" Enthalpy of mixing (for Enthalpy of mixing (for dispersive dispersive or dipole-dipole interactions)or dipole-dipole interactions)

"" Cohesive energy density and solubility parameterCohesive energy density and solubility parameter

"" Free energy of mixingFree energy of mixing



Lattice Theory for Solutions of
Small Molecules

Assume that a solution may be formed by distributing the
pure components on the sites of a regular lattice.  Further
assume that there are N1 molecules of Type 1, N2 molecules
of Type 2, and that Type 1 and Type 2 molecules are
indistinguishable but identical in size and interaction energy.

Small molecule of Type 1
(e.g. solvent)

Small molecule of Type 2
(e.g. solute)



Thermodynamic Probability

Place the molecules on the N = N1 + N2 sites of a three-
dimensional lattice.

Ω is the thermodynamic probability, which counts the number
of ways that a particular state can come about.

Total no. different ways
of arranging molecules of
Types 1 and 2 on the lattice

Ω =
N

N N

!
! !1 2

≡

Total number of arrangements
of N molecules

Interchanging the 1’s or 2’s makes no difference.



Boltzmann Equation

The thermodynamic probability (or the number of ways that
the system may come about )may be related to the entropy
of the system through a fundamental equation from statistical
thermodynamics that is known as the Boltzmann Equation.

S k= lnΩ



Configurational Entropy
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Multiply r.h.s.by

S R x x x xmix = − +( )1 1 2 2ln ln

∆S S S S R x xm mix i i= − − = − ∑1 2 ln S Smix m= ∆

Smix  is that part of the total entropy of the mixture arising from
the mixing process itself.  This is the configurational entropy.

Apply the Boltzmann Equation to the mixing process:

N NA≡



Ideal Solution of Small Molecules

∆S R x xm i i= − ∑ ln

Η∆Hm = 0

∆Vm = 0

∆G RT x xm i i= − ∑ ln

What entropy effects can  you envision other than the
configurational entropy?

If the 1-1, 2-2, and 1-2 interactions are equal, then

If the solute and the solvent molecules are the same size,

The thermodynamics of mixing will be governed by the 
Gibbs free energy of mixing.

Do you expect a polymer
solution to be ideal?

(athermal mixing)



Lattice Approach to Polymer Solutions

To place a macromolecule on a lattice, it is necessary that the
polymer segments, which do not necessarily correspond to 
a single repeat unit, are situated in a contiguous string.

Small molecule of Type 1
(solvent)

Macromolecule
of Type 2
(solute)



Flory-Huggins Theory of
Polymer Solutions

Assume (for now) that the polymer-solvent system shows
athermal mixing.  Let the system consist of N1 solvent molecules,
each occupying a single site and N2 polymer molecules, each
occupying n lattice sites.

N nN N1 2+ =

What assumption about molecular weight distribution is
implicit in the system chosen?



Placement of a New Polymer Molecule
on a Partially Filled Lattice

Let (i) polymer molecules be initially placed on an empty lattice
and determine the number of ways that the (i + 1)st polymer
molecule can be placed on the lattice.

How can we get the (i+1)st
molecule to fit on the lattice?



Placement of Polymer Segments on a Lattice
Placement of first segment of polymer (i + 1):

N ni− = Number of remaining sites
Number of ways to add segment 1

Placement of second segment of polymer (i + 1):

Let Z = coordination number of the lattice

Z
N ni

N

−




= Number of ways to add segment 2

Average fraction of vacant sites on 
the lattice as a whole (When is this 
most valid?)

Number of lattice
sites adjacent to the
first segment

Number of sites occupied
by initial i polymer molecules



Probability of Placement of the (i)th Molecule
Placement of third segment (and all others) of polymer (i + 1):

Z
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=1 Number of ways to add segment 3

One site on the coordination sphere
is occupied by the second segment

Ignore contributions to the
average site vacancy due to 
segments of molecule (i + 1)

Thus, the (i + 1)st polymer molecule may be placed on a lattice
already containing (i) molecules in ωi+1 ways.
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Total Number of Ways of Placing N2

Polymer Molecules on a Lattice
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Entropy of the Mixture
Write out several terms in the product expression:
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Apply Stirling’s approximation to obtain:
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Flory-Huggins Entropy of Mixing
Calculate entropy of pure solvent and pure polymer:

Pure solvent: N2 0= S1 0=

Pure polymer: N1 0=

S kN Z n Z n n2 2 2 1 1= + −( ) −( ) + −( ) +[ ]ln ln ln

Entropy of the disordered polymer
 when it fills the lattice
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Calculate entropy of mixing:



Flory-Huggins Theory for an
Athermal Solution

∆G RT x xm = − +[ ]1 1 2 2ln lnϕ ϕ

∆S R x xm = − +[ ]1 1 2 2ln lnϕ ϕ

Entropy of mixing:

Gibbs free energy of mixing:

Enthalpy of mixing:

∆Hm = 0



Concentration Conversions
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Flory-Huggins Enthalpy of Mixing
Use the same lattice model as for the entropy of mixing, and
consider a quasi-chemical reaction:

(1,1) + (2,2) 2(1,2)

1 represents a solvent and 2 represents a polymer repeat unit

The interaction energy is then given by:

∆w w w w= − −2 12 11 22

∆w

2
= Change in interaction energy per (1,2) pair

Define the system to be a filled lattice with Z nearest neighbors.
Each polymer segment is then surrounded by Zϕ2 polymer 
segments and Zϕ1 solvent molecules. 



Contributions to the Interaction Energy
Contributions of polymer segments

Interaction of a polymer segment with its neighbors yields

Z w Z wϕ ϕ2 22 1 12+
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Contributions of solvent molecules

Each solvent molecule is surrounded by Zϕ2 polymer segments
and Zϕ1 solvent molecules.  Interaction of the solvent with its
neighbors then yields Z w Z wϕ ϕ2 12 1 11+

The total contribution is 1
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Remove double counting

Remove double counting



Flory-Huggins Enthalpy of Mixing
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For athermal mixtures
For endothermic mixing
For exothermic mixing



Flory-Huggins Free Energy of Mixing:
General Case

∆ ∆ ∆G H T Sm m m= −

∆G RT N x xm = + +( )[ ]ϕ ϕ χ ϕ ϕ1 2 1 1 2 2ln ln

∆H N RTm = ϕ ϕ χ1 2

∆S R x xm = − +[ ]1 1 2 2ln lnφ φ
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