Chemical Engineering 160/260 Polymer Science and Engineering

Lecture 9 - Flory-Huggins Model for Polymer Solutions February 5, 2001

Read Sperling, Chapter 4

Objectives

- To develop the classical Flory-Huggins theory for the free energy of mixing of polymer solutions based on a statistical approach on a regular lattice.
\square To describe the criteria for phase stability and illustrate typical phase diagrams for polymer blends and solutions.

Outline

- Lattice Theory for Solutions of Small Molecules
- Thermodynamic probability and the Boltzmann Equation
- Ideal solution
- Flory-Huggins Theory of Polymer Solutions
- Placement of a new polymer molecule on a partially filled lattice
- Entropy of mixing
- Enthalpy of mixing (for dispersive or dipole-dipole interactions)
- Cohesive energy density and solubility parameter
\checkmark Free energy of mixing

Lattice Theory for Solutions of Small Molecules

Assume that a solution may be formed by distributing the pure components on the sites of a regular lattice. Further assume that there are N_{1} molecules of Type $1, \mathrm{~N}_{2}$ molecules of Type 2, and that Type 1 and Type 2 molecules are indistinguishable but identical in size and interaction energy.

Small molecule of Type 1 (e.g. solvent)

Small molecule of Type 2 (e.g. solute)

Thermodynamic Probability

Place the molecules on the $\mathrm{N}=\mathrm{N}_{1}+\mathrm{N}_{2}$ sites of a threedimensional lattice.

Total number of arrangements of N molecules
Total no. different ways of arranging molecules of Types 1 and 2 on the lattice

Interchanging the 1's or 2's makes no difference.
Ω is the thermodynamic probability, which counts the number of ways that a particular state can come about.

Boltzmann Equation

The thermodynamic probability (or the number of ways that the system may come about)may be related to the entropy of the system through a fundamental equation from statistical thermodynamics that is known as the Boltzmann Equation.

$$
S=k \ln \Omega
$$

Configurational Entropy

Apply the Boltzmann Equation to the mixing process:
$\Delta S=S_{2}-S_{1}=k \ln \left(\frac{\Omega_{2}}{\Omega_{1}}\right)$

$$
\begin{aligned}
& \Omega_{2}>\Omega_{1} \Rightarrow \Delta S>0 \\
& \Omega_{2}<\Omega_{1} \Rightarrow \Delta S<0
\end{aligned}
$$

Consider the entropy of the mixture:

$$
S_{m i x}=k \ln \Omega=k\left(\ln N!-\ln N_{1}!-\ln N_{2}!\right)
$$

Stirling's approximation:

$$
\ln y!\cong y \ln y-y
$$

$$
N \equiv N_{A}
$$

$$
S_{\text {mix }}=-k\left[N_{1} \ln \left(\frac{N_{1}}{N}\right)+N_{2} \ln \left(\frac{N_{2}}{N}\right)\right] \quad \text { Multiply r.h.s.by } \frac{N_{A}}{N_{A}}
$$

$$
S_{m i x}=-R\left(x_{1} \ln x_{1}+x_{2} \ln x_{2}\right)
$$

$$
\Delta S_{m}=S_{m i x}-S_{1}-S_{2}=-R \sum x_{i} \ln x_{i} \quad S_{m i x}=\Delta S_{m}
$$

$S_{m i x}$ is that part of the total entropy of the mixture arising from the mixing process itself. This is the configurational entropy.

Ideal Solution of Small Molecules

What entropy effects can you envision other than the configurational entropy?

$$
\Delta S_{m}=-R \sum x_{i} \ln x_{i}
$$

If the 1-1, 2-2, and 1-2 interactions are equal, then

$$
\Delta H_{m}=0
$$

If the solute and the solvent molecules are the same size,

$$
\Delta V_{m}=0
$$

The thermodynamics of mixing will be governed by the Gibbs free energy of mixing.

$$
\Delta G_{m}=-R T \sum x_{i} \ln x_{i}
$$

Do you expect a polymer solution to be ideal?

Lattice Approach to Polymer Solutions

To place a macromolecule on a lattice, it is necessary that the polymer segments, which do not necessarily correspond to a single repeat unit, are situated in a contiguous string.

\square
Small molecule of Type 1 (solvent)

Macromolecule of Type 2 (solute)

Flory-Huggins Theory of Polymer Solutions

Assume (for now) that the polymer-solvent system shows athermal mixing. Let the system consist of \mathbf{N}_{1} solvent molecules, each occupying a single site and \mathbf{N}_{2} polymer molecules, each occupying n lattice sites.

$$
N_{1}+n N_{2}=N
$$

What assumption about molecular weight distribution is implicit in the system chosen?

Placement of a New Polymer Molecule on a Partially Filled Lattice

Let (i) polymer molecules be initially placed on an empty lattice and determine the number of ways that the $(\mathbf{i}+1)$ st polymer molecule can be placed on the lattice.

How can we get the $(i+1)$ st molecule to fit on the lattice?

Placement of Polymer Segments on a Lattice

Placement of first segment of polymer (i+1):

$N-n i=\begin{aligned} & \text { Number of remaining sites } \\ & \text { Number of ways to add segment } 1\end{aligned}$
 Number of sites occupied by initial i poly mer molecules

Placement of second segment of polymer $(\mathbf{i}+1)$:
Let $\mathrm{Z}=$ coordination number of the lattice

Probability of Placement of the (i)th Molecule

Placement of third segment (and all others) of polymer ($\mathrm{i}+1$):

$$
(Z-1)\left(\frac{N-n i}{N}\right)=\text { Number of ways to add segment } 3
$$

Ignore contributions to the
One site on the coordination sphere is occupied by the second segment average site vacancy due to segments of molecule (i+1)
Thus, the $(i+1)$ st polymer molecule may be placed on a lattice already containing (i) molecules in $\omega_{\mathrm{i}+1}$ ways.

$$
\omega_{i+1}=(N-n i) Z\left(\frac{N-n i}{N}\right)\left[(Z-1)\left(\frac{N-n i}{N}\right)\right]^{n-2}
$$

$$
\omega_{i+1}=Z(Z-1)^{n-2} N\left(\frac{N-n i}{N}\right)^{n}
$$

For the (i)th molecule

$$
\omega_{i}=Z(Z-1)^{n-2} N\left(\frac{N-n(i-1)}{N}\right)^{n}
$$

Total Number of Ways of Placing \mathbf{N}_{2} Polymer Molecules on a Lattice

$$
\Omega=\frac{\omega_{1} \omega_{2} \mathrm{~L} \omega_{i} \mathrm{~L} \omega_{N_{2}}}{N_{2}!}=\frac{1}{N_{2}!} \prod_{i=1}^{N_{2}} \omega_{i}
$$

Apply Boltzmann's Equation $S_{\text {mix }}=k \ln \left(\frac{1}{N_{2}!} \prod_{i=1}^{N_{2}} \omega_{i}\right)$
Substitute for ω_{i} to obtain:

$$
\Omega=\frac{Z^{N_{2}}(Z-1)^{N_{2}(n-2)}}{N_{2}!N^{N_{2}(n-1)}} \prod_{i=1}^{N_{2}}[N-n(i-1)]^{n}
$$

Examine the product:

$$
\frac{n N}{n}=N
$$

Entropy of the Mixture

Write out several terms in the product expression:

$$
\Pi=\left(\frac{N}{n}+1-1\right)^{n}\left(\frac{N}{n}+1-2\right)^{n}\left(\frac{N}{n}+1-3\right)^{n} \mathrm{~L}\left(\frac{N}{n}+1-N_{2}\right)^{n}
$$

Note that:
Thus

$$
\frac{\left(\frac{N}{n}\right)!}{\left(\frac{N}{n}-N_{2}\right)!}=\frac{(1)(2)(3) \mathrm{L}\left(\frac{N}{n}-N_{2}\right)\left(\frac{N}{n}-N_{2}+1\right) \mathrm{L}\left(\frac{N}{n}\right)}{(1)(2)(3) \mathrm{L}\left(\frac{N}{n}-N_{2}\right)}
$$

$$
\Pi=\left[\frac{\left(\frac{N}{n}\right)!}{\left(\frac{N}{n}-N_{2}\right)!}\right]^{n} \quad \Omega=\frac{Z^{N_{2}}(Z-1)^{N_{2}(n-2)} n^{n N_{2}}}{N_{2}!N^{N_{2}(n-1)}}\left[\frac{\left(\frac{N}{n}\right)!}{\left(\frac{N}{n}-N_{2}\right)!}\right]^{n}
$$

Apply Stirling's approximation to obtain:

$$
\begin{aligned}
& \frac{S_{\text {mix }}}{k}=-N_{2} \ln \left(\frac{n N_{2}}{N}\right)-N_{1} \ln \left(\frac{N_{1}}{N}\right) \\
& +N_{2}[\ln Z+(n-2) \ln (Z-1)+(1-n)+\ln n]
\end{aligned}
$$

Flory-Huggins Entropy of Mixing

Calculate entropy of pure solvent and pure polymer:

Pure solvent:

$$
N_{2}=0
$$

$$
S_{1}=0
$$

Pure polymer: $\quad N_{1}=0$

Entropy of the disordered poly mer when it fills the lattice

$$
\begin{array}{r}
S_{2}=k N_{2}[\ln Z+(n-2) \ln (Z-1)+(1-n)+\ln n] \\
\Delta S_{m}=S_{m i x}-S_{2}-S_{1} \quad \Delta S_{m}=-k\left[N_{1} \ln \left(\frac{N_{1}}{N}\right)+N_{2} \ln \left(\frac{n N_{2}}{N}\right)\right]
\end{array}
$$

Multiply and divide r.h.s. by $\mathrm{N}_{1}+\mathrm{N}_{2}$ and assume $\mathrm{N}_{1}+\mathrm{N}_{2}=\mathrm{N}_{\mathrm{A}}$
Calculate entropy of mixing:

$$
\Delta S_{m}=-R\left[x_{1} \ln \left(\frac{N_{1}}{N}\right)+x_{2} \ln \left(\frac{n N_{2}}{N}\right)\right] \quad \frac{N_{1}}{N}=\varphi_{1} \quad \frac{n N_{2}}{N}=\varphi_{2}
$$

Flory-Huggins Theory for an Athermal Solution

Entropy of mixing:

$$
\Delta S_{m}=-R\left[x_{1} \ln \varphi_{1}+x_{2} \ln \varphi_{2}\right]
$$

Enthalpy of mixing:

$$
\Delta H_{m}=0
$$

Gibbs free energy of mixing:

$$
\Delta G_{m}=-R T\left[x_{1} \ln \varphi_{1}+x_{2} \ln \varphi_{2}\right]
$$

Concentration Conversions

$$
\frac{\varphi_{2}}{\varphi_{1}}=\frac{n N_{2}}{N_{1}} \quad \frac{N_{2}}{N_{1}}=\frac{1}{n}\left(\frac{\varphi_{2}}{\varphi_{1}}\right) \quad x_{2}=\frac{N_{2}}{N_{1}+N_{2}}=\frac{\frac{N_{2}}{N_{1}}}{1+\frac{N_{2}}{N_{1}}}=\frac{\frac{1}{n}\left(\frac{\varphi_{2}}{\varphi_{1}}\right)}{1+\frac{1}{n}\left(\frac{\varphi_{2}}{\varphi_{1}}\right)}
$$

$$
x_{1}+x_{2}=1 \quad \varphi_{1}+\varphi_{2}=1
$$

$$
x_{2}=\frac{\left(\frac{1}{n}\right)\left(\frac{\varphi_{2}}{1-\varphi_{2}}\right)}{1+\left(\frac{1}{n}\right)\left(\frac{\varphi_{2}}{1-\varphi_{2}}\right)}
$$

$$
\varphi_{2}=\frac{x_{2}}{\left(\frac{1}{n}\right)+x_{2}\left(1-\left(\frac{1}{n}\right)\right)}
$$

Flory-Huggins Enthalpy of Mixing

Use the same lattice model as for the entropy of mixing, and consider a quasi-chemical reaction:

$$
(1,1)+(2,2) \longrightarrow 2(1,2)
$$

1 represents a solvent and 2 represents a polymer repeat unit The interaction energy is then given by:

$$
\Delta w=2 w_{12}-w_{11}-w_{22}
$$

$$
\frac{\Delta w}{2}=\text { Change in interaction energy per }(1,2) \text { pair }
$$

Define the system to be a filled lattice with Z nearest neighbors. Each polymer segment is then surrounded by $Z \varphi_{2}$ polymer segments and $Z \varphi_{1}$ solvent molecules.

Contributions to the Interaction Energy

Contributions of polymer segments

Interaction of a polymer segment with its neighbors yields

$$
Z \varphi_{2} w_{22}+Z \varphi_{1} w_{12}
$$

The total contribution is $\left(\frac{1}{2}\right) Z \varphi_{2} N\left[\left(1-\varphi_{1}\right) w_{22}+\varphi_{1} w_{12}\right]$
Contributions of solvent molecules
Each solvent molecule is surrounded by $\mathrm{Z} \varphi_{2}$ polymer segments and $Z \varphi_{1}$ solvent molecules. Interaction of the solvent with its neighbors then yields $\quad Z \varphi_{2} w_{12}+Z \varphi_{1} w_{11}$

The total contribution is $\left(\frac{1}{2}\right) Z \varphi_{1} N\left[\varphi_{2} w_{12}+\left(1-\varphi_{2}\right) w_{11}\right]$

Flory-Huggins Enthalpy of Mixing

$\Delta H_{m}=\left(\frac{1}{2}\right) Z N\left(2 \varphi_{1} \varphi_{2} w_{12}-\varphi_{1} \varphi_{2} w_{11}-\varphi_{1} \varphi_{2} w_{22}\right)$

$$
\Delta H_{m}=\left(\frac{1}{2}\right) Z N \varphi_{1} \varphi_{2} \Delta w
$$

Let $\left(\frac{1}{2}\right) Z \Delta w=\chi R T$

Flory-Huggins interaction parameter (the "chi" parameter)

$$
\begin{array}{ll}
\chi=0 & \text { For athermal mixtures } \\
\chi>0 & \text { For endothermic mixing } \\
\chi<0 & \text { For exothermic mixing }
\end{array}
$$

$$
\Delta H_{m}=N \varphi_{1} \varphi_{2} \chi R T=N_{1} \varphi_{2} \chi R T
$$

Flory-Huggins Free Energy of Mixing:

 General Case$$
\Delta G_{m}=\Delta H_{m}-T \Delta S_{m}
$$

$$
\Delta H_{m}=N \varphi_{1} \varphi_{2} \chi R T
$$

$$
\Delta S_{m}=-R\left[x_{1} \ln \phi_{1}+x_{2} \ln \phi_{2}\right]
$$

