Evolutionary Strategies: A Simple and Often-Viable Alternative to Reinforcement Learning

Ashwin Rao

ICME, Stanford University

November 9, 2019
Evolutionary Strategies (ES) are a type of Black-Box Optimization

Popularized in the 1970s as *Heuristic Search Methods*

Loosely inspired by natural evolution of living beings

We focus on a subclass called Natural Evolution Strategies (NES)

The original setting was generic and nothing to do with MDPs or RL

Given an objective function $F(\psi)$, where ψ refers to parameters

We consider a probability distribution $p_\theta(\psi)$ over ψ

Where θ refers to the parameters of the probability distribution

We want to maximize the average objective $\mathbb{E}_{\psi \sim p_\theta}[F(\psi)]$

We search for optimal θ with stochastic gradient ascent as follows:

$$
\nabla_\theta (\mathbb{E}_{\psi \sim p_\theta}[F(\psi)]) = \nabla_\theta (\int_\psi p_\theta(\psi) \cdot F(\psi) \cdot d\psi)
$$

$$
= \int_\psi \nabla_\theta (p_\theta(\psi)) \cdot F(\psi) \cdot d\psi = \int_\psi p_\theta(\psi) \cdot \nabla_\theta (\log p_\theta(\psi)) \cdot F(\psi) \cdot d\psi
$$

$$
= \mathbb{E}_{\psi \sim p_\theta}[\nabla_\theta (\log p_\theta(\psi)) \cdot F(\psi)]
$$
We set $F(\cdot)$ to be the (stochastic) Return of a MDP.
$
\psi$ refers to the parameters of a policy $\pi_\psi : S \rightarrow A$.
$
\psi$ will be drawn from an isotropic multivariate Gaussian distribution
Gaussian with mean vector θ and fixed diagonal covariance matrix $\sigma^2 I$.
$
The average objective (Expected Return) can then be written as:

$$
E_{\psi \sim p_\theta} [F(\psi)] = E_{\epsilon \sim N(0, I)} [F(\theta + \sigma \cdot \epsilon)]
$$

The gradient (∇_θ) of Expected Return can be written as:

$$
E_{\psi \sim p_\theta} [\nabla_\theta (\log p_\theta(\psi)) \cdot F(\psi)]
= E_{\psi \sim N(\theta, \sigma^2 I)} [\nabla_\theta \left(\frac{- (\psi - \theta)^T \cdot (\psi - \theta)}{2\sigma^2} \right) \cdot F(\psi)]
= \frac{1}{\sigma} \cdot E_{\epsilon \sim N(0, I)} [\epsilon \cdot F(\theta + \sigma \cdot \epsilon)]
$$
A sampling-based algorithm to solve the MDP

- The above formula helps estimate gradient of Expected Return
- By sampling several ϵ (each ϵ represents a Policy $\pi_{\theta + \sigma \cdot \epsilon}$)
- And averaging $\epsilon \cdot F(\theta + \sigma \cdot \epsilon)$ across a large set (n) of ϵ samples
- Note $F(\theta + \sigma \cdot \epsilon)$ involves playing an episode for a given sampled ϵ, and obtaining that episode’s Return $F(\theta + \sigma \cdot \epsilon)$
- Hence, n values of ϵ, n Policies $\pi_{\theta + \sigma \cdot \epsilon}$, and n Returns $F(\theta + \sigma \cdot \epsilon)$
- Given gradient estimate, we update θ in this gradient direction
- Which in turn leads to new samples of ϵ (new set of Policies $\pi_{\theta + \sigma \cdot \epsilon}$)
- And the process repeats until $\mathbb{E}_{\epsilon \sim \mathcal{N}(0, I)}[F(\theta + \sigma \cdot \epsilon)]$ is maximized
- The key inputs to the algorithm will be:
 - Learning rate (SGD Step Size) α
 - Standard Deviation σ
 - Initial value of parameter vector θ_0
Algorithm 0.1: **Natural Evolution Strategies**\((\alpha, \sigma, \theta_0)\)

\[
\text{for } t \leftarrow 0, 1, 2, \ldots \\
\quad \text{do } \begin{cases}
\quad & \text{Sample } \epsilon_1, \epsilon_2, \ldots, \epsilon_n \sim \mathcal{N}(0, I) \\
\quad & \text{Compute Returns } F_i \leftarrow F(\theta_t + \sigma \cdot \epsilon_i) \text{ for } i = 1, 2, \ldots, n \\
\quad & \theta_{t+1} \leftarrow \theta_t + \frac{\alpha}{n\sigma} \sum_{i=1}^{n} \epsilon_i \cdot F_i
\end{cases}
\]
On the surface, this NES algorithm looks like **Policy Gradient** (PG)

Because it’s not Value Function-based (it’s Policy-based, like PG)

Also, similar to PG, it uses a gradient to move towards optimality

But, ES does not interact with the environment (like PG/RL does)

ES operates at a high-level, ignoring (state, action, reward) interplay

Specifically, does not aim to assign credit to actions in specific states

Hence, ES doesn’t have the core essence of RL: *Estimating the Q-Value Function of a Policy and using it to Improve the Policy*

Therefore, we don’t classify ES as Reinforcement Learning

We consider ES to be an alternative approach to RL Algorithms
ES versus RL

- Traditional view has been that ES won’t work on high-dim problems
- Specifically, ES has been shown to be data-inefficient relative to RL
- Because ES resembles simple hill-climbing based only on finite differences along a few random directions at each step
- However, ES is very simple to implement (no Value Function approx. or back-propagation needed), and is highly parallelizable
- ES has the benefits of being indifferent to distribution of rewards and to action frequency, and is tolerant of long horizons
- **This paper from OpenAI Researchers** shows techniques to make NES more robust and more data-efficient, and they demonstrate that NES has more exploratory behavior than advanced PG algorithms
- I’d always recommend trying NES before attempting to solve with RL