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The purpose of this note is to introduce the Moment Generating Function (MGF) and demon-
strate it’s utility in several applications in Applied Mathematics.

1. The Moment Generating Function (MGF)

The Moment Generating Function (MGF) of a random variable x (discrete or continuous) is
defined as a function fx : R→ R+ such that:

(1) fx(t) = Ex[etx] for all t ∈ R

Let us denote the nth-derivative of fx as f
(n)
x : R → R for all n ∈ Z≥0 (f

(0)
x is defined to be

simply the MGF fx).

(2) f (n)x (t) = Ex[xn · etx] for all n ∈ Z≥0 for all t ∈ R

(3) f (n)x (0) = Ex[xn]

(4) f (n)x (1) = Ex[xn · ex]

Equation (3) tells us that f (n)(0) gives us the nth moment of x. In particular, f
(1)
x (0) = f ′(0)

gives us the mean and f
(2)
x (0)−(f

(1)
x (0))2 = f ′′x (0)−(f ′x(0))2 gives us the variance. Note that this

holds true for any distribution for x. This is rather convenient since all we need is the functional
form for the distribution of x. This would lead us to the expression for the MGF (in terms of t).
Then, we take derivatives of this MGF and evaluate those derivatives at 0 to obtain the moments
of x.

Equation (4) helps us calculate the often-appearing expectation Ex[xn · ex]. In fact, Ex[ex]
and Ex[x · ex] are very common in several areas of Applied Mathematics. Again, note that this
holds true for any distribution for x.

MGF should be thought of as an alternative specification of a random variable (alternative to
specifying it’s Probability Distribution). This alternative specification is very valuable because it
can sometimes provide better analytical tractability than working with the Probability Density
Function or Cumulative Distribution Function (as an example, see the below section on MGF
for linear functions of independent random variables).

2. MGF for Linear Functions of Random Variables

Consider m independent random variables x1, x2, . . . , xm. Let α0, α1, . . . , αm ∈ R. Now
consider the random variable

x = x0 +

m∑
i=1

αixi
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The Probability Density Function of x is complicated to calculate as it involves convolutions.
However, observe that the MGF fx of x is given by:

(5) fx(t) = E[et(α0+
∑m
i=1 αixi)] = eα0t ·

m∏
i=1

E[etαixi ] = eα0t ·
m∏
i=1

fαixi(t) = eα0t ·
m∏
i=1

fxi(αit)

This means the MGF of x can be calculated as eα0t times the product of the MGFs of αixi (or
of αi-scaled MGFs of xi) for all i = 1, 2, . . . ,m. This gives us a much better way to analytically
tract the probability distribution of x (compared to the convolution approach).

3. MGF for the Normal Distribution

Here we assume that the random variables x follows a normal distribution. Let x ∼ N (µ, σ2).

fx∼N (µ,σ2)(t) = Ex∼N (µ,σ2)[e
tx](6)

=

∫ +∞

−∞

1√
2πσ

· e−
(x−µ)2

2σ2 · etx · dx(7)

=

∫ +∞

−∞

1√
2πσ

· e−
(x−(µ+tσ2))2

2σ2 · eµt+σ2t2

2 · dx(8)

= eµt+
σ2t2

2 · Ex∼N (µ+tσ2,σ2)[1](9)

= eµt+
σ2t2

2(10)

(11) f ′x∼N (µ,σ2)(t) = Ex∼N (µ,σ2)[x · etx] = (µ+ σ2t) · eµt+σ2t2

2

(12) f ′′x∼N (µ,σ2)(t) = Ex∼N (µ,σ2)[x
2 · etx] = ((µ+ σ2t)2 + σ2) · eµt+σ2t2

2

(13) f ′x∼N (µ,σ2)(0) = Ex∼N (µ,σ2)[x] = µ

(14) f ′′x∼N (µ,σ2)(0) = Ex∼N (µ,σ2)[x
2] = µ2 + σ2

(15) f ′x∼N (µ,σ2)(1) = Ex∼N (µ,σ2)[x · ex] = (µ+ σ2)eµ+
σ2

2

(16) f ′′x∼N (µ,σ2)(1) = Ex∼N (µ,σ2)[x
2 · ex] = ((µ+ σ2)2 + σ2)eµ+

σ2

2

4. Minimizing the MGF

Now let us consider the problem of minimizing the MGF. The problem is to:

min
t∈R

fx(t) = min
t∈R

Ex[etx]

This problem of minimizing Ex[etx] shows up a lot in various places in Applied Mathematics
when dealing with exponential functions (eg: when optimizing the Expectation of a Constant

Absolute Risk-Aversion Utility function U(y) = −e−γy
γ where γ is the coefficient of risk-aversion

and where y is a parameterized function of a random variable x).
Let us denote t∗ as the value of t that minimizes the MGF. Specifically,

t∗ = arg min
t∈R

fx(t) = arg min
t∈R

Ex[etx]
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4.1. Minimizing the MGF when x follows a normal distribution. Here we consider the
fairly typical case where x follows a normal distribution. Let x ∼ N (µ, σ2). Then we have to
solve the problem:

min
t∈R

fx∼N (µ,σ2)(t) = min
t∈R

Ex∼N (µ,σ2)[e
tx] = min

t∈R
eµt+

σ2t2

2

From Equation (11) above, we have:

f ′x∼N (µ,σ2)(t) = (µ+ σ2t) · eµt+σ2t2

2

Setting this to 0 yields:

(µ+ σ2t∗) · eµt
∗+σ2t∗2

2 = 0

which leads to:

(17) t∗ =
−µ
σ2

From Equation (12) above, we have:

f ′′x∼N (µ,σ2)(t) = ((µ+ σ2t)2 + σ2) · eµt+σ2t2

2 > 0 for all t ∈ R
which confirms that t∗ is a minima.

Substituting t = t∗ in fx∼N (µ,σ2)(t) = eµt+
σ2t2

2 yields:

(18) min
t∈R

fx∼N (µ,σ2)(t) = eµt
∗+σ2t∗2

2 = e
−µ2

2σ2

4.2. Minimizing the MGF when x is a symmetric binary distribution. Here we consider
the case where x follows a binary distribution: x takes values µ+σ and µ−σ with probability 0.5
each. Let us refer to this distribution as x ∼ B(µ+ σ, µ− σ). Note that the mean and variance
of x under B(µ+ σ, µ− σ) are µ and σ2 respectively. So we have to solve the problem:

min
t∈R

fx∼B(µ+σ,µ−σ)(t) = min
t∈R

Ex∼B(µ+σ,µ−σ)[etx] = min
t∈R

0.5(e(µ+σ)t + e(µ−σ)t)

f ′x∼B(µ+σ,µ−σ)(t) = 0.5((µ+ σ) · e(µ+σ)t + (µ− σ) · e(µ−σ)t)
Note that unless µ ∈ open interval (−σ, σ) (i.e., absolute value of mean is less than standard
deviation), f ′x∼B(µ+σ,µ−σ)(t) will not be 0 for any value of t. Therefore, for this minimization to

be non-trivial, we will henceforth assume µ ∈ (−σ, σ). With this assumption in place, setting
f ′x∼B(µ+σ,µ−σ)(t) to 0 yields:

(µ+ σ) · e(µ+σ)t
∗

+ (µ− σ) · e(µ−σ)t
∗

= 0

which leads to:

(19) t∗ =
1

2σ
ln (

σ − µ
µ+ σ

)

Note that

f ′′x∼B(µ+σ,µ−σ)(t) = 0.5((µ+ σ)2 · e(µ+σ)t + (µ− σ)2 · e(µ−σ)t) > 0 for all t ∈ R
which confirms that t∗ is a minima.

Substituting t = t∗ in fx∼B(µ+σ,µ−σ)(t) = 0.5(e(µ+σ)t + e(µ−σ)t) yields:

(20) min
t∈R

fx∼B(µ+σ,µ−σ)(t) = 0.5(e(µ+σ)t
∗

+ e(µ−σ)t
∗
) = 0.5((

σ − µ
µ+ σ

)
µ+σ
2σ + (

σ − µ
µ+ σ

)
µ−σ
2σ )

5. More Applications coming up soon ...


