Multi-Armed Bandits: Exploration versus Exploitation

Ashwin Rao
ICME, Stanford University
July 25, 2021

Exploration versus Exploitation

- Many situations in business (\& life!) present dilemma on choices
- Exploitation: Pick choices that seem best based on past outcomes
- Exploration: Pick choices not yet tried out (or not tried enough)
- Exploitation has notions of "being greedy" and being "short-sighted"
- Too much Exploitation \Rightarrow Regret of missing unexplored "gems"
- Exploration has notions of "gaining info" and being "long-sighted"
- Too much Exploration \Rightarrow Regret of wasting time on "duds"
- How to balance Exploration and Exploitation so we combine information-gains and greedy-gains in the most optimal manner
- Can we set up this problem in a mathematically disciplined manner?

Examples

- Restaurant Selection
- Exploitation: Go to your favorite restaurant
- Exploration: Try a new restaurant
- Online Banner Advertisement
- Exploitation: Show the most successful advertisement
- Exploration: Show a new advertisement
- Oil Drilling
- Exploitation: Drill at the best known location
- Exploration: Drill at a new location
- Learning to play a game
- Exploitation: Play the move you believe is best
- Exploration: Play an experimental move

The Multi-Armed Bandit (MAB) Problem

- Multi-Armed Bandit is spoof name for "Many Single-Armed Bandits"
- A Multi-Armed bandit problem is a 2-tuple $(\mathcal{A}, \mathcal{R})$
- \mathcal{A} is a known set of m actions (known as "arms")
- $\mathcal{R}^{a}(r)=\mathbb{P}[r \mid a]$ is an unknown probability distribution over rewards
- At each step t, the Al agent (algorithm) selects an action $a_{t} \in \mathcal{A}$
- Then the environment generates a reward $r_{t} \sim \mathcal{R}^{a_{t}}$
- The AI agent's goal is to maximize the Cumulative Reward:

$$
\sum_{t=1}^{T} r_{t}
$$

- Can we design a strategy that does well (in Expectation) for any T?
- Note that any selection strategy risks wasting time on "duds" while exploring and also risks missing untapped "gems" while exploiting

Is the MAB problem a Markov Decision Process (MDP)?

- Note that the environment doesn't have a notion of State
- Upon pulling an arm, the arm just samples from its distribution
- However, the agent might maintain a statistic of history as it's State
- To enable the agent to make the arm-selection (action) decision
- The action is then a (Policy) function of the agent's State
- So, agent's arm-selection strategy is basically this Policy
- Note that many MAB algorithms don't take this formal MDP view
- Instead, they rely on heuristic methods that don't aim to optimize
- They simply strive for "good" Cumulative Rewards (in Expectation)
- Note that even in a simple heuristic algorithm, a_{t} is a random variable simply because it is a function of past (random) rewards

Regret

- The Action Value $Q(a)$ is the (unknown) mean reward of action a

$$
Q(a)=\mathbb{E}[r \mid a]
$$

- The Optimal Value V^{*} is defined as:

$$
V^{*}=Q\left(a^{*}\right)=\max _{a \in \mathcal{A}} Q(a)
$$

- The Regret I_{t} is the opportunity loss on a single step t

$$
I_{t}=\mathbb{E}\left[V^{*}-Q\left(a_{t}\right)\right]
$$

- The Total Regret L_{T} is the total opportunity loss

$$
L_{T}=\sum_{t=1}^{T} I_{t}=\sum_{t=1}^{T} \mathbb{E}\left[V^{*}-Q\left(a_{t}\right)\right]
$$

- Maximizing Cumulative Reward is same as Minimizing Total Regret

Counting Regret

- Let $N_{t}(a)$ be the (random) number of selections of a across t steps
- Define Count t_{t} of a (for given action-selection strategy) as $\mathbb{E}\left[N_{t}(a)\right]$
- Define Gap Δ_{a} of a as the value difference between a and optimal a^{*}

$$
\Delta_{a}=V^{*}-Q(a)
$$

- Total Regret is sum-product (over actions) of Gaps and CountsT

$$
\begin{gathered}
L_{T}=\sum_{t=1}^{T} \mathbb{E}\left[V^{*}-Q\left(a_{t}\right)\right] \\
=\sum_{a \in \mathcal{A}} \mathbb{E}\left[N_{T}(a)\right] \cdot\left(V^{*}-Q(a)\right) \\
=\sum_{a \in \mathcal{A}} \mathbb{E}\left[N_{T}(a)\right] \cdot \Delta_{a}
\end{gathered}
$$

- A good algorithm ensures small Counts for large Gaps
- Little problem though: We don't know the Gaps!

Linear or Sublinear Total Regret

Total Regret Curves

- If an algorithm never explores, it will have linear total regret
- If an algorithm forever explores, it will have linear total regret
- Is it possible to achieve sublinear total regret?

Greedy Algorithm

- We consider algorithms that estimate $\hat{Q}_{t}(a) \approx Q(a)$
- Estimate the value of each action by rewards-averaging

$$
\hat{Q}_{t}(a)=\frac{1}{N_{t}(a)} \sum_{s=1}^{t} r_{s} \cdot \mathbb{1}_{a_{s}=a}
$$

- The Greedy algorithm selects the action with highest estimated value

$$
a_{t}=\underset{a \in \mathcal{A}}{\arg \max } \hat{Q}_{t-1}(a)
$$

- Greedy algorithm can lock onto a suboptimal action forever
- Hence, Greedy algorithm has linear total regret

ϵ-Greedy Algorithm

- The ϵ-Greedy algorithm continues to explore forever
- At each time-step t :
- With probability $1-\epsilon$, select $a_{t}=\arg \max _{a \in \mathcal{A}} \hat{Q}_{t-1}(a)$
- With probability ϵ, select a random action (uniformly) from \mathcal{A}
- Constant ϵ ensures a minimum regret proportional to mean gap

$$
I_{t} \geq \frac{\epsilon}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} \Delta_{a}
$$

- Hence, ϵ-Greedy algorithm has linear total regret

Optimistic Initialization

- Simple and practical idea: Initialize $\hat{Q}_{0}(a)$ to a high value for all $a \in \mathcal{A}$
- Update action value by incremental-averaging
- Starting with $N_{0}(a) \geq 0$ for all $a \in \mathcal{A}$,

$$
\begin{gathered}
N_{t}(a)=N_{t-1}(a)+\mathbb{1}_{a=a_{t}} \text { for all } a \\
\hat{Q}_{t}\left(a_{t}\right)=\hat{Q}_{t-1}\left(a_{t}\right)+\frac{1}{N_{t}\left(a_{t}\right)}\left(r_{t}-\hat{Q}_{t-1}\left(a_{t}\right)\right) \\
\hat{Q}_{t}(a)=\hat{Q}_{t-1}(a) \text { for all } a \neq a_{t}
\end{gathered}
$$

- Encourages systematic exploration early on
- One can also start with a high value for $N_{0}(a)$ for all $a \in \mathcal{A}$
- But can still lock onto suboptimal action
- Hence, Greedy + optimistic initialization has linear total regret
- ϵ-Greedy + optimistic initialization also has linear total regret

Decaying ϵ_{t}-Greedy Algorithm

- Pick a decay schedule for $\epsilon_{1}, \epsilon_{2}, \ldots$
- Consider the following schedule

$$
\begin{gathered}
c>0 \\
d=\min _{a \mid \Delta_{a}>0} \Delta_{a} \\
\epsilon_{t}=\min \left(1, \frac{c|\mathcal{A}|}{d^{2} t}\right\}
\end{gathered}
$$

- Decaying ϵ_{t}-Greedy algorithm has logarithmic total regret
- Unfortunately, above schedule requires advance knowledge of gaps
- Practically, implementing some decay schedule helps considerably
- Educational Code for decaying ϵ-greedy with optimistic initialization

Lower Bound

- Goal: Find an algorithm with sublinear total regret for any multi-armed bandit (without any prior knowledge of \mathcal{R})
- The performance of any algorithm is determined by the similarity between the optimal arm and other arms
- Hard problems have similar-looking arms with different means
- Formally described by KL-Divergence $K L\left(\mathcal{R}^{a} \| \mathcal{R}^{a^{*}}\right)$ and gaps Δ_{a}

Theorem (Lai and Robbins)

Asymptotic Total Regret is at least logarithmic in number of steps

$$
\lim _{T \rightarrow \infty} L_{T} \geq \log T \sum_{a \mid \Delta_{a}>0} \frac{1}{\Delta_{a}} \geq \log T \sum_{a \mid \Delta_{a}>0} \frac{\Delta_{a}}{K L\left(\mathcal{R}^{a}| | \mathcal{R}^{a^{*}}\right)}
$$

Optimism in the Face of Uncertainty

- Which action should we pick?
- The more uncertain we are about an action-value, the more important it is to explore that action
- It could turn out to be the best action

Optimism in the Face of Uncertainty (continued)

- After picking blue action, we are less uncertain about the value
- And more likely to pick another action
- Until we home in on the best action

Upper Confidence Bounds

- Estimate an upper confidence $\hat{U}_{t}(a)$ for each action value
- Such that $Q(a) \leq \hat{Q}_{t}(a)+\hat{U}_{t}(a)$ with high probability
- This depends on the number of times $N_{t}(a)$ that a has been selected
- Small $N_{t}(a) \Rightarrow$ Large $\hat{U}_{t}(a)$ (estimated value is uncertain)
- Large $N_{t}(a) \Rightarrow$ Small $\hat{U}_{t}(a)$ (estimated value is accurate)
- Select action maximizing Upper Confidence Bound (UCB)

$$
a_{t+1}=\underset{a \in \mathcal{A}}{\arg \max }\left\{\hat{Q}_{t}(a)+\hat{U}_{t}(a)\right\}
$$

Hoeffding's Inequality

Theorem (Hoeffding's Inequality)

Let X_{1}, \ldots, X_{n} be i.i.d. random variables in $[0,1]$, and let

$$
\bar{x}_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

be the sample mean. Then for any $u \geq 0$,

$$
\mathbb{P}\left[\mathbb{E}\left[\bar{X}_{n}\right]>\bar{X}_{n}+u\right] \leq e^{-2 n u^{2}}
$$

- Apply Hoeffding's Inequality to rewards of [0, 1]-support bandits
- Conditioned on selecting action a at time step t, setting $n=N_{t}(a)$ and $u=\hat{U}_{t}(a)$,

$$
\mathbb{P}\left[Q(a)>\hat{Q}_{t}(a)+\hat{U}_{t}(a)\right] \leq e^{-2 N_{t}(a) \cdot \hat{U}_{t}(a)^{2}}
$$

Calculating Upper Confidence Bounds

- Pick a small probability p that $Q(a)$ exceeds $\operatorname{UCB}\left\{\hat{Q}_{t}(a)+\hat{U}_{t}(a)\right\}$
- Now solve for $\hat{U}_{t}(a)$

$$
\begin{aligned}
& e^{-2 N_{t}(a) \cdot \hat{U}_{t}(a)^{2}}=p \\
\Rightarrow & \hat{U}_{t}(a)=\sqrt{\frac{-\log p}{2 N_{t}(a)}}
\end{aligned}
$$

- Reduce p as we observe more rewards, eg: $p=t^{-\alpha}$ (for fixed $\alpha>0$)
- This ensures we select optimal action as $t \rightarrow \infty$

$$
\hat{U}_{t}(a)=\sqrt{\frac{\alpha \log t}{2 N_{t}(a)}}
$$

UCB1

Yields UCB1 algorithm for arbitrary-distribution arms bounded in $[0,1]$

$$
a_{t+1}=\underset{a \in \mathcal{A}}{\arg \max }\left\{\hat{Q}_{t}(a)+\sqrt{\frac{\alpha \log t}{2 N_{t}(a)}}\right\}
$$

Theorem

The UCB1 Algorithm achieves logarithmic total regret

$$
L_{T} \leq \sum_{a \mid \Delta_{a}>0} \frac{4 \alpha \cdot \log T}{\Delta_{a}}+\frac{2 \alpha \cdot \Delta_{a}}{\alpha-1}
$$

Educational Code for UCB1 algorithm

Bayesian Bandits

- So far we have made no assumptions about the rewards distribution \mathcal{R} (except bounds on rewards)
- Bayesian Bandits exploit prior knowledge of rewards distribution $\mathbb{P}[\mathcal{R}]$
- They compute posterior distribution of rewards $\mathbb{P}\left[\mathcal{R} \mid h_{t}\right]$ where $h_{t}=a_{1}, r_{1}, \ldots, a_{t}, r_{t}$ is the history
- Use posterior to guide exploration
- Upper Confidence Bounds (Bayesian UCB)
- Probability Matching (Thompson sampling)
- Better performance if prior knowledge of \mathcal{R} is accurate

Bayesian UCB Example: Independent Gaussians

- Assume reward distribution is Gaussian, $\mathcal{R}^{a}(r)=\mathcal{N}\left(r ; \mu_{a}, \sigma_{a}^{2}\right)$
- Compute Gaussian posterior over μ_{a}, σ_{a}^{2} (Bayes update details here)

$$
\mathbb{P}\left[\mu_{a}, \sigma_{a}^{2} \mid h_{t}\right] \propto \mathbb{P}\left[\mu_{a}, \sigma_{a}^{2}\right] \cdot \prod_{t \mid a_{t}=a} \mathcal{N}\left(r_{t} ; \mu_{a}, \sigma_{a}^{2}\right)
$$

- Pick action that maximizes Expectation of: "c std-errs above mean"

$$
a_{t+1}=\underset{a \in \mathcal{A}}{\arg \max } \mathbb{E}_{\mathbb{P}\left[\mu_{a}, \sigma_{a} \mid h_{t}\right]}\left[\mu_{a}+\frac{c \cdot \sigma_{a}}{\sqrt{N_{t}(a)}}\right]
$$

Probability Matching

- Probability Matching selects action a according to probability that a is the optimal action

$$
\pi\left(a_{t+1} \mid h_{t}\right)=\mathbb{P}_{\mathcal{D}_{t} \sim \mathbb{P}\left[\mathcal{R} \mid h_{t}\right]}\left[\mathbb{E}_{\mathcal{D}_{t}}\left[r \mid a_{t+1}\right]>\mathbb{E}_{\mathcal{D}_{t}}[r \mid a], \forall a \neq a_{t+1}\right]
$$

- Probability matching is optimistic in the face of uncertainty
- Because uncertain actions have higher probability of being max
- Can be difficult to compute analytically from posterior

Thompson Sampling

- Thompson Sampling implements probability matching

$$
\begin{aligned}
\pi\left(a_{t+1} \mid h_{t}\right) & =\mathbb{P}_{\mathcal{D}_{t} \sim \mathbb{P}\left[\mathcal{R} \mid h_{t}\right]}\left[\mathbb{E}_{\mathcal{D}_{t}}\left[r \mid a_{t+1}\right]>\mathbb{E}_{\mathcal{D}_{t}}[r \mid a], \forall a \neq a_{t+1}\right] \\
& =\mathbb{E}_{\mathcal{D}_{t} \sim \mathbb{P}\left[\mathcal{R} \mid h_{t}\right]}\left[\mathbb{1}_{a_{t+1}=\arg \max _{a_{\in A}} \mathbb{E}_{\mathcal{D}_{t}}[r \mid a]}\right]
\end{aligned}
$$

- Use Bayes law to compute posterior distribution $\mathbb{P}\left[\mathcal{R} \mid h_{t}\right]$
- Sample a reward distribution \mathcal{D}_{t} from posterior $\mathbb{P}\left[\mathcal{R} \mid h_{t}\right]$
- Estimate Action-Value function with sample \mathcal{D}_{t} as $\hat{Q}_{t}(a)=\mathbb{E}_{\mathcal{D}_{t}}[r \mid a]$
- Select action maximizing value of sample

$$
a_{t+1}=\underset{a \in \mathcal{A}}{\arg \max } \hat{Q}_{t}(a)
$$

- Thompson Sampling achieves Lai-Robbins lower bound!
- Educational Code for Thompson Sampling for Gaussian Distributions
- Educational Code for Thompson Sampling for Bernoulli Distributions

Gradient Bandit Algorithms

- Gradient Bandit Algorithms are based on Stochastic Gradient Ascent
- We optimize Score parameters s_{a} for $a \in \mathcal{A}=\left\{a_{1}, \ldots, a_{m}\right\}$
- Objective function to be maximized is the Expected Reward

$$
J\left(s_{a_{1}}, \ldots, s_{a_{m}}\right)=\sum_{a \in \mathcal{A}} \pi(a) \cdot \mathbb{E}[r \mid a]
$$

- $\pi(\cdot)$ is probabilities of taking actions (based on a stochastic policy)
- The stochastic policy governing $\pi(\cdot)$ is a function of the Scores:

$$
\pi(a)=\frac{e^{s_{a}}}{\sum_{b \in \mathcal{A}} e^{s_{b}}}
$$

- Scores represent the relative value of actions based on seen rewards
- Note: π has a Boltzmann distribution (Softmax-function of Scores)
- We move the Score parameters s_{a} (hence, action probabilities $\pi(a)$) such that we ascend along the direction of gradient of objective $J(\cdot)$

Gradient of Expected Reward

- To construct Gradient of $J(\cdot)$, we calculate $\frac{\partial J}{\partial s_{\mathrm{a}}}$ for all $a \in \mathcal{A}$

$$
\begin{aligned}
& \frac{\partial J}{\partial s_{a}}=\frac{\partial}{\partial s_{a}}\left(\sum_{a^{\prime} \in \mathcal{A}} \pi\left(a^{\prime}\right) \cdot \mathbb{E}\left[r \mid a^{\prime}\right]\right)=\sum_{a^{\prime} \in \mathcal{A}} \mathbb{E}\left[r \mid a^{\prime}\right] \cdot \frac{\partial \pi\left(a^{\prime}\right)}{\partial s_{a}} \\
= & \sum_{a^{\prime} \in \mathcal{A}} \pi\left(a^{\prime}\right) \cdot \mathbb{E}\left[r \mid a^{\prime}\right] \cdot \frac{\partial \log \pi\left(a^{\prime}\right)}{\partial s_{a}}=\mathbb{E}_{a^{\prime} \sim \pi, r \sim \mathcal{R}^{a^{\prime}}}\left[r \cdot \frac{\partial \log \pi\left(a^{\prime}\right)}{\partial s_{a}}\right]
\end{aligned}
$$

- We know from standard softmax-function calculus that:

$$
\frac{\partial \log \pi\left(a^{\prime}\right)}{\partial s_{a}}=\frac{\partial}{\partial s_{a}}\left(\log \frac{e^{s_{a^{\prime}}}}{\sum_{b \in \mathcal{A}} e^{s_{b}}}\right)=\mathbb{1}_{a=a^{\prime}}-\pi(a)
$$

- Therefore $\frac{\partial J}{\partial s_{a}}$ can we re-written as:

$$
=\mathbb{E}_{a^{\prime} \sim \pi, r \sim \mathcal{R}^{a^{\prime}}}\left[r \cdot\left(\mathbb{1}_{a=a^{\prime}}-\pi(a)\right)\right]
$$

- At each step t, we approximate the gradient with $\left(a_{t}, r_{t}\right)$ sample as:

$$
r_{t} \cdot\left(\mathbb{1}_{a=a_{t}}-\pi_{t}(a)\right) \text { for all } a \in \mathcal{A}
$$

Score updates with Stochastic Gradient Ascent

- $\pi_{t}(a)$ is the probability of a at step t derived from score $s_{t}(a)$ at step t
- Reduce variance of estimate with baseline B that's independent of a :

$$
\left(r_{t}-B\right) \cdot\left(\mathbb{1}_{a=a_{t}}-\pi_{t}(a)\right) \text { for all } a \in \mathcal{A}
$$

- This doesn't introduce bias in the estimate of gradient of $J(\cdot)$ because

$$
\begin{gathered}
\mathbb{E}_{a^{\prime} \sim \pi}\left[B \cdot\left(\mathbb{1}_{a=a^{\prime}}-\pi(a)\right)\right]=\mathbb{E}_{a^{\prime} \sim \pi}\left[B \cdot \frac{\partial \log \pi\left(a^{\prime}\right)}{\partial s_{a}}\right] \\
=B \cdot \sum_{a^{\prime} \in \mathcal{A}} \pi\left(a^{\prime}\right) \cdot \frac{\partial \log \pi\left(a^{\prime}\right)}{\partial s_{a}}=B \cdot \sum_{a^{\prime} \in \mathcal{A}} \frac{\partial \pi\left(a^{\prime}\right)}{\partial s_{a}}=B \cdot \frac{\partial}{\partial s_{a}}\left(\sum_{a^{\prime} \in \mathcal{A}} \pi\left(a^{\prime}\right)\right)=0
\end{gathered}
$$

- We can use $B=\bar{r}_{t}=\frac{1}{t} \sum_{s=1}^{t} r_{s}=$ average rewards until step t
- So, the update to scores $s_{t}(a)$ for all $a \in \mathcal{A}$ is:

$$
s_{t+1}(a)=s_{t}(a)+\alpha \cdot\left(r_{t}-\bar{r}_{t}\right) \cdot\left(\mathbb{1}_{a=a_{t}}-\pi_{t}(a)\right)
$$

- Educational Code for this Gradient Bandit Algorithm

Value of Information

- Exploration is useful because it gains information
- Can we quantify the value of information?
- How much would a decision-maker be willing to pay to have that information, prior to making a decision?
- Long-term reward after getting information minus immediate reward
- Information gain is higher in uncertain situations
- Therefore it makes sense to explore uncertain situations more
- If we know value of information, we can trade-off exploration and exploitation optimally

Information State Space

- We have viewed bandits as one-step decision-making problems
- Can also view as sequential decision-making problems
- At each step there is an information state \tilde{s}
- \tilde{s} is a statistic of the history, i.e., $\tilde{s}_{t}=f\left(h_{t}\right)$
- summarizing all information accumulated so far
- Each action a causes a transition to a new information state \tilde{s}^{\prime} (by adding information), with probability $\tilde{\mathcal{P}}_{\tilde{\tilde{s}}, \tilde{s}^{\prime}}^{a}$
- This defines an MDP \tilde{M} in information state space

$$
\tilde{M}=(\tilde{\mathcal{S}}, \mathcal{A}, \tilde{\mathcal{P}}, \mathcal{R}, \gamma)
$$

Example: Bernoulli Bandits

- Consider a Bernoulli Bandit, such that $\mathcal{R}^{a}=\mathcal{B}\left(\mu_{a}\right)$
- For arm a, reward $=1$ with probability $\mu_{a}\left(=0\right.$ with probability $\left.1-\mu_{a}\right)$
- Assume we have m arms $a_{1}, a_{2}, \ldots, a_{m}$
- The information state is $\tilde{s}=\left(\alpha_{a_{1}}, \beta_{a_{1}}, \alpha_{a_{2}}, \beta_{a_{2}} \ldots, \alpha_{a_{m}}, \beta_{a_{m}}\right)$
- α_{a} records the pulls of arms a for which reward was 1
- β_{a} records the pulls of arm a for which reward was 0
- In the long-run, $\frac{\alpha_{a}}{\alpha_{a}+\beta_{a}} \rightarrow \mu_{a}$

Solving Information State Space Bandits

- We now have an infinite MDP over information states
- This MDP can be solved by Reinforcement Learning
- Model-free Reinforcement learning, eg: Q-Learning (Duff, 1994)
- Or Bayesian Model-based Reinforcement Learning
- eg: Gittins indices (Gittins, 1979)
- This approach is known as Bayes-adaptive RL
- Finds Bayes-optimal exploration/exploitation trade-off with respect of prior distribution

Bayes-Adaptive Bernoulli Bandits

- Start with $\operatorname{Beta}\left(\alpha_{a}, \beta_{a}\right)$ prior over reward function \mathcal{R}^{a}
- Each time a is selected, update posterior for \mathcal{R}^{a} as:
- $\operatorname{Beta}\left(\alpha_{a}+1, \beta_{a}\right)$ if $r=1$
- Beta $\left(\alpha_{a}, \beta_{a}+1\right)$ if $r=0$
- This defines transition function $\tilde{\mathcal{P}}$ for the Bayes-adaptive MDP
- $\left(\alpha_{a}, \beta_{a}\right)$ in information state provides reward model $\operatorname{Beta}\left(\alpha_{a}, \beta_{a}\right)$
- Each state transition corresponds to a Bayesian model update

Gittins Indices for Bernoulli Bandits

- Bayes-adaptive MDP can be solved by Dynamic Programming
- The solution is known as the Gittins Index
- Exact solution to Bayes-adaptive MDP is typically intractable
- Guez et al. 2020 applied Simulation-based search
- Forward search in information state space
- Using simulations from current information state

Summary of approaches to Bandit Algorithms

- Naive Exploration (eg: ϵ-Greedy)
- Optimistic Initialization
- Optimism in the face of uncertainty (eg: UCB, Bayesian UCB)
- Probability Matching (eg: Thompson Sampling)
- Gradient Bandit Algorithms
- Information State Space MDP, incorporating value of information

Contextual Bandits

- A Contextual Bandit is a 3-tuple $(\mathcal{A}, \mathcal{S}, \mathcal{R})$
- \mathcal{A} is a known set of m actions ("arms")
- $\mathcal{S}=\mathbb{P}[s]$ is an unknown distribution over states ("contexts")
- $\mathcal{R}_{s}^{a}(r)=\mathbb{P}[r \mid s, a]$ is an unknown probability distribution over rewards
- At each step t, the following sequence of events occur:
- The environment generates a states $s_{t} \sim \mathcal{S}$
- Then the AI Agent (algorithm) selects an actions $a_{t} \in \mathcal{A}$
- Then the environment generates a reward $r_{t} \in \mathcal{R}_{s_{t}}^{a_{t}}$
- The AI agent's goal is to maximize the Cumulative Reward:

$$
\sum_{t=1}^{T} r_{t}
$$

- Extend Bandit Algorithms to Action-Value $Q(s, a)$ (instead of $Q(a)$)

