
Multi-Armed Bandits: Exploration versus Exploitation

Ashwin Rao

ICME, Stanford University

July 25, 2021

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 1 / 34

Exploration versus Exploitation

Many situations in business (& life!) present dilemma on choices

Exploitation: Pick choices that seem best based on past outcomes

Exploration: Pick choices not yet tried out (or not tried enough)

Exploitation has notions of “being greedy” and being “short-sighted”

Too much Exploitation ⇒ Regret of missing unexplored “gems”

Exploration has notions of “gaining info” and being “long-sighted”

Too much Exploration ⇒ Regret of wasting time on “duds”

How to balance Exploration and Exploitation so we combine
information-gains and greedy-gains in the most optimal manner

Can we set up this problem in a mathematically disciplined manner?

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 2 / 34

Examples

Restaurant Selection

Exploitation: Go to your favorite restaurant
Exploration: Try a new restaurant

Online Banner Advertisement

Exploitation: Show the most successful advertisement
Exploration: Show a new advertisement

Oil Drilling

Exploitation: Drill at the best known location
Exploration: Drill at a new location

Learning to play a game

Exploitation: Play the move you believe is best
Exploration: Play an experimental move

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 3 / 34

The Multi-Armed Bandit (MAB) Problem

Multi-Armed Bandit is spoof name for “Many Single-Armed Bandits”

A Multi-Armed bandit problem is a 2-tuple (A,R)

A is a known set of m actions (known as “arms”)

Ra(r) = P[r |a] is an unknown probability distribution over rewards

At each step t, the AI agent (algorithm) selects an action at ∈ A
Then the environment generates a reward rt ∼ Rat

The AI agent’s goal is to maximize the Cumulative Reward:

T∑
t=1

rt

Can we design a strategy that does well (in Expectation) for any T?

Note that any selection strategy risks wasting time on “duds” while
exploring and also risks missing untapped “gems” while exploiting

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 4 / 34

Is the MAB problem a Markov Decision Process (MDP)?

Note that the environment doesn’t have a notion of State

Upon pulling an arm, the arm just samples from its distribution

However, the agent might maintain a statistic of history as it’s State

To enable the agent to make the arm-selection (action) decision

The action is then a (Policy) function of the agent’s State

So, agent’s arm-selection strategy is basically this Policy

Note that many MAB algorithms don’t take this formal MDP view

Instead, they rely on heuristic methods that don’t aim to optimize

They simply strive for “good” Cumulative Rewards (in Expectation)

Note that even in a simple heuristic algorithm, at is a random variable
simply because it is a function of past (random) rewards

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 5 / 34

Regret

The Action Value Q(a) is the (unknown) mean reward of action a

Q(a) = E[r |a]

The Optimal Value V ∗ is defined as:

V ∗ = Q(a∗) = max
a∈A

Q(a)

The Regret lt is the opportunity loss on a single step t

lt = E[V ∗ − Q(at)]

The Total Regret LT is the total opportunity loss

LT =
T∑
t=1

lt =
T∑
t=1

E[V ∗ − Q(at)]

Maximizing Cumulative Reward is same as Minimizing Total Regret

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 6 / 34

Counting Regret

Let Nt(a) be the (random) number of selections of a across t steps

Define Countt of a (for given action-selection strategy) as E[Nt(a)]

Define Gap ∆a of a as the value difference between a and optimal a∗

∆a = V ∗ − Q(a)

Total Regret is sum-product (over actions) of Gaps and CountsT

LT =
T∑
t=1

E[V ∗ − Q(at)]

=
∑
a∈A

E[NT (a)] · (V ∗ − Q(a))

=
∑
a∈A

E[NT (a)] ·∆a

A good algorithm ensures small Counts for large Gaps

Little problem though: We don’t know the Gaps!

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 7 / 34

Linear or Sublinear Total Regret

If an algorithm never explores, it will have linear total regret

If an algorithm forever explores, it will have linear total regret

Is it possible to achieve sublinear total regret?

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 8 / 34

Greedy Algorithm

We consider algorithms that estimate Q̂t(a) ≈ Q(a)

Estimate the value of each action by rewards-averaging

Q̂t(a) =
1

Nt(a)

t∑
s=1

rs · 1as=a

The Greedy algorithm selects the action with highest estimated value

at = arg max
a∈A

Q̂t−1(a)

Greedy algorithm can lock onto a suboptimal action forever

Hence, Greedy algorithm has linear total regret

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 9 / 34

ε-Greedy Algorithm

The ε-Greedy algorithm continues to explore forever

At each time-step t:

With probability 1− ε, select at = arg maxa∈A Q̂t−1(a)
With probability ε, select a random action (uniformly) from A

Constant ε ensures a minimum regret proportional to mean gap

lt ≥
ε

|A|
∑
a∈A

∆a

Hence, ε-Greedy algorithm has linear total regret

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 10 / 34

Optimistic Initialization

Simple and practical idea: Initialize Q̂0(a) to a high value for all a ∈ A
Update action value by incremental-averaging

Starting with N0(a) ≥ 0 for all a ∈ A,

Nt(a) = Nt−1(a) + 1a=at for all a

Q̂t(at) = Q̂t−1(at) +
1

Nt(at)
(rt − Q̂t−1(at))

Q̂t(a) = Q̂t−1(a) for all a 6= at

Encourages systematic exploration early on

One can also start with a high value for N0(a) for all a ∈ A
But can still lock onto suboptimal action

Hence, Greedy + optimistic initialization has linear total regret

ε-Greedy + optimistic initialization also has linear total regret

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 11 / 34

Decaying εt-Greedy Algorithm

Pick a decay schedule for ε1, ε2, . . .

Consider the following schedule

c > 0

d = min
a|∆a>0

∆a

εt = min(1,
c |A|
d2t
}

Decaying εt-Greedy algorithm has logarithmic total regret

Unfortunately, above schedule requires advance knowledge of gaps

Practically, implementing some decay schedule helps considerably

Educational Code for decaying ε-greedy with optimistic initialization

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 12 / 34

https://github.com/TikhonJelvis/RL-book/blob/master/rl/chapter14/epsilon_greedy.py

Lower Bound

Goal: Find an algorithm with sublinear total regret for any
multi-armed bandit (without any prior knowledge of R)

The performance of any algorithm is determined by the similarity
between the optimal arm and other arms

Hard problems have similar-looking arms with different means

Formally described by KL-Divergence KL(Ra||Ra∗) and gaps ∆a

Theorem (Lai and Robbins)

Asymptotic Total Regret is at least logarithmic in number of steps

lim
T→∞

LT ≥ logT
∑

a|∆a>0

1

∆a
≥ logT

∑
a|∆a>0

∆a

KL(Ra||Ra∗)

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 13 / 34

Optimism in the Face of Uncertainty

Which action should we pick?

The more uncertain we are about an action-value, the more important
it is to explore that action

It could turn out to be the best action

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 14 / 34

Optimism in the Face of Uncertainty (continued)

After picking blue action, we are less uncertain about the value

And more likely to pick another action

Until we home in on the best action

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 15 / 34

Upper Confidence Bounds

Estimate an upper confidence Ût(a) for each action value

Such that Q(a) ≤ Q̂t(a) + Ût(a) with high probability

This depends on the number of times Nt(a) that a has been selected

Small Nt(a)⇒ Large Ût(a) (estimated value is uncertain)
Large Nt(a)⇒ Small Ût(a) (estimated value is accurate)

Select action maximizing Upper Confidence Bound (UCB)

at+1 = arg max
a∈A

{Q̂t(a) + Ût(a)}

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 16 / 34

Hoeffding’s Inequality

Theorem (Hoeffding’s Inequality)

Let X1, . . . ,Xn be i.i.d. random variables in [0, 1], and let

X̄n =
1

n

n∑
i=1

Xi

be the sample mean. Then for any u ≥ 0,

P[E[X̄n] > X̄n + u] ≤ e−2nu2

Apply Hoeffding’s Inequality to rewards of [0, 1]-support bandits

Conditioned on selecting action a at time step t, setting n = Nt(a)
and u = Ût(a),

P[Q(a) > Q̂t(a) + Ût(a)] ≤ e−2Nt(a)·Ût(a)2

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 17 / 34

Calculating Upper Confidence Bounds

Pick a small probability p that Q(a) exceeds UCB {Q̂t(a) + Ût(a)}
Now solve for Ût(a)

e−2Nt(a)·Ût(a)2
= p

⇒ Ût(a) =

√
− log p

2Nt(a)

Reduce p as we observe more rewards, eg: p = t−α (for fixed α > 0)

This ensures we select optimal action as t →∞

Ût(a) =

√
α log t

2Nt(a)

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 18 / 34

UCB1

Yields UCB1 algorithm for arbitrary-distribution arms bounded in [0, 1]

at+1 = arg max
a∈A

{Q̂t(a) +

√
α log t

2Nt(a)
}

Theorem

The UCB1 Algorithm achieves logarithmic total regret

LT ≤
∑

a|∆a>0

4α · logT

∆a
+

2α ·∆a

α− 1

Educational Code for UCB1 algorithm

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 19 / 34

https://github.com/TikhonJelvis/RL-book/tree/master/rl/chapter14/ucb1.py

Bayesian Bandits

So far we have made no assumptions about the rewards distribution
R (except bounds on rewards)

Bayesian Bandits exploit prior knowledge of rewards distribution P[R]

They compute posterior distribution of rewards P[R|ht] where
ht = a1, r1, . . . , at , rt is the history

Use posterior to guide exploration

Upper Confidence Bounds (Bayesian UCB)
Probability Matching (Thompson sampling)

Better performance if prior knowledge of R is accurate

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 20 / 34

Bayesian UCB Example: Independent Gaussians

Assume reward distribution is Gaussian, Ra(r) = N (r ;µa, σ
2
a)

Compute Gaussian posterior over µa, σ
2
a (Bayes update details here)

P[µa, σ
2
a |ht] ∝ P[µa, σ

2
a] ·

∏
t|at=a

N (rt ;µa, σ
2
a)

Pick action that maximizes Expectation of: “c std-errs above mean”

at+1 = arg max
a∈A

EP[µa,σa|ht][µa +
c · σa√
Nt(a)

]

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 21 / 34

https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/lectures/lecture5.pdf

Probability Matching

Probability Matching selects action a according to probability that a
is the optimal action

π(at+1|ht) = PDt∼P[R|ht][EDt [r |at+1] > EDt [r |a], ∀a 6= at+1]

Probability matching is optimistic in the face of uncertainty

Because uncertain actions have higher probability of being max

Can be difficult to compute analytically from posterior

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 22 / 34

Thompson Sampling

Thompson Sampling implements probability matching

π(at+1|ht) = PDt∼P[R|ht][EDt [r |at+1] > EDt [r |a], ∀a 6= at+1]

= EDt∼P[R|ht][1at+1=arg maxa∈A EDt [r |a]]

Use Bayes law to compute posterior distribution P[R|ht]
Sample a reward distribution Dt from posterior P[R|ht]
Estimate Action-Value function with sample Dt as Q̂t(a) = EDt [r |a]

Select action maximizing value of sample

at+1 = arg max
a∈A

Q̂t(a)

Thompson Sampling achieves Lai-Robbins lower bound!

Educational Code for Thompson Sampling for Gaussian Distributions

Educational Code for Thompson Sampling for Bernoulli Distributions

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 23 / 34

https://github.com/TikhonJelvis/RL-book/tree/master/rl/chapter14/ts_gaussian.py
https://github.com/TikhonJelvis/RL-book/tree/master/rl/chapter14/ts_bernoulli.py

Gradient Bandit Algorithms

Gradient Bandit Algorithms are based on Stochastic Gradient Ascent

We optimize Score parameters sa for a ∈ A = {a1, . . . , am}
Objective function to be maximized is the Expected Reward

J(sa1 , . . . , sam) =
∑
a∈A

π(a) · E[r |a]

π(·) is probabilities of taking actions (based on a stochastic policy)

The stochastic policy governing π(·) is a function of the Scores:

π(a) =
esa∑

b∈A esb

Scores represent the relative value of actions based on seen rewards

Note: π has a Boltzmann distribution (Softmax-function of Scores)

We move the Score parameters sa (hence, action probabilities π(a))
such that we ascend along the direction of gradient of objective J(·)

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 24 / 34

Gradient of Expected Reward

To construct Gradient of J(·), we calculate ∂J
∂sa

for all a ∈ A

∂J

∂sa
=

∂

∂sa
(
∑
a′∈A

π(a′) · E[r |a′]) =
∑
a′∈A

E[r |a′] · ∂π(a′)

∂sa

=
∑
a′∈A

π(a′) · E[r |a′] · ∂ log π(a′)

∂sa
= Ea′∼π,r∼Ra′ [r ·

∂ log π(a′)

∂sa
]

We know from standard softmax-function calculus that:

∂ log π(a′)

∂sa
=

∂

∂sa
(log

esa′∑
b∈A esb

) = 1a=a′ − π(a)

Therefore ∂J
∂sa

can we re-written as:

= Ea′∼π,r∼Ra′ [r · (1a=a′ − π(a))]

At each step t, we approximate the gradient with (at , rt) sample as:

rt · (1a=at − πt(a)) for all a ∈ A

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 25 / 34

Score updates with Stochastic Gradient Ascent

πt(a) is the probability of a at step t derived from score st(a) at step t

Reduce variance of estimate with baseline B that’s independent of a:

(rt − B) · (1a=at − πt(a)) for all a ∈ A

This doesn’t introduce bias in the estimate of gradient of J(·) because

Ea′∼π[B · (1a=a′ − π(a))] = Ea′∼π[B · ∂ log π(a′)

∂sa
]

= B ·
∑
a′∈A

π(a′)· ∂ log π(a′)

∂sa
= B ·

∑
a′∈A

∂π(a′)

∂sa
= B · ∂

∂sa
(
∑
a′∈A

π(a′)) = 0

We can use B = r̄t = 1
t

∑t
s=1 rs = average rewards until step t

So, the update to scores st(a) for all a ∈ A is:

st+1(a) = st(a) + α · (rt − r̄t) · (1a=at − πt(a))

Educational Code for this Gradient Bandit Algorithm

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 26 / 34

https://github.com/TikhonJelvis/RL-book/tree/master/rl/chapter14/gradient_bandits.py

Value of Information

Exploration is useful because it gains information

Can we quantify the value of information?

How much would a decision-maker be willing to pay to have that
information, prior to making a decision?
Long-term reward after getting information minus immediate reward

Information gain is higher in uncertain situations

Therefore it makes sense to explore uncertain situations more

If we know value of information, we can trade-off exploration and
exploitation optimally

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 27 / 34

Information State Space

We have viewed bandits as one-step decision-making problems

Can also view as sequential decision-making problems

At each step there is an information state s̃

s̃ is a statistic of the history, i.e., s̃t = f (ht)
summarizing all information accumulated so far

Each action a causes a transition to a new information state s̃ ′ (by
adding information), with probability P̃a

s̃,s̃′

This defines an MDP M̃ in information state space

M̃ = (S̃,A, P̃,R, γ)

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 28 / 34

Example: Bernoulli Bandits

Consider a Bernoulli Bandit, such that Ra = B(µa)

For arm a, reward=1 with probability µa (=0 with probability 1− µa)

Assume we have m arms a1, a2, . . . , am

The information state is s̃ = (αa1 , βa1 , αa2 , βa2 . . . , αam , βam)

αa records the pulls of arms a for which reward was 1

βa records the pulls of arm a for which reward was 0

In the long-run, αa
αa+βa

→ µa

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 29 / 34

Solving Information State Space Bandits

We now have an infinite MDP over information states

This MDP can be solved by Reinforcement Learning

Model-free Reinforcement learning, eg: Q-Learning (Duff, 1994)

Or Bayesian Model-based Reinforcement Learning

eg: Gittins indices (Gittins, 1979)
This approach is known as Bayes-adaptive RL
Finds Bayes-optimal exploration/exploitation trade-off with respect of
prior distribution

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 30 / 34

Bayes-Adaptive Bernoulli Bandits

Start with Beta(αa, βa) prior over reward function Ra

Each time a is selected, update posterior for Ra as:

Beta(αa + 1, βa) if r = 1
Beta(αa, βa + 1) if r = 0

This defines transition function P̃ for the Bayes-adaptive MDP

(αa, βa) in information state provides reward model Beta(αa, βa)

Each state transition corresponds to a Bayesian model update

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 31 / 34

Gittins Indices for Bernoulli Bandits

Bayes-adaptive MDP can be solved by Dynamic Programming

The solution is known as the Gittins Index

Exact solution to Bayes-adaptive MDP is typically intractable

Guez et al. 2020 applied Simulation-based search

Forward search in information state space
Using simulations from current information state

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 32 / 34

Summary of approaches to Bandit Algorithms

Naive Exploration (eg: ε-Greedy)

Optimistic Initialization

Optimism in the face of uncertainty (eg: UCB, Bayesian UCB)

Probability Matching (eg: Thompson Sampling)

Gradient Bandit Algorithms

Information State Space MDP, incorporating value of information

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 33 / 34

Contextual Bandits

A Contextual Bandit is a 3-tuple (A,S,R)

A is a known set of m actions (“arms”)

S = P[s] is an unknown distribution over states (“contexts”)

Ra
s (r) = P[r |s, a] is an unknown probability distribution over rewards

At each step t, the following sequence of events occur:

The environment generates a states st ∼ S
Then the AI Agent (algorithm) selects an actions at ∈ A
Then the environment generates a reward rt ∈ Rat

st

The AI agent’s goal is to maximize the Cumulative Reward:

T∑
t=1

rt

Extend Bandit Algorithms to Action-Value Q(s, a) (instead of Q(a))

Ashwin Rao (Stanford) Multi-Armed Bandits July 25, 2021 34 / 34

