A Guided Tour of Chapter 4: Function Approximation and Approximate DP

Ashwin Rao

ICME, Stanford University
Dynamic Programming algorithms meant for non-large finite spaces
- DP algorithms typically sweep through all states in each iteration
- Cannot do this for large finite spaces or for infinite spaces
- Requires us to generalize to function approximation of Value Function
 - Sample an appropriate subset of states
 - Calculate the Value Function for those states (Bellman calculation)
 - Create/Update a func approx with the sampled states’ calculated values
- Also, can sample transitions to estimate DP algo’s Bellman update
- The fundamental structure of the algorithms is still the same
- Fundamental principles (Fixed-Point/Bellman Operators) still same
- These generalizations known as Approximate Dynamic Programming
Theory of Function Approximations

- We work with a generic but simple setting for Function Approximation
- Predictor variable $x \in \mathcal{X}$ (generic domain), Response variable $y \in \mathbb{R}$
- We treat x, y as unknown random variables, and want to estimate a function approximation for $\mathbb{P}[y|x]$ from data in the form of (x, y) pairs
- We consider parameterized functions f with parameters denoted w
- Exact data type of w will depend on specific form of function approx
- Denote the estimated probability of $y|x$ as $f(x; w)(y)$
- Assume given data in the form of a sequence of n (x, y) pairs:

$$ [(x_i, y_i) | 1 \leq i \leq n] $$

- Estimating $\mathbb{P}[y|x]$ is formalized by solving for $w = w^*$ such that:

$$ w^* = \arg \max_w \{ \prod_{i=1}^{n} f(x_i; w)(y_i) \} = \arg \max_w \{ \sum_{i=1}^{n} \log f(x_i; w)(y_i) \} $$
Maximum Likelihood and Cross-Entropy Loss

- This is the framework of *Maximum Likelihood Estimation* of $y|x$
- Data $[(x_i, y_i)|1 \leq i \leq n]$ specifies *empirical probability distribution* D
- Parameterized function f specifies *model probability distribution* M
- So we are in the business of reconciling D and M
- So this is minimizing *Cross-Entropy Loss* between D and M

 \[
 \text{Cross-Entropy Loss } \mathcal{H}(D, M) = -\mathbb{E}_D[\log M]
 \]

- We want to allow for incremental estimation (with data at each t):

 \[
 [(x_{t,i}, y_{t,i})|1 \leq i \leq n_t]
 \]

- Parameters update from w_{t-1} to w_t with say gradient descent
- Allow for full batch, mini-batch or single pair (eg: SGD)
- With an estimate of $f(x; w)$, we can predict $y|x$ as $\mathbb{E}_M[y|x]$:

 \[
 \mathbb{E}_M[y|x] = \mathbb{E}_{f(x;w)}[y] = \int_{-\infty}^{+\infty} y \cdot f(x; w)(y) \cdot dy
 \]
The `@abstractclass FunctionApprox`

class FunctionApprox(ABC, Generic[X]):

 @abstractmethod
def solve(
 self,
 xy_vals_seq: Iterable[Tuple[X, float]],
 error_tolerance: Optional[float] = None
) -> FunctionApprox[X]:

 @abstractmethod
def evaluate(
 self,
 x_values_seq: Iterable[X]
) -> np.ndarray:
The `@abstractclass` `FunctionApprox`

```python
def update(
self,
xy_vals_seq: Iterable[Tuple[X, float]]
) -> FunctionApprox[X]:
    pass

def iterate_updates(
    self,
    xy_seq_stream: Iterator[Iterable[Tuple[X, float]]]
) -> Iterator[FunctionApprox[X]]:
    return iterate.accumulate(
        xy_seq_stream,
        lambda fa, xy: fa.update(xy),
        initial=self
    )
```
Linear Function Approximation

- Define a sequence of feature functions $\phi_j : \mathcal{X} \to \mathbb{R}, j = 1, 2, \ldots, m$

 Feature Vector $\phi(x) = (\phi_1(x), \phi_2(x), \ldots, \phi_m(x))$ for all $x \in \mathcal{X}$

- Parameters w is a weights vector $w = (w_1, w_2, \ldots, w_m) \in \mathbb{R}^m$

- Linear function approximation assumes gaussian distribution for $y|x$

 with mean $= \sum_{j=1}^{m} \phi_j(x) \cdot w_j = \phi(x)^T \cdot w$ and constant variance σ^2

 $$
 \mathbb{P}[y|x] = f(x; w)(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{(y-\phi(x)^T \cdot w)^2}{2\sigma^2}}
 $$

- Regularized cross-entropy loss function for data $[x_i, y_i | 1 \leq i \leq n]$:

 $$
 \mathcal{L}(w) = \frac{1}{2n} \cdot \sum_{i=1}^{n} (\phi(x_i)^T \cdot w - y_i)^2 + \frac{1}{2} \cdot \lambda \cdot |w|^2
 $$

 This ignores constants involving σ, and λ is regularization coefficient

 So $\mathcal{L}(w)$ is just MSE of linear predictions $\phi(x_i)^T \cdot w$
Linear Function Approximation with Gradient Descent

- Gradient of $\mathcal{L}(\mathbf{w})$ with respect to \mathbf{w} works out to:

$$\nabla_\mathbf{w} \mathcal{L}(\mathbf{w}) = \frac{1}{n} \cdot (\sum_{i=1}^{n} \phi(x_i) \cdot (\phi(x_i)^T \cdot \mathbf{w} - y_i)) + \lambda \cdot \mathbf{w}$$

- Solve for \mathbf{w}^* by incremental estimation using gradient descent

- Gradient estimate $G_{(x_t,y_t)}(\mathbf{w}_t)$ for time t-data $[(x_{t,i}, y_{t,i})|1 \leq i \leq n_t]$:

$$G_{(x_t,y_t)}(\mathbf{w}_t) = \frac{1}{n} \cdot (\sum_{i=1}^{n_t} \phi(x_{t,i}) \cdot (\phi(x_{t,i})^T \cdot \mathbf{w}_t - y_{t,i})) + \lambda \cdot \mathbf{w}_t$$

- Interpreted as the weighted-mean of the feature vectors $\phi(x_{t,i})$

- Weighted by the (scalar) linear prediction errors $\phi(x_{t,i})^T \cdot \mathbf{w}_t - y_{t,i}$

- So the update to the weights vector \mathbf{w} is given by:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha_t \cdot G_{(x_t,y_t)}(\mathbf{w}_t)$$
Direct Solution of Linear Function Approximation

- If feature functions not too large, we can directly solve for \mathbf{w}^*
- Assume the entire provided data is $[(x_i, y_i)|1 \leq i \leq n]$
- Then the gradient estimate based can be set to 0 to solve for \mathbf{w}^*

$$\frac{1}{n} \cdot (\sum_{i=1}^{n} \phi(x_i) \cdot (\phi(x_i)^T \cdot \mathbf{w}^* - y_i)) + \lambda \cdot \mathbf{w}^* = 0$$

- Denote Φ as $n \times m$ matrix: $\Phi_{i,j} = \phi_j(x_i)$
- Denote column vector $\mathbf{Y} \in \mathbb{R}^n$ defined as $\mathbf{Y}_i = y_i$

$$\frac{1}{n} \cdot \Phi^T \cdot (\Phi \cdot \mathbf{w}^* - \mathbf{Y}) + \lambda \cdot \mathbf{w}^* = 0$$

$$\Rightarrow (\Phi^T \cdot \Phi + n\lambda \cdot I_m) \cdot \mathbf{w}^* = \Phi^T \cdot \mathbf{Y}$$

$$\Rightarrow \mathbf{w}^* = (\Phi^T \cdot \Phi + n\lambda \cdot I_m)^{-1} \cdot \Phi^T \cdot \mathbf{Y}$$
Deep Neural Networks (of vanilla flavor)

- Deep Neural Network (DNN) layers numbered $l = 0, 1, \ldots, L$
- Denote input and output to layer l as vectors I_l and O_l

$$l_0 = \phi(x) \in \mathbb{R}^m \text{ and } O_L = \mathbb{E}_M[y|x] \text{ and } I_{l+1} = O_l$$

- Denote layer l parameters as $|O_l| \times |I_l|$ matrix w_l
- Layer l neurons define a linear transformation from I_l to S_l

$$S_l = w_l \cdot I_l \text{ and } O_l = g_l(S_l)$$

- where $g_l : \mathbb{R} \rightarrow \mathbb{R}$ is the activation function for layer l
- Forward-propagation composes layers’ linear and activation functions
- Back-propagation calculates cross-entropy loss gradient $\nabla_{w_l} \mathcal{L}$
- Gradient Descent updates for weights w_l proportional to $\nabla_{w_l} \mathcal{L}$
Back-prop as Recursive Gradient Calculation

- Loss gradient can be reduced to calculating $P_l = \nabla_{S_l} \mathcal{L}$

 $$\nabla_{w_l} \mathcal{L} = (\nabla_{S_l} \mathcal{L})^T \cdot \nabla_{w_l} S_l = P_l^T \cdot \nabla_{w_l} S_l = P_l \cdot I_l^T = P_l \otimes I_l$$

- Including L^2 regularization (with regularization coefficients λ_l):

 $$\nabla_{w_l} \mathcal{L} = P_l \cdot I_l^T + \lambda_l \cdot w_l$$

 - \cdot is inner-product, \otimes is outer-product, \circ is component-wise product

Theorem

$$P_l = (w_{l+1}^T \cdot P_{l+1}) \circ g'_l(S_l) \text{ (read the proof in the book)}$$

To calculate $P_L = \nabla_{S_L} \mathcal{L}$, assume suitable functional form for $P[y|S_L]$
Exponential functional form for $\mathbb{P}[y|S_L]$

- Consider the exponential-family functional-form for $\mathbb{P}[y|S_L]$

$$\mathbb{P}[y|S_L] = p(y|S_L, \tau) = h(y, \tau) \cdot e^{\frac{S_L \cdot y - A(S_L)}{d(\tau)}}$$

- Form adopted from framework of Generalized Linear Models (GLM)
- We want the scalar prediction $O_L = g_L(S_L)$ to be equal to $\mathbb{E}_p[y|S_L]$
- What function $g_L : \mathbb{R} \to \mathbb{R}$ (in terms of $p(y|S_L, \tau)$) would satisfy the requirement of $O_L = g_L(S_L) = \mathbb{E}_p[y|S_L]$?

Lemma

$$\mathbb{P}[y|S_L] = h(y, \tau) \cdot e^{\frac{S_L \cdot y - A(S_L)}{d(\tau)}} \Rightarrow \mathbb{E}_p[y|S_L] = A'(S_L)$$

- To satisfy $O_L = g_L(S_L) = \mathbb{E}_p[y|S_L]$, we need: $O_L = g_L(S_L) = A'(S_L)$
- So $g_L(\cdot)$ must be set to be the derivative of the $A(\cdot)$ function
- In GLM theory, $A'(\cdot)$ serves as *canonical link function* for given $\mathbb{P}[y|x]$
Examples of Distributions and their Canonical Links

With canonical link, P_L reduces to prediction error for each (x, y) data

Theorem

$$P_L = \frac{\partial L}{\partial S_L} = \frac{O_L - y}{d(\tau)}$$

Some examples of distributions and their canonical link functions:

- Normal distribution $y \sim \mathcal{N}(\mu, \sigma^2)$:
 $$S_L = \mu, \tau = \sigma, h(y, \tau) = \frac{-y^2}{\sqrt{2\pi\sigma^2}}, A(S_L) = \frac{S_L^2}{2}, d(\tau) = \tau^2. \quad g_L(S_L) = S_L$$

- Bernoulli distribution for binary-valued y, parameterized by p:
 $$S_L = \log \left(\frac{p}{1-p} \right), \tau = h(y, \tau) = d(\tau) = 1, A(S_L) = \log (1 + e^{S_L}). \quad g_L(S_L) = \frac{1}{1+e^{-S_L}}$$

- Poisson distribution for y parameterized by λ:
 $$S_L = \log \lambda, \tau = d(\tau) = 1, h(y, \tau) = \frac{1}{y!}, A(S_L) = e^{S_L}. \quad g_L(S_L) = e^{S_L}$$
“Tabular” is simple setting with finite $\mathcal{X} = \{x_1, x_2, \ldots, x_n\}$
With (x, y) data pairs having all its x-values within this finite \mathcal{X}
$\mathbb{E}[y|x]$ must be calculated from data y-values associated with single x
So $\mathbb{E}[y|x]$ prediction must be some sort of average of those y-values
A “table” can store all \mathcal{X} together with all predictions $\mathbb{E}[y|x]$
This “Tabular” setting is compatible with FunctionApprox interface
Also, “Tabular” is a special case of linear function approximation
With features ϕ_i as indicator functions for each $x_i \in \mathcal{X}$
And weights w_i as average of y-values associated with x_i in the data
Next we cover Approximate DP using FunctionApprox
Where \mathcal{X} is state space and predictions constitute Value Function
Specializing FunctionApprox to Tabular gives Tabular DP
Approximate Policy Evaluation

- Repeatedly apply B^π on FunctionApprox of $V : \mathcal{N} \to \mathbb{R}$
- Operates on MarkovRewardProcess (not necessarily Finite)
- So no enumeration of states and no access to transition probabilities
- We specify a sampling probability distribution of “source states”
- From each source sample s, sample pairs of (next state s', reward r)
- Estimate $\mathbb{E}[r + \gamma \cdot V(s')]$ by averaging over sampled pairs
- $V(s')$ obtained from the instance of FunctionApprox being used
- Sample of source states and their associated Bellman expectation estimates (from transition samples) used to update FunctionApprox
class Distribution(ABC, Generic[A]):

 @abstractmethod
 def sample(self) -> A:
 pass

 @abstractmethod
 def expectation(self,
 f: Callable[[A], float]
) -> float:
 pass
Approximate Policy Evaluation interface

\[
ValueFunctionApprox = FunctionApprox[\text{NonTerminal}[S]]
\]
\[
NTStateDistribution = Distribution[\text{NonTerminal}[S]]
\]

def evaluate_mrp(
 mrp: MarkovRewardProcess[S],
 gamma: float,
 approx_0: ValueFunctionApprox[S],
 nt_states_distribution: NTStateDistribution[S],
 num_samples: int
) -> Iterator[ValueFunctionApprox[S]]:
Approximate Policy Evaluation code

```python
def update(v: ValueFunctionApprox[S]) -> ValueFunctionApprox[S]:
    nt_states: Sequence[NonTerminal[S]] =
    nt_states_distribution.sample_n(num_samples)

    def return_(s_r: Tuple[State[S], float]) -> float:
        s1, r = s_r
        return r + gamma * extended_vf(v, s1)

    return v.update(
        [(s, mrp.transition_reward(s).expectation(
            return_)) for s in nt_states]
    )

return iterate(update, approx_0)
```

Ashwin Rao (Stanford)
def value_iteration(
 mdp: MarkovDecisionProcess[S, A],
 gamma: float,
 approx_0: ValueFunctionApprox[S],
 nt_states_distribution: NTStateDistribution[S],
 num_samples: int
) -> Iterator[ValueFunctionApprox[S]]:
Approximate Value Iteration code

```python
def update(v: ValueFunctionApprox[S]) -> \n    ValueFunctionApprox[S]:
    nt_states: Sequence[NonTerminal[S]] = \n        nt_states_distribution.sample_n(num_samples)

def return_(s_r: Tuple[State[S], float]) -> float:
    s1, r = s_r
    return r + gamma * extended_vf(v, s1)

    return v.update(
        [(s, max(mdp.step(s, a).expectation(return_)
                  for a in mdp.actions(s)))
         for s in nt_states]
    )
    return iterate(update, approx_0)
```

Ashwin Rao (Stanford) Approximate DP Chapter 20 / 23
Similarly, generalize Backward Induction DP algorithms

Each time steps’ Value Function is a FunctionApprox

Work with a separate MRP/MDP representation for each time step’s transitions, that is responsible for sampling next step’s (state, reward)

\(x\)-values come from current time step’s states sampling distribution

\(y\)-values come from applying Bellman Operator on next time steps’ FunctionApprox for it’s Value Function

Bellman Operator expectation is estimated by averaging over transition samples

These \((x, y)\) pairs constitute the data-set used to solve the current time step’s FunctionApprox for it’s Value Function
Each ADP algorithm works with a distribution of non-terminal states

- Good choice: Stationary Distribution of uniform-policy-implied MRP
- See if you can use some mathematical property of given MDP/MRP
- Or create sampling traces and estimate with occurrence frequency

Backup choice: Uniform Distribution of all non-terminal states

Likewise, for backward induction, see if you can utilize some property of the given process to infer distribution of states for a fixed time step

eg: In finance, continuous-time processes can sometimes be solved

- Or create sampling traces and estimate with occurrence frequency
- Backup choice: Uniform Distribution of all non-terminal states
The FunctionApprox interface involves three key methods:

- **solve**: Calculate the “best-fit” parameters that minimizes the cross-entropy loss function for the given fixed data set of \((x, y)\) pairs.
- **update**: Parameters of FunctionApprox are updated based on each new \((x, y)\) pairs data set from the available data stream.
- **evaluate**: Calculate the conditional expectation of response variable \(y\), according to the model specified by FunctionApprox.

Tabular is a special case of linear function approximation with feature functions as indicator functions for each of the finite set of \(X\).

All the Tabular DP algorithms can be generalized to ADP algorithms:

- Tabular VF updates replaced by updates to FunctionApprox parameters.
- Sweep over all states in Tabular case replaced by state samples.
- Bellman Operators’ Expectation estimated as average of calculations over transition samples (versus using explicit transition probabilities).