A Guided Tour of Chapter 2:
Markov Decision Process and Bellman Equations

Ashwin Rao

ICME, Stanford University
Chapter 1 covered “Sequential Uncertainty” and notion of “Rewards”
Here we extend the framework to include “Sequential Decisioning”
Developing intuition by revisiting the Inventory example
Over-ordering risks “holding costs” of overnight inventory
Under-ordering risks “stockout costs” (empty shelves more damaging)
Orders influence future inventory levels, and consequent future orders
Also need to deal with delayed costs and demand uncertainty
Intuition on how challenging it is to determine Optimal Actions
Cyclic interplay between the Agent and Environment
Unlike supervised learning, there’s no “teacher” here (only Rewards)
Cyclic Interplay between Agent and Environment

\[S_t \xrightarrow{A_t} R_t \xrightarrow{R_{t+1}} S_{t+1} \xrightarrow{R_{t+1}} \ldots \]
Definition

A *Markov Decision Process (MDP)* comprises of:

- A countable set of states S (State Space), a set $\mathcal{T} \subseteq S$ (known as the set of Terminal States), and a countable set of actions A

- A time-indexed sequence of *environment-generated* pairs of random states $S_t \in S$ and random rewards $R_t \in \mathcal{D}$ (a countable subset of \mathbb{R}), alternating with *agent-controllable* actions $A_t \in A$ for time steps $t = 0, 1, 2, \ldots$

- Markov Property: $\mathbb{P}[(R_{t+1}, S_{t+1})|(S_t, A_t, S_{t-1}, A_{t-1}, \ldots, S_0, A_0)] = \mathbb{P}[(R_{t+1}, S_{t+1})|(S_t, A_t)]$ for all $t \geq 0$

- Termination: If an outcome for S_T (for some time step T) is a state in the set \mathcal{T}, then this sequence outcome terminates at time step T.

$S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, \ldots, S_{T-1}, A_{T-1}, R_T, S_T$
Time-Homogeneity, Transition Function, Reward Functions

- Time-Homogeneity: $\mathbb{P}[(R_{t+1}, S_{t+1})|(S_t, A_t)]$ independent of t

 \Rightarrow Transition Probability Function $\mathcal{P}_R : \mathcal{N} \times \mathcal{A} \times \mathcal{D} \times \mathcal{S} \rightarrow [0, 1]$

 $$\mathcal{P}_R(s, a, r, s') = \mathbb{P}[(R_{t+1} = r, S_{t+1} = s')|S_t = s, A_t = a]$$

- State Transition Probability Function $\mathcal{P} : \mathcal{N} \times \mathcal{A} \times \mathcal{S} \rightarrow [0, 1]$

 $$\mathcal{P}(s, a, s') = \sum_{r \in \mathcal{D}} \mathcal{P}_R(s, a, r, s')$$

- Reward Transition Function $\mathcal{R}_T : \mathcal{N} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$ defined as:

 $$\mathcal{R}_T(s, a, s') = \mathbb{E}[R_{t+1}|(S_{t+1} = s', S_t = s, A_t = a)]$$

 $$= \sum_{r \in \mathcal{D}} \frac{\mathcal{P}_R(s, a, r, s')}{\mathcal{P}(s, a, s')} \cdot r = \sum_{r \in \mathcal{D}} \frac{\mathcal{P}_R(s, a, r, s')}{\sum_{r \in \mathcal{D}} \mathcal{P}_R(s, a, r, s')} \cdot r$$

- Reward Function $\mathcal{R} : \mathcal{N} \times \mathcal{A} \rightarrow \mathbb{R}$ defined as:

 $$\mathcal{R}(s, a) = \mathbb{E}[R_{t+1}|(S_t = s, A_t = a)] = \sum_{s' \in \mathcal{S}} \sum_{r \in \mathcal{D}} \mathcal{P}_R(s, a, r, s') \cdot r$$
A Policy is an *Agent-controlled* function $\pi : N \times A \to [0, 1]$

$$\pi(s, a) = P[A_t = a|S_t = s] \text{ for all time steps } t = 0, 1, 2, \ldots$$

Above definition assumes Policy is Markovian and Stationary

If not stationary, we can include time in *State* to make it stationary

We denote a deterministic policy as a function $\pi_D : N \to A$

$$\pi(s, \pi_D(s)) = 1 \text{ and } \pi(s, a) = 0 \text{ for all } a \in A \text{ with } a \neq \pi_D(s)$$

class Policy(ABC, Generic[S, A]):
 @abstractmethod
 def act(self, state: NonTerminal[S]) -> Distribution[A]:
 pass
[MDP, Policy] := MRP

\[\mathcal{P}^\pi_R(s, r, s') = \sum_{a \in \mathcal{A}} \pi(s, a) \cdot \mathcal{P}_R(s, a, r, s') \]

\[\mathcal{P}^\pi(s, s') = \sum_{a \in \mathcal{A}} \pi(s, a) \cdot \mathcal{P}(s, a, s') \]

\[\mathcal{R}^\pi_T(s, s') = \sum_{a \in \mathcal{A}} \pi(s, a) \cdot \mathcal{R}_T(s, a, s') \]

\[\mathcal{R}^\pi(s) = \sum_{a \in \mathcal{A}} \pi(s, a) \cdot \mathcal{R}(s, a) \]
@abstractmethod

class MarkovDecisionProcess(ABC, Generic[S, A]):
 @abstractmethod
 def actions(self, state: NonTerminal[S]) -> Iterable[A]:
 pass

 @abstractmethod
 def step(self, state: NonTerminal[S], action: A) -> Distribution[Tuple[State[S], float]]:
 pass
@abstractclass MarkovDecisionProcess

```python
def apply_policy(self, policy: Policy[S, A]) -> MarkovRewardProcess[S]:
    mdp = self

    class RewardProcess(MarkovRewardProcess[S]):
        def transition_reward(self, st: NonTerminal[S]) -> Distribution[Tuple[State[S], float]]:
            actions: Distribution[A] = policy.act(st)
            return actions.apply(lambda a: mdp.step(st, a))

    return RewardProcess()
```

Ashwin Rao (Stanford)
Finite Markov Decision Process

- Finite State Space \(S = \{s_1, s_2, \ldots, s_n\} \), \(|\mathcal{N}| = m \leq n\)
- Action Space \(\mathcal{A}(s) \) is finite for each \(s \in \mathcal{N} \)
- Finite set of (next state, reward) transitions
- We’d like a \textit{sparse representation} for \(\mathcal{P}_R \)
- Conceptualize \(\mathcal{P}_R : \mathcal{N} \times \mathcal{A} \times \mathcal{D} \times \mathcal{S} \rightarrow [0, 1] \) as:

\[
\mathcal{N} \rightarrow (\mathcal{A} \rightarrow (\mathcal{S} \times \mathcal{D} \rightarrow [0, 1]))
\]

\(\text{StateReward} = \text{FiniteDistribution}[\text{Tuple}[\text{State}[S], \text{float}]]\)
\(\text{ActionMapping} = \text{Mapping} [A, \text{StateReward}[S]]\)
\(\text{StateActionMapping} = \text{Mapping} [\text{NonTerminal}[S], \text{ActionMapping}[A, S]]\)
class FiniteMarkovDecisionProcess

 MarkovDecisionProcess [S, A]

 m: StateActionMapping [S, A]
 nt_states: Sequence [NonTerminal [S]]

def __init__(self, m: Mapping [S, Mapping[A, FiniteDistribution[Tuple [S, float]]]])
 nt: Set [S] = set(mapping.keys())
 self.m = {NonTerminal(s): {a: Categorical(
 ((NonTerminal(s1) if s1 in nt else Terminal(s1), r): p for (s1, r), p in
 v.table().items())} for a, v in
 d.items()} for s, d in mapping.items()}
 self.nt_states = list(self.m.keys())
class FinitePolicy

 def step(self, state: NonTerminal[S], action: A) -> StateReward:
 return self.mapping[state][action]

@dataclass(frozen=True)
class FinitePolicy(Policy[S, A]):
 policy_map: Mapping[S, FiniteDistribution[A]]

 def act(self, state: NonTerminal[S]) -> FiniteDistribution[A]:
 return self.policy_map[state.state]

With this, we can write a method for FiniteMarkovDecisionProcess that takes a FinitePolicy and produces a FiniteMarkovRewardProcess.
Inventory MDP

- $\alpha := \text{On-Hand Inventory}, \beta := \text{On-Order Inventory}$
- $h := \text{Holding Cost (per unit of overnight inventory)}$
- $p := \text{Stockout Cost (per unit of missed demand)}$
- $C := \text{Shelf Capacity (number of inventory units shelf can hold)}$
- $S = \{ (\alpha, \beta) : 0 \leq \alpha + \beta \leq C \}$
- $A((\alpha, \beta)) = \{ \theta : 0 \leq \theta \leq C - (\alpha + \beta) \}$
- $f(\cdot) := \text{PMF of demand}, F(\cdot) := \text{CMF of demand}$

\[
R_T((\alpha, \beta), \theta, (\alpha + \beta - i, \theta)) = -h\alpha \text{ for } 0 \leq i \leq \alpha + \beta - 1
\]

\[
R_T((\alpha, \beta), \theta, (0, \theta)) = -h\alpha - p\left(\sum_{j=\alpha+\beta+1}^{\infty} f(j) \cdot (j - (\alpha + \beta)) \right)
\]

\[
= -h\alpha - p(\lambda(1 - F(\alpha + \beta - 1)) - (\alpha + \beta)(1 - F(\alpha + \beta)))
\]
State-Value Function of an MDP for a Fixed Policy

- Define the Return G_t from state S_t as:
 \[G_t = \sum_{i=t+1}^{\infty} \gamma^{i-t-1} \cdot R_i = R_{t+1} + \gamma \cdot R_{t+2} + \gamma^2 \cdot R_{t+3} + \ldots \]

- $\gamma \in [0, 1]$ is the discount factor

- **State-Value Function** (for policy π) $V^\pi : \mathcal{N} \rightarrow \mathbb{R}$ defined as:
 \[V^\pi(s) = \mathbb{E}_{\pi, \mathcal{P}}[G_t | S_t = s] \text{ for all } s \in \mathcal{N}, \text{ for all } t = 0, 1, 2, \ldots \]

- V^π is Value Function of π-implied MRP, satisfying MRP Bellman Eqn
 \[V^\pi(s) = R^\pi(s) + \gamma \cdot \sum_{s' \in \mathcal{N}} \mathcal{P}^\pi(s, s') \cdot V^\pi(s') \]

- This yields the **MDP (State-Value Function) Bellman Policy Equation**
 \[V^\pi(s) = \sum_{a \in \mathcal{A}} \pi(s, a) \cdot (R(s, a) + \gamma \cdot \sum_{s' \in \mathcal{N}} \mathcal{P}(s, a, s') \cdot V^\pi(s')) \] (1)
Action-Value Function of an MDP for a Fixed Policy

- **Action-Value Function** (for policy \(\pi \)) \(Q^\pi : \mathcal{N} \times \mathcal{A} \rightarrow \mathbb{R} \) defined as:

\[
Q^\pi(s, a) = \mathbb{E}_{\pi, P_R}[G_t | (S_t = s, A_t = a)] \text{ for all } s \in \mathcal{N}, a \in \mathcal{A}
\]

\[
V^\pi(s) = \sum_{a \in \mathcal{A}} \pi(s, a) \cdot Q^\pi(s, a) \tag{2}
\]

- Combining Equation (1) and Equation (2) yields:

\[
Q^\pi(s, a) = R(s, a) + \gamma \cdot \sum_{s' \in \mathcal{N}} P(s, a, s') \cdot V^\pi(s') \tag{3}
\]

- Combining Equation (3) and Equation (2) yields:

\[
Q^\pi(s, a) = R(s, a) + \gamma \cdot \sum_{s' \in \mathcal{N}} P(s, a, s') \sum_{a' \in \mathcal{A}} \pi(s', a') \cdot Q^\pi(s', a') \tag{4}
\]

MDP Prediction Problem: Evaluating \(V^\pi(\cdot) \) and \(Q^\pi(\cdot) \) for fixed policy \(\pi \)
MDP State-Value Function Bellman Policy Equation

\[s \rightarrow V^\pi(s) \]

\(\pi(s, a_1) \) \(\pi(s, a_2) \)

\[a_1 \rightarrow Q^\pi(s, a_1) \]

\[R(s, a_1) \]

\[P(s, a_1, s_{11}) \]

\[s_{11} \rightarrow V^\pi(s_{11}) \]

\[P(s, a_1, s_{12}) \]

\[s_{12} \rightarrow V^\pi(s_{12}) \]

\[a_2 \rightarrow Q^\pi(s, a_2) \]

\[R(s, a_2) \]

\[P(s, a_2, s_{21}) \]

\[s_{21} \rightarrow V^\pi(s_{21}) \]

\[P(s, a_2, s_{22}) \]

\[s_{22} \rightarrow V^\pi(s_{22}) \]
Optimal Value Functions

- **Optimal State-Value Function** $V^*: \mathcal{S} \rightarrow \mathbb{R}$ defined as:

$$V^*(s) = \max_{\pi \in \Pi} V^\pi(s) \text{ for all } s \in \mathcal{S}$$

where Π is the space of all stationary (stochastic) policies

- For each s, maximize $V^\pi(s)$ across choices of $\pi \in \Pi$
- Does this mean we could have different maximizing π for different s?
- We’ll answer this question later

- **Optimal Action-Value Function** $Q^*: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ defined as:

$$Q^*(s, a) = \max_{\pi \in \Pi} Q^\pi(s, a) \text{ for all } s \in \mathcal{S}, a \in \mathcal{A}$$
Bellman Optimality Equations

\[V^*(s) = \max_{a \in A} Q^*(s, a) \]

(5)

\[Q^*(s, a) = R(s, a) + \gamma \sum_{s' \in N} P(s, a, s') \cdot V^*(s') \]

(6)

These yield the **MDP State-Value Function Bellman Optimality Equation**

\[V^*(s) = \max_{a \in A} \{ R(s, a) + \gamma \sum_{s' \in N} P(s, a, s') \cdot V^*(s') \} \]

(7)

and the **MDP Action-Value Function Bellman Optimality Equation**

\[Q^*(s, a) = R(s, a) + \gamma \sum_{s' \in N} P(s, a, s') \cdot \max_{a' \in A} Q^*(s', a') \]

(8)

MDP Control Problem: Computing \(V^*(\cdot) \) and \(Q^*(\cdot) \)
MDP State-Value Function Bellman Optimality Equation

\[s \rightarrow V^*(s) \]

\[\max \]

\[a_1 \rightarrow Q^*(s, a_1) \]

\[R(s, a_1) \]

\[P(s, a_1, s_{11}) \]

\[s_{11} \rightarrow V^*(s_{11}) \]

\[P(s, a_1, s_{12}) \]

\[s_{12} \rightarrow V^*(s_{12}) \]

\[a_2 \rightarrow Q^*(s, a_2) \]

\[R(s, a_2) \]

\[P(s, a_2, s_{21}) \]

\[s_{21} \rightarrow V^*(s_{21}) \]

\[P(s, a_2, s_{22}) \]

\[s_{22} \rightarrow V^*(s_{22}) \]
MDP Action-Value Function Bellman Optimality Equation

\[a \rightarrow Q^*(s, a) \]

\[R(s, a) \]

\[P(s, a, s_1) \]

\[s_1 \rightarrow V^*(s_1) \]

\[a_{11} \rightarrow Q^*(s_1, a_{11}) \]

\[a_{12} \rightarrow Q^*(s_1, a_{12}) \]

\[\text{max} \]

\[P(s, a, s_2) \]

\[s_2 \rightarrow V^*(s_2) \]

\[a_{21} \rightarrow Q^*(s_2, a_{21}) \]

\[a_{22} \rightarrow Q^*(s_2, a_{22}) \]

\[\text{max} \]
Optimal Policy

- Bellman Optimality Equations don’t directly solve Control
- Because (unlike Bellman Policy Equations), these are non-linear
- But these equations form the foundations of DP/RL algos for Control
- But will solving Control give us the Optimal Policy?
- What does Optimal Policy mean anyway?
- What if different π maximize $V^\pi(s)$ for different s?
- So define an Optimal Policy π^* as one that ”dominates” all other π:

 $\pi^* \in \Pi$ is an Optimal Policy if $V^{\pi^*}(s) \geq V^\pi(s)$ for all π and for all s

- Is there an Optimal Policy π^* such that $V^*(s) = V^{\pi^*}(s)$ for all s?
Theorem

For any (discrete-time, countable-spaces, time-homogeneous) MDP:

- There exists an Optimal Policy \(\pi^* \in \Pi \), i.e., there exists a Policy \(\pi^* \in \Pi \) such that \(V^{\pi^*}(s) \geq V^{\pi}(s) \) for all policies \(\pi \in \Pi \) and for all states \(s \in \mathcal{S} \).

- All Optimal Policies achieve the Optimal Value Function, i.e. \(V^{\pi^*}(s) = V^{*}(s) \) for all \(s \in \mathcal{S} \), for all Optimal Policies \(\pi^* \).

- All Optimal Policies achieve the Optimal Action-Value Function, i.e. \(Q^{\pi^*}(s, a) = Q^{*}(s, a) \) for all \(s \in \mathcal{S} \), for all \(a \in \mathcal{A} \), for all Optimal Policies \(\pi^* \).
Proof Outline

- For any Optimal Policies π_1^* and π_2^*, $V^{\pi_1^*}(s) = V^{\pi_2^*}(s)$ for all $s \in \mathcal{N}$
- Construct a candidate Optimal (Deterministic) Policy $\pi_D^* : \mathcal{N} \to \mathcal{A}$:
 \[
 \pi_D^*(s) = \arg\max_{a \in \mathcal{A}} Q^*(s, a) \text{ for all } s \in \mathcal{N}
 \]
- π_D^* achieves the Optimal Value Functions V^* and Q^*:
 \[
 V^*(s) = Q^*(s, \pi_D^*(s)) \text{ for all } s \in \mathcal{N}
 \]
 \[
 V^{\pi_D^*}(s) = V^*(s) \text{ for all } s \in \mathcal{N}
 \]
 \[
 Q^{\pi_D^*}(s, a) = Q^*(s, a) \text{ for all } s \in \mathcal{N}, \text{ for all } a \in \mathcal{A}
 \]
- π_D^* is an Optimal Policy:
 \[
 V^{\pi_D^*}(s) \geq V^\pi(s) \text{ for all policies } \pi \in \Pi \text{ and for all states } s \in \mathcal{N}
 \]
State Space Size and Transitions Complexity

- Tabular Algorithms for State Spaces that are not too large
- In real-world, state spaces are very large/infinite/continuous
- *Curse of Dimensionality*: Size Explosion as a function of dimensions
- *Curse of Modeling*: Transition Probabilities hard to model/estimate
- Dimension-Reduction techniques, Unsupervised ML methods
- Function Approximation of the Value Function (in ADP and RL)
- Sampling, Sampling, Sampling ... (in ADP and RL)
Large Action Spaces: Hard to represent, estimate and evaluate:
- Policy π
- Action-Value Function for a policy Q^π
- Optimal Action-Value Function Q^*

Large Actions Space makes it hard to calculate $\arg\max_a Q(s, a)$
- Optimization over Action Space for each non-terminal state
- Policy Gradient a technique to deal with large action spaces
Time-Steps Variants and Continuity

- Time-Steps: terminating (episodic) or non-terminating (continuing)
- Discounted or Undiscounted MDPs, Average-Reward MDPs
- Continuous-time MDPs: Stochastic Processes and Stochastic Calculus
- When States/Actions/Time all continuous, Hamilton-Jacobi-Bellman
Two different notions of State:
- Internal representation of the environment at each time step t ($S_t^{(e)}$)
- The agent’s state at each time step t (let’s call it $S_t^{(a)}$)

We assumed $S_t^{(e)} = S_t^{(a)} (= S_t)$ and that S_t is fully observable

A more general framework assumes agent sees Observations O_t

Agent cannot see (or infer) $S_t^{(e)}$ from history of observations

This more general framework is called POMDP

POMDP is specified with Observation Space \mathcal{O} and observation probability function $Z : S \times A \times \mathcal{O} \rightarrow [0, 1]$ defined as:

$$Z(s', a, o) = P[O_{t+1} = o | (S_{t+1} = s', A_t = a)]$$

Along with the usual transition probabilities specification \mathcal{P}_R

MDP is a special case of POMDP with $O_t = S_t^{(e)} = S_t^{(a)} = S_t$
Belief States, Tractability and Modeling

- Agent doesn’t have knowledge of \(S_t \), only of \(O_t \)
- So Agent has to “guess” \(S_t \) by maintaining *Belief States*

\[
b(h)_t = (P[S_t = s_1|H_t = h], P[S_t = s_2|H_t = h], \ldots)
\]

where history \(H_t \) is all data known to agent by time \(t \):

\[
H_t := (O_0, R_0, A_0, O_1, R_1, A_1, \ldots, O_t, R_t)
\]

- \(H_t \) satisfies Markov Property \(\implies b(h)_t \) satisfies Markov Property
- POMDP yields (huge) MDP whose states are POMDP’s belief states
- Real-world: Model as accurate POMDP or approx as tractable MDP?
Key Takeaways from this Chapter

- MDP Bellman Policy Equations
- MDP Bellman Optimality Equations
- Existence of an Optimal Policy, and of each Optimal Policy achieving the Optimal Value Function