A Guided Tour of Chapter 8: Order Book Algorithms

Ashwin Rao

ICME, Stanford University

March 7, 2022
Overview

1. Trading Order Book and Price Impact
2. Definition of Optimal Trade Order Execution Problem
3. Simple Models for Order Execution, leading to Analytical Solutions
4. Real-World Optimal Order Execution and Reinforcement Learning
5. Definition of Optimal Market-Making Problem
6. Derivation of Avellaneda-Stoikov Analytical Solution
7. Real-world Optimal Market-Making and Reinforcement Learning
Basics of Order Book (OB)

- Buyers/Sellers express their intent to trade by submitting bids/asks
- These are Limit Orders (LO) with a price P and size N
- Buy LO (P, N) states willingness to buy N shares at a price $\leq P$
- Sell LO (P, N) states willingness to sell N shares at a price $\geq P$
- Order Book aggregates order sizes for each unique price
- So we can represent with two sorted lists of $(Price, Size)$ pairs

\[
\text{Bids: } [(P_i^{(b)}, N_i^{(b)}) | 0 \leq i < m], P_i^{(b)} > P_j^{(b)} \text{ for } i < j
\]

\[
\text{Asks: } [(P_i^{(a)}, N_i^{(a)}) | 0 \leq i < n], P_i^{(a)} < P_j^{(a)} \text{ for } i < j
\]

- We call $P_0^{(b)}$ as Best Bid, $P_0^{(a)}$ as Best Ask, $\frac{P_0^{(a)} + P_0^{(b)}}{2}$ as Mid
- We call $P_0^{(a)} - P_0^{(b)}$ as Spread, $P_{n-1}^{(a)} - P_{m-1}^{(b)}$ as Market Depth
- A Market Order (MO) states intent to buy/sell N shares at the best possible price(s) available on the OB at the time of MO submission
The class `OrderBook`

```python
@dataclass(frozen=True)
class DollarsAndShares:
    dollars: float
    shares: int

PriceSizePairs = Sequence[DollarsAndShares]

@dataclass(frozen=True)
class OrderBook:
    descending_bids: PriceSizePairs
    ascending_asks: PriceSizePairs
```
Order Book (OB) Activity

- A new Sell LO \((P, N)\) potentially removes best bid prices on the OB

 Removal: \([((P_i^{(b)}, \min(N_i^{(b)}), \max(0, N - \sum_{j=0}^{i-1} N_j^{(b)}))) | (i : P_i^{(b)} \geq P)]\)

- After this removal, it adds the following to the asks side of the OB

 \((P, \max(0, N - \sum_{i: P_i^{(b)} \geq P} N_i^{(b)})))\)

- A new Buy LO operates analogously (on the other side of the OB)

- A Sell Market Order \(N\) will remove the best bid prices on the OB

 Removal: \([((P_i^{(b)}, \min(N_i^{(b)}), \max(0, N - \sum_{j=0}^{i-1} N_j^{(b)}))) | 0 \leq i < m]\)

- A Buy Market Order \(N\) will remove the best ask prices on the OB

 Removal: \([((P_i^{(a)}, \min(N_i^{(a)}), \max(0, N - \sum_{j=0}^{i-1} N_j^{(a)}))) | 0 \leq i < n]\)
def eat_book(
 ps_pairs: PriceSizePairs,
 shares: int
) -> Tuple[DollarsAndShares, PriceSizePairs]:

def sell_limit_order(
 self,
 price: float,
 shares: int
) -> Tuple[DollarsAndShares, OrderBook]:

def sell_market_order(
 self,
 shares: int
) -> Tuple[DollarsAndShares, OrderBook]:
We focus on how a Market order (MO) alters the OB

A large-sized MO often results in a big *Spread* which could soon be replenished by new LOs, potentially from either side

So a large-sized MO moves the Best Bid/Best Ask/Mid

This is known as the *Price Impact* of a Market Order

Subsequent Replenishment activity is part of *OB Dynamics*

Models for OB Dynamics can be quite complex

We will cover a few simple Models in this lecture

Models based on how a Sell MO will move the OB *Best Bid Price*

Models of Buy MO moving the OB *Best Ask Price* are analogous
Optimal Trade Order Execution Problem

- The task is to sell a large number N of shares
- We are allowed to trade in T discrete time steps
- We are only allowed to submit Market Orders
- We consider both *Temporary* and *Permanent* Price Impact
- For simplicity, we consider a model of just *Best Bid Price* Dynamics
- Goal is to maximize Expected Total Utility of Sales Proceeds
- By breaking N into appropriate chunks (timed appropriately)
- If we sell too fast, we are likely to get poor prices
- If we sell too slow, we risk running out of time
- Selling slowly also leads to more uncertain proceeds (lower Utility)
- This is a Dynamic Optimization problem
- We can model this problem as a Markov Decision Process (MDP)
Problem Notation

- Time steps indexed by $t = 0, 1, \ldots, T$
- P_t denotes Best Bid Price at start of time step t
- N_t denotes number of shares sold in time step t
- $R_t = N - \sum_{i=0}^{t-1} N_i = \text{shares remaining to be sold at start of time step } t$
- Note that $R_0 = N, R_{t+1} = R_t - N_t$ for all $t < T$, $N_{T-1} = R_{T-1} \Rightarrow R_T = 0$
- Price Dynamics given by:

 $$P_{t+1} = f_t(P_t, N_t, \epsilon_t)$$

 where $f_t(\cdot)$ is an arbitrary function incorporating:
 - Permanent Price Impact of selling N_t shares
 - Impact-independent market-movement of Best Bid Price for time step t
 - ϵ_t denotes source of randomness in Best Bid Price market-movement
- Sales Proceeds in time step t defined as:

 $$N_t \cdot Q_t = N_t \cdot (P_t - g_t(P_t, N_t))$$

 where $g_t(\cdot)$ is an arbitrary func representing Temporary Price Impact
- Utility of Sales Proceeds function denoted as $U(\cdot)$
Markov Decision Process (MDP) Formulation

- This is a discrete-time, finite-horizon MDP
- MDP Horizon is time T, meaning all states at time T are terminal
- Order of MDP activity in each time step $0 \leq t < T$:
 - Observe $\text{State } s_t := (P_t, R_t) \in S_t$
 - Perform $\text{Action } a_t := N_t \in A_t$
 - Receive $\text{Reward } r_{t+1} := U(N_t \cdot Q_t) = U(N_t \cdot (P_t - g_t(P_t, N_t)))$
 - Experience Price Dynamics $P_{t+1} = f_t(P_t, N_t, \epsilon_t)$
- Goal is to find a Policy $\pi^*_t((P_t, R_t)) = N^*_t$ that maximizes:

$$\mathbb{E} \left[\sum_{t=0}^{T-1} \gamma^t \cdot U(N_t \cdot Q_t) \right]$$

where γ is MDP discount factor
We consider a simple model with Linear Price Impact

- N, N_t, P_t are all continuous-valued ($\in \mathbb{R}$)
- Price Dynamics: $P_{t+1} = P_t - \alpha N_t + \epsilon_t$ where $\alpha \in \mathbb{R}$
- ϵ_t is i.i.d. with $\mathbb{E}[\epsilon_t|N_t, P_t] = 0$
- So, Permanent Price Impact is $\alpha \cdot N_t$
- Temporary Price Impact given by $\beta \cdot N_t$, so $Q_t = P_t - \beta \cdot N_t$ ($\beta \in \mathbb{R}_{\geq 0}$)
- Utility function $U(\cdot)$ is the identity function, i.e., no Risk-Aversion
- MDP Discount factor $\gamma = 1$
- This is an unrealistic model, but solving this gives plenty of intuition
- Approach: Define Optimal Value Function & invoke Bellman Equation
Optimal Value Function and Bellman Equation

- Denote Value Function for policy \(\pi \) as:
 \[
 V_\pi^t((P_t, R_t)) = \mathbb{E}_\pi\left[\sum_{i=t}^{T} N_i(P_i - \beta \cdot N_i)| (P_t, R_t)\right]
 \]

- Denote Optimal Value Function as \(V^*_t((P_t, R_t)) = \max_\pi V^\pi_t((P_t, R_t)) \)
- Optimal Value Function satisfies the Bellman Eqn (\(\forall \ 0 \leq t < T - 1 \)):
 \[
 V^*_t((P_t, R_t)) = \max_{N_t} \left\{ N_t \cdot (P_t - \beta \cdot N_t) + \mathbb{E}[V^*_t+1((P_{t+1}, R_{t+1}))] \right\}
 \]
 \[
 V^*_{T-1}((P_{T-1}, R_{T-1})) = N_{T-1} \cdot (P_{T-1} - \beta \cdot N_{T-1}) = R_{T-1} \cdot (P_{T-1} - \beta \cdot R_{T-1})
 \]

- From the above, we can infer \(V^*_{T-2}((P_{T-2}, R_{T-2})) \) as:
 \[
 \max_{N_{T-2}} \left\{ N_{T-2} \cdot (P_{T-2} - \beta N_{T-2}) + \mathbb{E}[R_{T-1}((P_{T-1} - \beta R_{T-1}))] \right\}
 \]
 \[
 = \max_{N_{T-2}} \left\{ N_{T-2} \cdot (P_{T-2} - \beta N_{T-2}) + \mathbb{E}[(R_{T-2} - N_{T-2})(P_{T-1} - \beta(R_{T-2} - N_{T-2}))] \right\}
 \]
Optimal Policy & Optimal Value Function for case $\alpha \geq 2\beta$

$$= \max_{N_{T-2}}\left\{ R_{T-2}P_{T-2} - \beta R^2_{T-2} + (\alpha - 2\beta)(N^2_{T-2} - N_{T-2}R_{T-2}) \right\}$$

- For the case $\alpha \geq 2\beta$, we have the trivial solution: $N^*_{T-2} = 0$ or R_{T-2}
- Substitute N^*_{T-2} in the expression for $V^*_{T-2}((P_{T-2}, R_{T-2}))$:
 $$V^*_{T-2}((P_{T-2}, R_{T-2})) = R_{T-2}(P_{T-2} - \beta R_{T-2})$$
- Continuing backwards in time in this manner gives:
 $$N^*_t = 0 \text{ or } R_t$$
 $$V^*_t((P_t, R_t)) = R_t(P_t - \beta R_t)$$
- So the solution for the case $\alpha \geq 2\beta$ is to sell all N shares at any one of the time steps $t = 0, \ldots, T - 1$ (and none in the other time steps) and the Optimal Expected Total Sale Proceeds $= N(P_0 - \beta N)$
For the case $\alpha < 2\beta$, differentiating w.r.t. N_{T-2} and setting to 0 gives:

$$(\alpha - 2\beta)(2N^*_{T-2} - R_{T-2}) = 0 \Rightarrow N^*_{T-2} = \frac{R_{T-2}}{2}$$

Substitute N^*_{T-2} in the expression for $V^*_{T-2}((P_{T-2}, R_{T-2})$:

$$V^*_{T-2}((P_{T-2}, R_{T-2})) = R_{T-2}P_{T-2} - R^2_{T-2}(\frac{\alpha + 2\beta}{4})$$

Continuing backwards in time in this manner gives:

$$N^*_t = \frac{R_t}{T - t}$$

$$V^*_t((P_t, R_t)) = R_tP_t - \frac{R^2_t}{2}(\frac{2\beta + \alpha(T - t - 1)}{T - t})$$
Interpreting the solution for the case $\alpha < 2\beta$

- Rolling forward in time, we see that $N^*_t = \frac{N}{T}$, i.e., uniformly split
- Hence, Optimal Policy is a constant (independent of State)
- Uniform split makes intuitive sense because Price Impact and Market Movement are both linear and additive, and don’t interact
- Essentially equivalent to minimizing $\sum_{t=1}^{T} N_t^2$ with $\sum_{t=1}^{T} N_t = N$
- Optimal Expected Total Sale Proceeds $= NP_0 - \frac{N^2}{2}(\alpha + \frac{2\beta-\alpha}{T})$
- So, *Implementation Shortfall* from Price Impact is $\frac{N^2}{2}(\alpha + \frac{2\beta-\alpha}{T})$
- Note that Implementation Shortfall is non-zero even if one had infinite time available ($T \to \infty$) for the case of $\alpha > 0$
- If Price Impact were purely temporary ($\alpha = 0$, i.e., Price fully snapped back), Implementation Shortfall is zero with infinite time available
Models in Bertsimas-Lo paper

- **Bertsimas-Lo** was the first paper on Optimal Trade Order Execution
- They assumed no risk-aversion, i.e. identity Utility function
- The first model in their paper is a special case of our simple Linear Impact model, with fully Permanent Impact (i.e., $\alpha = \beta$)
- Next, Bertsimas-Lo extended the Linear Permanent Impact model
- To include dependence on Serially-Correlated Variable X_t

\[
P_{t+1} = P_t - (\beta N_t + \theta X_t) + \epsilon_t, \quad X_{t+1} = \rho X_t + \eta_t, \quad Q_t = P_t - (\beta N_t + \theta X_t)
\]

- ϵ_t and η_t are i.i.d. (and mutually independent) with mean zero
- X_t can be thought of as market factor affecting P_t linearly
- Bellman Equation on Optimal VF and same approach as before yields:

\[
N^*_t = \frac{R_t}{T - t} + h(t, \beta, \theta, \rho)X_t
\]

\[
V^*_t((P_t, R_t, X_t)) = R_t P_t - \text{(quadratic in } (R_t, X_t) + \text{ constant)}
\]

- Serial-correlation predictability ($\rho \neq 0$) alters uniform-split strategy
A more Realistic Model: LPT Price Impact

- Next, Bertsimas-Lo present a more realistic model called “LPT”
- **Linear-Percentage Temporary** Price Impact model features:
 - Geometric random walk: consistent with real data, & avoids prices ≤ 0
 - % Price Impact \(\frac{g_t(P_t,N_t)}{P_t} \) doesn’t depend on \(P_t \) (validated by real data)
 - Purely Temporary Price Impact

\[
P_{t+1} = P_t e^{Z_t}, \ X_{t+1} = \rho X_t + \eta_t, \ Q_t = P_t (1 - \beta N_t - \theta X_t)
\]

- \(Z_t \) is a random variable with mean \(\mu_Z \) and variance \(\sigma_Z^2 \)
- With the same derivation as before, we get the solution:

\[
N^*_t = c^{(1)}_t + c^{(2)}_t R_t + c^{(3)}_t X_t
\]

\[
V^*_t((P_t,R_t,X_t)) = e^{\mu_Z + \frac{\sigma_Z^2}{2}} \cdot P_t \cdot (c^{(4)}_t + c^{(5)}_t R_t + c^{(6)}_t X_t
\]
\[
+ c^{(7)}_t R^2 + c^{(8)}_t X^2 + c^{(9)}_t R_t X_t)
\]
For analytical tractability, Bertsimas-Lo ignored Risk-Aversion But one is typically wary of *Risk of Uncertain Proceeds* We’d trade some (Expected) Proceeds for lower Variance of Proceeds *Almgren-Chriss* work in this Risk-Aversion framework They consider our simple linear model maximizing $E[Y] - \lambda \text{Var}[Y]$

Where Y is the total (uncertain) proceeds $\sum_{t=0}^{T-1} N_t Q_t$

λ controls the degree of risk-aversion and hence, the trajectory of N^*_t

$\lambda = 0$ leads to uniform split strategy $N^*_t = \frac{N}{T}$

The other extreme is to minimize $\text{Var}[Y]$ which yields $N^*_0 = N$

Almgren-Chriss derive *Efficient Frontier* and solutions for specific $U(\cdot)$

Much like classical Portfolio Optimization problems
Arbitrary Price Dynamics $f_t(\cdot)$ and Temporary Price Impact $g_t(\cdot)$

Time-Heterogeneity/non-linear dynamics/impact \Rightarrow (Numerical) DP

Frictions: Discrete Prices/Sizes, Constraints on Prices/Sizes, Fees

Incorporating various markets factors in the State bloats State Space

We could also represent the entire OB within the State

Practical route is to develop a simulator capturing all of the above

Simulator is a *Market-Data-learnt Sampling Model* of OB Dynamics

In practice, we’d need to also capture *Cross-Asset Market Impact*

Using this simulator and neural-networks func approx, we can do RL

References: Nevmyvaka, Feng, Kearns; 2006 and Vyetenko, Xu; 2019

Exciting area for Future Research as well as Engineering Design
OB Dynamics and Market-Making

- Modeling OB Dynamics involves predicting arrival of MOs and LOs
- Market-makers are liquidity providers (providers of Buy and Sell LOs)
- Other market participants are typically liquidity takers (MOs)
- But there are also other market participants that trade with LOs
- Complex interplay between market-makers & other mkt participants
- Hence, OB Dynamics tend to be quite complex
- We view the OB from the perspective of a single market-maker who aims to gain with Buy/Sell LOs of appropriate width/size
- By anticipating OB Dynamics & dynamically adjusting Buy/Sell LOs
- Goal is to maximize Utility of Gains at the end of a suitable horizon
- If Buy/Sell LOs are too narrow, more frequent but small gains
- If Buy/Sell LOs are too wide, less frequent but large gains
- Market-maker also needs to manage potential unfavorable inventory (long or short) buildup and consequent unfavorable liquidation
We simplify the setting for ease of exposition

Assume finite time steps indexed by \(t = 0, 1, \ldots, T \)

Denote \(W_t \in \mathbb{R} \) as Market-maker’s trading account value at time \(t \)

Denote \(I_t \in \mathbb{Z} \) as Market-maker’s inventory of shares at time \(t \) \((I_0 = 0)\)

\(S_t \in \mathbb{R}^+ \) is the OB Mid Price at time \(t \) (assume stochastic process)

\(P_t^{(b)} \in \mathbb{R}^+, N_t^{(b)} \in \mathbb{Z}^+ \) are market maker’s Bid Price, Bid Size at time \(t \)

\(P_t^{(a)} \in \mathbb{R}^+, N_t^{(a)} \in \mathbb{Z}^+ \) are market-maker’s Ask Price, Ask Size at time \(t \)

Assume market-maker can add or remove bids/asks costlessly

Denote \(\delta_t^{(b)} = S_t - P_t^{(b)} \) as Bid Spread, \(\delta_t^{(a)} = P_t^{(a)} - S_t \) as Ask Spread

Random var \(X_t^{(b)} \in \mathbb{Z}_{\geq 0} \) denotes bid-shares “hit” up to time \(t \)

Random var \(X_t^{(a)} \in \mathbb{Z}_{\geq 0} \) denotes ask-shares “lifted” up to time \(t \)

\[
W_{t+1} = W_t + P_t^{(a)} \cdot (X_{t+1}^{(a)} - X_t^{(a)}) - P_t^{(b)} \cdot (X_{t+1}^{(b)} - X_t^{(b)}) , I_t = X_t^{(b)} - X_t^{(a)}
\]

Goal to maximize \(\mathbb{E}[U(W_T + I_T \cdot S_T)] \) for appropriate concave \(U(\cdot) \)
Markov Decision Process (MDP) Formulation

- Order of MDP activity in each time step $0 \leq t \leq T - 1$:
 - Observe State $:= (S_t, W_t, I_t) \in S_t$
 - Perform Action $:= (P_t^{(b)}, N_t^{(b)}, P_t^{(a)}, N_t^{(a)}) \in A_t$
 - Experience OB Dynamics resulting in:
 - random bid-shares hit $= X_{t+1}^{(b)} - X_t^{(b)}$ and ask-shares lifted $= X_{t+1}^{(a)} - X_t^{(a)}$
 - update of W_t to W_{t+1}, update of I_t to I_{t+1}
 - stochastic evolution of S_t to S_{t+1}
 - Receive next-step $(t + 1)$ Reward R_{t+1}

$$
R_{t+1} := \begin{cases}
0 & \text{for } 1 \leq t + 1 \leq T - 1 \\
U(W_{t+1} + I_{t+1} \cdot S_{t+1}) & \text{for } t + 1 = T
\end{cases}
$$

- Goal is to find an Optimal Policy $\pi^* = (\pi_0^*, \pi_1^*, \ldots, \pi_{T-1}^*)$:

$$
\pi_t^*((S_t, W_t, I_t)) = (P_t^{(b)}, N_t^{(b)}, P_t^{(a)}, N_t^{(a)}) \text{ that maximizes } \mathbb{E}[R_T]
$$

- Note: Discount Factor when aggregating Rewards in the MDP is 1
We go over the **landmark paper by Avellaneda and Stoikov in 2006**

They derive a simple, clean and intuitive solution

We adapt our discrete-time notation to their continuous-time setting

\(X_t^{(b)} , X_t^{(a)} \) are Poisson processes with hit/lift-rate means \(\lambda_t^{(b)} , \lambda_t^{(a)} \)

\[
dX_t^{(b)} \sim \text{Poisson}(\lambda_t^{(b)} \cdot dt) , \quad dX_t^{(a)} \sim \text{Poisson}(\lambda_t^{(a)} \cdot dt)
\]

\(\lambda_t^{(b)} = f^{(b)}(\delta_t^{(b)}) , \quad \lambda_t^{(a)} = f^{(a)}(\delta_t^{(a)}) \) for decreasing functions \(f^{(b)} , f^{(a)} \)

\[
dW_t = P_t^{(a)} \cdot dX_t^{(a)} - P_t^{(b)} \cdot dX_t^{(b)} , \quad I_t = X_t^{(b)} - X_t^{(a)} \quad \text{(note: } I_0 = 0)\]

Since infinitesimal Poisson random variables \(dX_t^{(b)} \) (shares hit in time \(dt \)) and \(dX_t^{(a)} \) (shares lifted in time \(dt \)) are Bernoulli (shares hit/lifted in time \(dt \) are 0 or 1), \(N_t^{(b)} \) and \(N_t^{(a)} \) can be assumed to be 1

This simplifies the *Action* at time \(t \) to be just the pair: \((\delta_t^{(b)} , \delta_t^{(a)}) \)

OB Mid Price Dynamics: \(dS_t = \sigma \cdot dZ_t \) (scaled brownian motion)

Utility function \(U(x) = -e^{-\gamma x} \) where \(\gamma > 0 \) is coeff. of risk-aversion
Hamilton-Jacobi-Bellman (HJB) Equation

- We denote the Optimal Value function as $V^*(t, S_t, W_t, I_t)$

$$V^*(t, S_t, W_t, I_t) = \max_{\delta_u^{(b)}, \delta_u^{(a)}: t \leq u < T} \mathbb{E}[-e^{-\gamma(W_T + I_T \cdot S_T)}]$$

- $V^*(t, S_t, W_t, I_t)$ satisfies a recursive formulation for $0 \leq t < t_1 < T$:

$$V^*(t, S_t, W_t, I_t) = \max_{\delta_u^{(b)}, \delta_u^{(a)}: t \leq u < t_1} \mathbb{E}[V^*(t_1, S_{t_1}, W_{t_1}, I_{t_1})]$$

- Rewriting in stochastic differential form, we have the HJB Equation

$$\max_{\delta_t^{(b)}, \delta_t^{(a)}} \mathbb{E}[dV^*(t, S_t, W_t, I_t)] = 0 \text{ for } t < T$$

$$V^*(T, S_T, W_T, I_T) = -e^{-\gamma(W_T + I_T \cdot S_T)}$$
Converting HJB to a Partial Differential Equation

- Change to $V^*(t, S_t, W_t, I_t)$ is comprised of 3 components:
 - Due to pure movement in time t
 - Due to randomness in OB Mid-Price S_t
 - Due to randomness in hitting/lifting the Bid/Ask
- With this, we can expand $dV^*(t, S_t, W_t, I_t)$ and rewrite HJB as:

\[
\max_{\delta_t^{(b)}, \delta_t^{(a)}} \left\{ \frac{\partial V^*}{\partial t} dt + \mathbb{E} \left[\sigma \frac{\partial V^*}{\partial S_t} dz_t + \frac{\sigma^2}{2} \frac{\partial^2 V^*}{\partial S_t^2} (dz_t)^2 \right] \\
+ \lambda_t^{(b)} \cdot dt \cdot V^*(t, S_t, W_t - S_t + \delta_t^{(b)}, I_t + 1) \\
+ \lambda_t^{(a)} \cdot dt \cdot V^*(t, S_t, W_t + S_t + \delta_t^{(a)}, I_t - 1) \\
+ (1 - \lambda_t^{(b)} \cdot dt - \lambda_t^{(a)} \cdot dt) \cdot V^*(t, S_t, W_t, I_t) \\
- V^*(t, S_t, W_t, I_t) \right\} = 0
\]
We can simplify this equation with a few observations:

- $\mathbb{E}[dz_t] = 0$
- $\mathbb{E}[(dz_t)^2] = dt$
- Organize the terms involving $\lambda_t^{(b)}$ and $\lambda_t^{(a)}$ better with some algebra
- Divide throughout by dt

$$\max_{\delta_t^{(b)}, \delta_t^{(a)}} \left\{ \frac{\partial V^*}{\partial t} + \frac{\sigma^2}{2} \frac{\partial^2 V^*}{\partial S_t^2} + \lambda_t^{(b)} \cdot (V^*(t, S_t, W_t - S_t + \delta_t^{(b)}, I_t + 1) - V^*(t, S_t, W_t, I_t)) + \lambda_t^{(a)} \cdot (V^*(t, S_t, W_t + S_t + \delta_t^{(a)}, I_t - 1) - V^*(t, S_t, W_t, I_t)) \right\} = 0$$
Next, note that $\lambda_t^{(b)} = f^{(b)}(\delta_t^{(b)})$ and $\lambda_t^{(a)} = f^{(a)}(\delta_t^{(a)})$, and apply the max only on the relevant terms

$$
\frac{\partial V^*}{\partial t} + \frac{\sigma^2}{2} \frac{\partial^2 V^*}{\partial S_t^2} + \max_{\delta_t^{(b)}} \left\{ f^{(b)}(\delta_t^{(b)}) \cdot (V^*(t, S_t, W_t - S_t + \delta_t^{(b)}, I_t + 1) - V^*(t, S_t, W_t, I_t)) \right\} \\
+ \max_{\delta_t^{(a)}} \left\{ f^{(a)}(\delta_t^{(a)}) \cdot (V^*(t, S_t, W_t + S_t + \delta_t^{(a)}, I_t - 1) - V^*(t, S_t, W_t, I_t)) \right\} = 0
$$

This combines with the boundary condition:

$$
V^*(T, S_T, W_T, I_T) = -e^{-\gamma \cdot (W_T + I_T \cdot S_T)}
$$
Converting HJB to a Partial Differential Equation

We make an “educated guess” for the structure of $V^*(t, S_t, W_t, I_t)$:

$$V^*(t, S_t, W_t, I_t) = -e^{-\gamma(W_t + \theta(t, S_t, I_t))} \quad (1)$$

and reduce the problem to a PDE in terms of $\theta(t, S_t, I_t)$

Substituting this into the above PDE for $V^*(t, S_t, W_t, I_t)$ gives:

$$\frac{\partial \theta}{\partial t} + \frac{\sigma^2}{2} (\frac{\partial^2 \theta}{\partial S_t^2} - \gamma (\frac{\partial \theta}{\partial S_t})^2) + \max\left\{ \frac{f(b)(\delta_t^{(b)})}{\gamma} \cdot (1 - e^{-\gamma(\delta_t^{(b)} - S_t + \theta(t, S_t, I_t + 1) - \theta(t, S_t, I_t))}) \right\}$$

$$+ \max\left\{ \frac{f(a)(\delta_t^{(a)})}{\gamma} \cdot (1 - e^{-\gamma(\delta_t^{(a)} + S_t + \theta(t, S_t, I_t - 1) - \theta(t, S_t, I_t))}) \right\} = 0$$

The boundary condition is:

$$\theta(T, S_T, I_T) = I_T \cdot S_T$$
It turns out that $\theta(t, S_t, l_t + 1) - \theta(t, S_t, l_t)$ and $\theta(t, S_t, l_t) - \theta(t, S_t, l_t - 1)$ are equal to financially meaningful quantities known as Indifference Bid and Ask Prices

Indifference Bid Price $Q^{(b)}(t, S_t, l_t)$ is defined as:

$$V^*(t, S_t, W_t - Q^{(b)}(t, S_t, l_t), l_t + 1) = V^*(t, S_t, W_t, l_t) \quad (2)$$

$Q^{(b)}(t, S_t, l_t)$ is the price to buy a share with guarantee of immediate purchase that results in Optimum Expected Utility being unchanged

Likewise, Indifference Ask Price $Q^{(a)}(t, S_t, l_t)$ is defined as:

$$V^*(t, S_t, W_t + Q^{(a)}(t, S_t, l_t), l_t - 1) = V^*(t, S_t, W_t, l_t) \quad (3)$$

$Q^{(a)}(t, S_t, l_t)$ is the price to sell a share with guarantee of immediate sale that results in Optimum Expected Utility being unchanged

We abbreviate $Q^{(b)}(t, S_t, l_t)$ as $Q^{(b)}_t$ and $Q^{(a)}(t, S_t, l_t)$ as $Q^{(a)}_t$
Indifference Bid/Ask Price in the PDE for θ

- Express $V^*(t, S_t, W_t - Q_t^{(b)}, I_t + 1) = V^*(t, S_t, W_t, I_t)$ in terms of θ:
 \[-e^{-\gamma(W_t - Q_t^{(b)} + \theta(t, S_t, I_t + 1))} = -e^{-\gamma(W_t + \theta(t, S_t, I_t))}\]

 \[\Rightarrow Q_t^{(b)} = \theta(t, S_t, I_t + 1) - \theta(t, S_t, I_t)\] (4)

- Likewise for $Q_t^{(a)}$, we get:
 \[Q_t^{(a)} = \theta(t, S_t, I_t) - \theta(t, S_t, I_t - 1)\] (5)

- Using equations (4) and (5), bring $Q_t^{(b)}$ and $Q_t^{(a)}$ in the PDE for θ
 \[\frac{\partial \theta}{\partial t} + \frac{\sigma^2}{2} \left(\frac{\partial^2 \theta}{\partial S_t^2} - \gamma \left(\frac{\partial \theta}{\partial S_t} \right)^2 \right) + \max_{\delta_t^{(b)}} g(\delta_t^{(b)}) + \max_{\delta_t^{(a)}} h(\delta_t^{(a)}) = 0\]

 where $g(\delta_t^{(b)}) = \frac{f^{(b)}(\delta_t^{(b)})}{\gamma} \cdot \left(1 - e^{-\gamma(\delta_t^{(b)} - S_t + Q_t^{(b)})} \right)$

 and $h(\delta_t^{(a)}) = \frac{f^{(a)}(\delta_t^{(a)})}{\gamma} \cdot \left(1 - e^{-\gamma(\delta_t^{(a)} + S_t - Q_t^{(a)})} \right)$
To maximize $g(\delta_t^{(b)})$, differentiate g with respect to $\delta_t^{(b)}$ and set to 0

$$e^{-\gamma(\delta_t^{(b)} - S_t + Q_t^{(b)})} \cdot (\gamma \cdot f^{(b)}(\delta_t^{(b)}) - \frac{\partial f^{(b)}}{\partial \delta_t^{(b)}}(\delta_t^{(b)})) + \frac{\partial f^{(b)}}{\partial \delta_t^{(b)}}(\delta_t^{(b)}) = 0$$

$$\Rightarrow \delta_t^{(b)} = S_t - Q_t^{(b)} + \frac{1}{\gamma} \cdot \ln \left(1 - \gamma \cdot \frac{f^{(b)}(\delta_t^{(b)})}{\partial f^{(b)}}(\delta_t^{(b)})\right) \quad (6)$$

To maximize $g(\delta_t^{(a)})$, differentiate h with respect to $\delta_t^{(a)}$ and set to 0

$$e^{-\gamma(\delta_t^{(a)} + S_t - Q_t^{(a)})} \cdot (\gamma \cdot f^{(a)}(\delta_t^{(a)}) - \frac{\partial f^{(a)}}{\partial \delta_t^{(a)}}(\delta_t^{(a)})) + \frac{\partial f^{(a)}}{\partial \delta_t^{(a)}}(\delta_t^{(a)}) = 0$$

$$\Rightarrow \delta_t^{(a)} = Q_t^{(a)} - S_t + \frac{1}{\gamma} \cdot \ln \left(1 - \gamma \cdot \frac{f^{(a)}(\delta_t^{(a)})}{\partial f^{(a)}}(\delta_t^{(a)})\right) \quad (7)$$

(6) and (7) are implicit equations for $\delta_t^{(b)}$ and $\delta_t^{(a)}$ respectively
Let us write the PDE in terms of the Optimal Bid and Ask Spreads

\[
\frac{\partial \theta}{\partial t} + \frac{\sigma^2}{2} \left(\frac{\partial^2 \theta}{\partial S_t^2} - \gamma \left(\frac{\partial \theta}{\partial S_t} \right)^2 \right)
\]

\[+ \frac{f(b)(\delta^{(b)}_t)^*}{\gamma} \cdot (1 - e^{-\gamma(\delta^{(b)}_t)^*} - S_t + \theta(t, S_t, l_t + 1) - \theta(t, S_t, l_t)) \]

\[+ \frac{f(a)(\delta^{(a)}_t)^*}{\gamma} \cdot (1 - e^{-\gamma(\delta^{(a)}_t)^*} + S_t + \theta(t, S_t, l_t - 1) - \theta(t, S_t, l_t)) = 0\]

with boundary condition \(\theta(T, S_T, l_T) = l_T \cdot S_T \)

First we solve PDE (8) for \(\theta \) in terms of \(\delta^{(b)}_t \) and \(\delta^{(a)}_t \)

In general, this would be a numerical PDE solution

Using (4) and (5), we have \(Q^{(b)}_t \) and \(Q^{(a)}_t \) in terms of \(\delta^{(b)}_t \) and \(\delta^{(a)}_t \)

Substitute above-obtained \(Q^{(b)}_t \) and \(Q^{(a)}_t \) in equations (6) and (7)

Solve implicit equations for \(\delta^{(b)}_t \) and \(\delta^{(a)}_t \) (in general, numerically)
Building Intuition

- Define *Indifference Mid Price* $Q_{t}^{(m)} = \frac{Q_{t}^{(b)} + Q_{t}^{(a)}}{2}$

- To develop intuition for Indifference Prices, consider a simple case where the market-maker doesn’t supply any bids or asks

 \[V^{*}(t, S_{t}, W_{t}, I_{t}) = \mathbb{E}[-e^{-\gamma(W_{t} + I_{t} \cdot S T)}] \]

- Combining this with the diffusion $dS_{t} = \sigma \cdot dz_{t}$, we get:

 \[V^{*}(t, S_{t}, W_{t}, I_{t}) = -e^{-\gamma(W_{t} + I_{t} \cdot S_{t} - \frac{\gamma I_{t}^{2} \cdot \sigma^{2}(T-t)}{2})} \]

- Combining this with equations (2) and (3), we get:

 \[Q_{t}^{(b)} = S_{t} - (2I_{t} + 1) \frac{\gamma \sigma^{2}(T-t)}{2} , \ Q_{t}^{(a)} = S_{t} - (2I_{t} - 1) \frac{\gamma \sigma^{2}(T-t)}{2} \]

 \[Q_{t}^{(m)} = S_{t} - I_{t} \gamma \sigma^{2}(T-t) , \ Q_{t}^{(a)} - Q_{t}^{(b)} = \gamma \sigma^{2}(T-t) \]

- These results for the simple case of no-market-making serve as approximations for our problem of optimal market-making
Building Intuition

- Think of \(Q_t^{(m)} \) as \textit{inventory-risk-adjusted} mid-price (adjustment to \(S_t \))
- If market-maker is long inventory (\(I_t > 0 \)), \(Q_t^{(m)} < S_t \) indicating inclination to sell than buy, and if market-maker is short inventory, \(Q_t^{(m)} > S_t \) indicating inclination to buy than sell
- Armed with this intuition, we come back to optimal market-making, observing from eqns (6) and (7): \(P_t^{(b)} \ast < Q_t^{(b)} < Q_t^{(m)} < Q_t^{(a)} < P_t^{(a)} \ast \)
- Think of \([P_t^{(b)} \ast, P_t^{(a)} \ast]\) as “centered” at \(Q_t^{(m)} \) (rather than at \(S_t \)), i.e., \([P_t^{(b)} \ast, P_t^{(a)} \ast]\) will (together) move up/down in tandem with \(Q_t^{(m)} \) moving up/down (as a function of inventory position \(I_t \))

\[
Q_t^{(m)} - P_t^{(b)} \ast = \frac{Q_t^{(a)} - Q_t^{(b)}}{2} + \frac{1}{\gamma} \cdot \ln \left(1 - \gamma \cdot \frac{f_t^{(b)}(\delta_t^{(b)} \ast)}{\partial f_t^{(b)}}(\delta_t^{(b)} \ast) \right) \tag{9}
\]

\[
P_t^{(a)} \ast - Q_t^{(m)} = \frac{Q_t^{(a)} - Q_t^{(b)}}{2} + \frac{1}{\gamma} \cdot \ln \left(1 - \gamma \cdot \frac{f_t^{(a)}(\delta_t^{(a)} \ast)}{\partial f_t^{(a)}}(\delta_t^{(a)} \ast) \right) \tag{10}
\]
Simple Functional Form for Hitting/Lifting Rate Means

- The PDE for θ and the implicit equations for $\delta_t^{(b)^*}, \delta_t^{(a)^*}$ are messy.
- We make some assumptions, simplify, derive analytical approximations.
- First we assume a fairly standard functional form for $f^{(b)}$ and $f^{(a)}$

\[f^{(b)}(\delta) = f^{(a)}(\delta) = c \cdot e^{-k\cdot\delta} \]

- This reduces equations (6) and (7) to:

\[\delta_t^{(b)^*} = S_t - Q_t^{(b)} + \frac{1}{\gamma} \ln \left(1 + \frac{\gamma}{k}\right) \] \hspace{1cm} (11)
\[\delta_t^{(a)^*} = Q_t^{(a)} - S_t + \frac{1}{\gamma} \ln \left(1 + \frac{\gamma}{k}\right) \] \hspace{1cm} (12)

\[\Rightarrow P_t^{(b)^*} \text{ and } P_t^{(a)^*} \text{ are equidistant from } Q_t^{(m)} \]

- Substituting these simplified $\delta_t^{(b)^*}, \delta_t^{(a)^*}$ in (8) reduces the PDE to:

\[\frac{\partial \theta}{\partial t} + \frac{\sigma^2}{2} \left(\frac{\partial^2 \theta}{\partial S_t^2} - \gamma \left(\frac{\partial \theta}{\partial S_t} \right)^2 \right) + \frac{c}{k + \gamma} \left(e^{-k\cdot\delta_t^{(b)^*}} + e^{-k\cdot\delta_t^{(a)^*}} \right) = 0 \] \hspace{1cm} (13)

with boundary condition $\theta(T, S_T, I_T) = I_T \cdot S_T$
Simplifying the PDE with Approximations

- Note that this PDE (13) involves $\delta_t^{(b)^*}$ and $\delta_t^{(a)^*}$

- However, equations (11), (12), (4), (5) enable expressing $\delta_t^{(b)^*}$ and $\delta_t^{(a)^*}$ in terms of $\theta(t, S_t, l_t - 1), \theta(t, S_t, l_t), \theta(t, S_t, l_t + 1)$

- This would give us a PDE just in terms of θ

- Solving that PDE for θ would not only give us $V^*(t, S_t, W_t, l_t)$ but also $\delta_t^{(b)^*}$ and $\delta_t^{(a)^*}$ (using equations (11), (12), (4), (5))

- To solve the PDE, we need to make a couple of approximations

- First we make a linear approx for $e^{-k \cdot \delta_t^{(b)^*}}$ and $e^{-k \cdot \delta_t^{(a)^*}}$ in PDE (13):

 \[
 \frac{\partial \theta}{\partial t} + \frac{\sigma^2}{2} \left(\frac{\partial^2 \theta}{\partial S_t^2} - \gamma \left(\frac{\partial \theta}{\partial S_t} \right)^2 \right) + \frac{c}{k + \gamma} \left(1 - k \cdot \delta_t^{(b)^*} + 1 - k \cdot \delta_t^{(a)^*} \right) = 0 \quad (14)
 \]

- Equations (11), (12), (4), (5) tell us that:

 \[
 \delta_t^{(b)^*} + \delta_t^{(a)^*} = \frac{2}{\gamma} \ln \left(1 + \frac{\gamma}{k} \right) + 2\theta(t, S_t, l_t) - \theta(t, S_t, l_t + 1) - \theta(t, S_t, l_t - 1)
 \]
Asymptotic Expansion of θ in l_t

- With this expression for $\delta_t^{(b)} + \delta_t^{(a)}$, PDE (14) takes the form:

\[
\frac{\partial \theta}{\partial t} + \frac{\sigma^2}{2} \left(\frac{\partial^2 \theta}{\partial S_t^2} - \gamma \left(\frac{\partial \theta}{\partial S_t} \right)^2 \right) + \frac{c}{k + \gamma} \left(2 - \frac{2k}{\gamma} \ln \left(1 + \frac{\gamma}{k} \right) - k(2\theta(t, S_t, l_t) - \theta(t, S_t, l_t + 1) - \theta(t, S_t, l_t - 1)) \right) = 0
\]

(15)

- To solve PDE (15), we consider this asymptotic expansion of θ in l_t:

\[
\theta(t, S_t, l_t) = \sum_{n=0}^{\infty} \frac{l_t^n}{n!} \cdot \theta^{(n)}(t, S_t)
\]

- So we need to determine the functions $\theta^{(n)}(t, S_t)$ for all $n = 0, 1, 2, \ldots$.

- For tractability, we approximate this expansion to the first 3 terms:

\[
\theta(t, S_t, l_t) \approx \theta^{(0)}(t, S_t) + l_t \cdot \theta^{(1)}(t, S_t) + \frac{l_t^2}{2} \cdot \theta^{(2)}(t, S_t)
\]
Approximation of the Expansion of θ in I_t

- We note that the Optimal Value Function V^* can depend on S_t only through the current Value of the Inventory (i.e., through $I_t \cdot S_t$), i.e., it cannot depend on S_t in any other way.
- This means $V^*(t, S_t, W_t, 0) = -e^{-\gamma(W_t + \theta^{(0)}(t, S_t))}$ is independent of S_t.
- This means $\theta^{(0)}(t, S_t)$ is independent of S_t.
- So, we can write it as simply $\theta^{(0)}(t)$, meaning $\frac{\partial \theta^{(0)}}{\partial S_t}$ and $\frac{\partial^2 \theta^{(0)}}{\partial S_t^2}$ are 0.
- Therefore, we can write the approximate expansion for $\theta(t, S_t, I_t)$ as:

$$\theta(t, S_t, I_t) = \theta^{(0)}(t) + I_t \cdot \theta^{(1)}(t, S_t) + \frac{I_t^2}{2} \cdot \theta^{(2)}(t, S_t) \quad (16)$$
Solving the PDE

- Substitute this approximation (16) for $\theta(t, S_t, I_t)$ in PDE (15)

\[
\begin{gathered}
\frac{\partial \theta^{(0)}}{\partial t} + l_t \frac{\partial \theta^{(1)}}{\partial t} + \frac{l_t^2}{2} \frac{\partial \theta^{(2)}}{\partial t} + \frac{\sigma^2}{2} \left(l_t \frac{\partial^2 \theta^{(1)}}{\partial S_t^2} + \frac{l_t^2}{2} \frac{\partial^2 \theta^{(2)}}{\partial S_t^2} \right) \nonumber \\
- \frac{\gamma \sigma^2}{2} \left(l_t \frac{\partial \theta^{(1)}}{\partial S_t} + \frac{l_t^2}{2} \frac{\partial \theta^{(2)}}{\partial S_t} \right)^2 + \frac{c}{k + \gamma} \left(2 - \frac{2k}{\gamma} \ln \left(1 + \frac{\gamma}{k} \right) + k \cdot \theta^{(2)} \right) = 0
\end{gathered}
\]

with boundary condition:

\[
\theta^{(0)}(T) + I_T \cdot \theta^{(1)}(T, S_T) + \frac{l_T^2}{2} \cdot \theta^{(2)}(T, S_T) = I_T \cdot S_T
\]

(17)

- We will separately collect terms involving specific powers of l_t, each yielding a separate PDE:
 - Terms devoid of l_t (i.e., l_t^0)
 - Terms involving l_t (i.e., l_t^1)
 - Terms involving l_t^2
Solving the PDE

- We start by collecting terms involving I_t

$$\frac{\partial \theta^{(1)}}{\partial t} + \frac{\sigma^2}{2} \cdot \frac{\partial^2 \theta^{(1)}}{\partial S^2_t} = 0 \text{ with boundary condition } \theta^{(1)}(T, S_T) = S_T$$

- The solution to this PDE is:

$$\theta^{(1)}(t, S_t) = S_t \quad (18)$$

- Next, we collect terms involving I_t^2

$$\frac{\partial \theta^{(2)}}{\partial t} + \frac{\sigma^2}{2} \cdot \frac{\partial^2 \theta^{(2)}}{\partial S^2_t} - \gamma \sigma^2 \cdot \left(\frac{\partial \theta^{(1)}}{\partial S_t} \right)^2 = 0 \text{ with boundary } \theta^{(2)}(T, S_T) = 0$$

- Noting that $\theta^{(1)}(t, S_t) = S_t$, we solve this PDE as:

$$\theta^{(2)}(t, S_t) = -\gamma \sigma^2 (T - t) \quad (19)$$
Solving the PDE

- Finally, we collect the terms devoid of \(I_t \)
 \[
 \frac{\partial \theta^{(0)}}{\partial t} + \frac{c}{k + \gamma} \left(2 - \frac{2k}{\gamma} \ln \left(1 + \frac{\gamma}{k} \right) \right) + k \cdot \theta^{(2)} = 0 \text{ with boundary } \theta^{(0)}(T) = 0
 \]

- Noting that \(\theta^{(2)}(t, S_t) = -\gamma \sigma^2 (T - t) \), we solve as:
 \[
 \theta^{(0)}(t) = \frac{c}{k + \gamma} \left((2 - \frac{2k}{\gamma} \ln \left(1 + \frac{\gamma}{k} \right)) (T - t) - \frac{k \gamma \sigma^2}{2} (T - t)^2 \right) \quad (20)
 \]

- This completes the PDE solution for \(\theta(t, S_t, I_t) \) and hence, for \(V^*(t, S_t, W_t, I_t) \)

- Lastly, we derive formulas for \(Q_t^{(b)}, Q_t^{(a)}, Q_t^{(m)}, \delta_t^{(b)*}, \delta_t^{(a)*} \)
Formulas for Prices and Spreads

- Using equations (4) and (5), we get:

\[
Q^{(b)}_t = \theta^{(1)}(t, S_t) + (2l_t + 1) \cdot \theta^{(2)}(t, S_t) = S_t - (2l_t + 1) \frac{\gamma \sigma^2 (T - t)}{2} \tag{21}
\]

\[
Q^{(a)}_t = \theta^{(1)}(t, S_t) + (2l_t - 1) \cdot \theta^{(2)}(t, S_t) = S_t - (2l_t - 1) \frac{\gamma \sigma^2 (T - t)}{2} \tag{22}
\]

- Using equations (11) and (12), we get:

\[
\delta^{(b)}_t = \frac{(2l_t + 1) \gamma \sigma^2 (T - t)}{2} + \frac{1}{\gamma} \ln \left(1 + \frac{\gamma}{k}\right) \tag{23}
\]

\[
\delta^{(a)}_t = \frac{(1 - 2l_t) \gamma \sigma^2 (T - t)}{2} + \frac{1}{\gamma} \ln \left(1 + \frac{\gamma}{k}\right) \tag{24}
\]

Optimal Bid-Ask Spread \(\delta^{(b)}_t + \delta^{(a)}_t = \gamma \sigma^2 (T - t) + \frac{2}{\gamma} \ln \left(1 + \frac{\gamma}{k}\right) \tag{25} \)

Optimal “Mid” \(Q^{(m)}_t = \frac{Q^{(b)}_t + Q^{(a)}_t}{2} = \frac{P^{(b)}_t + P^{(a)}_t}{2} = S_t - I_t \gamma \sigma^2 (T - t) \tag{26} \)
Think of $Q_t^{(m)}$ as inventory-risk-adjusted mid-price (adjustment to S_t)
If market-maker is long inventory ($I_t > 0$), $Q_t^{(m)} < S_t$ indicating inclination to sell than buy, and if market-maker is short inventory, $Q_t^{(m)} > S_t$ indicating inclination to buy than sell
Think of $[P_t^{(b)*}, P_t^{(a)*}]$ as “centered” at $Q_t^{(m)}$ (rather than at S_t), i.e., $[P_t^{(b)*}, P_t^{(a)*}]$ will (together) move up/down in tandem with $Q_t^{(m)}$ moving up/down (as a function of inventory position I_t)
Note from equation (25) that the Optimal Bid-Ask Spread $P_t^{(a)*} - P_t^{(b)*}$ is independent of inventory I_t
Useful view: $P_t^{(b)*} < Q_t^{(b)} < Q_t^{(m)} < Q_t^{(a)} < P_t^{(a)*}$, with these spreads:

Outer Spreads $P_t^{(a)*} - Q_t^{(a)} = Q_t^{(b)} - P_t^{(b)*} = \frac{1}{\gamma} \ln \left(1 + \frac{\gamma}{k}\right)$

Inner Spreads $Q_t^{(a)} - Q_t^{(m)} = Q_t^{(m)} - Q_t^{(b)} = \frac{\gamma \sigma^2(T-t)}{2}$
Real-world OB dynamics are time-heterogeneous, non-linear, complex
Frictions: Discrete Prices/Sizes, Constraints on Prices/Sizes, Fees
Need to capture various market factors in the State & OB Dynamics
This leads to Curse of Dimensionality and Curse of Modeling
The practical route is to develop a simulator capturing all of the above
Simulator is a *Market-Data-learnt Sampling Model* of OB Dynamics
Using this simulator and neural-networks func approx, we can do RL
References: [2018 Paper from University of Liverpool](#) and [2019 Paper from JP Morgan Research](#)
Exciting area for Future Research as well as Engineering Design