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Intuition on Risk-Aversion and Risk-Premium

Let's play a game where your payoff is based on outcome of a fair coin
You get $100 for HEAD and $0 for TAIL

How much would you pay to play this game?

You immediately say: "“Of course, $50"

Then you think a bit, and say: “A little less than $50”

Less because you want to “be compensated for taking the risk”

The word Risk refers to the degree of variation of the outcome

We call this risk-compensation as Risk-Premium

Our personality-based degree of risk fear is known as Risk-Aversion

So, we end up paying $50 minus Risk-Premium to play the game

Risk-Premium grows with Outcome-Variance & Risk-Aversion
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Specifying Risk-Aversion through a Utility function

We seek a "valuation formula” for the amount we'd pay that:

o Increases one-to-one with the Mean of the outcome
o Decreases as the Variance of the outcome (i.e.. Risk) increases
o Decreases as our Personal Risk-Aversion increases

The last two properties above define the Risk-Premium

But fundamentally why are we Risk-Averse?

Why don't we just pay the mean of the random outcome?

Reason: QOur satisfaction to better outcomes grows non-linearly
We express this satisfaction non-linearity as a mathematical function
Based on a core economic concept called Utility of Consumption

We will illustrate this concept with a real-life example
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Law of Diminishing Marginal Utility

Satisfaction (Utility) from Eating Cookies (Consumption)
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Utility of Consumption and Certainty-Equivalent Value

Marginal Satisfaction of eating cookies is a diminishing function
Hence, Accumulated Satisfaction is a concave function
Accumulated Satisfaction represents Utility of Consumption U(x)
Where x represents the uncertain outcome being consumed
Degree of concavity represents extent of our Risk-Aversion
Concave U(+) function = E[U(x)] < U(E[x])

We define Certainty-Equivalent Value xcg = U~1(E[U(x)])

Denotes certain amount we'd pay to consume an uncertain outcome

Absolute Risk-Premium 74 = E[x]| — xcg

Relative Risk-Premium 7 = ﬁ = ]E[XI%[% =1- %
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Certainty-Equivalent Value

Utility U(x) of Consumption x

U(ELXD) //

E[U(x)]

Xce E[x]
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Calculating the Risk-Premium

We develop mathematical formalism to calculate Risk-Premia ma, 7g
To lighten notation, we refer to E[x] as X and Variance of x as o2
Taylor-expand U(x) around X, ignoring terms beyond quadratic

Ux) = UR)+U(R) - (x —X)+ %U”(x) (x — %)?

Taylor-expand U(xcg) around X, ignoring terms beyond linear
U(xce) = U(X) + U'(X) - (xce — X)

Taking the expectation of the U(x) expansion, we get:

E[U(x)] = U(R) + % U"(R) - o2

Since E[U(x)] = U(xce), the above two expressions are ~~. Hence,

1
U(R) (xee —R) = 5 U'(R) - o7
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Absolute & Relative Risk-Aversion

@ From the last equation on the previous slide, Absolute Risk-Premium

_ 1 U'(x) >
WA:X—XCE%—E-U/()_()'O'X
@ We refer to function A(x) = — L(jj/,/((:)) as the Absolute Risk-Aversion

1
WAQE-A()_()-O')%

@ In multiplicative uncertainty settings, we focus on variance o2 of z
X
@ In multiplicative settings, we also focus on Relative Risk-Premium ng

ma 1 U'(x)-x of 1 UV'(x)-x

— _z . S ~ g2
TREFT T2 TUR R 2 uE k
@ We refer to function R(x) = — UJ,(Z(X))X as the Relative Risk-Aversion
Loy, 2
WRQE'R(X)‘O'é
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Taking stock of what we're learning here

@ We've shown that Risk-Premium can be expressed as the product of:

o Extent of Risk-Aversion: either A(X) or R(X)

o Extent of uncertainty of outcome: either o2 or o

X
X

We've expressed the extent of Risk-Aversion as the ratio of:
e Concavity of the Utility function (at x): —U"(X)
o Slope of the Utility function (at x): U'(X)

For optimization problems, we ought to maximize E[U(x)] (not E[x])

Linear Utility function U(x) = a + b - x implies Risk-Neutrality
Now we look at typically-used Utility functions U(-) with:

o Constant Absolute Risk-Aversion (CARA)
o Constant Relative Risk-Aversion (CRRA)
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Constant Absolute Risk-Aversion (CARA)

o Consider the Utility function U(x) = 1=~ for a # 0

a
Absolute Risk-Aversion A(x) = % =a
a is called Coefficient of Constant Absolute Risk-Aversion (CARA)
For a =0, U(x) = x (meaning Risk-Neutral)

If the random outcome x ~ N (u, 02),

E[U(X)] _ % for a # 0

30'2

Absolute Risk Premium 74 = 1 — xcg = S

o For optimization problems where 2 is a function of j, we seek the

distribution that maximizes p — ag?

2
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A Portfolio Application of CARA

We are given $1 to invest and hold for a horizon of 1 year

Investment choices are 1 risky asset and 1 riskless asset

Risky Asset Annual Return ~ N (p, 0?)

Riskless Asset Annual Return = r

Determine unconstrained 7 to allocate to risky asset (1 — 7 to riskless)
Such that Portfolio has maximum Utility of Wealth in 1 year

With CARA Utility U(W) = =" for 2 £ 0

Portfolio Wealth W ~ N(1 + r + 7(u — r), 7%0?)

From the section on CARA Utility, we know we need to maximize:

ar?o?
2
So optimal investment fraction in risky asset

7'('* — 1% —2I’
aoc

1+ r+m(p—r)—

Ashwin Rao (Stanford) Utility Theory February 3, 2020 11/14



Constant Relative Risk-Aversion (CRRA)

e Consider the Utility function U(x) = X _— 1 for v #£ 1
—U"(x)x _

U~
@ v is called Coefficient of Constant Relative Risk-Aversion (CRRA)
e For v =1, U(x) = log(x). For v =0, U(x) = x — 1 (Risk-Neutral)
o If the random outcome x is lognormal, with log(x) ~ N (u, 0?),

o Relative Risk-Aversion R(x) =

2
L=+ (1-7)% g

E[U(X)] — 1~ fOF Y 7é 1
7 fory=1
xcg = el T T *(1—7)
0_2
Relative Risk Premium 7 =1 — XE —l—e 2

@ For optimization problems where 02 is a function of u, we seek the

distribution that maximizes ;1 + % (1 -)
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A Portfolio Application of CRRA (Merton 1969)

We work in the setting of Merton's 1969 Portfolio problem

We only consider the single-period (static) problem with 1 risky asset
Riskless asset: dR; = r- R; - dt

Risky asset: dS; = - St - dt + o - St - dz; (i.e. Geometric Brownian)
We are given $1 to invest, with continuous rebalancing for 1 year
Determine constant fraction m of W, to allocate to risky asset

To maximize Expected Utility of Wealth W = W, (at time t = 1)
Constraint: Portfolio is continuously rebalanced to maintain fraction m

So, the process for wealth W; is given by:
dWi = (r+n(p—r)) - Wy-dt+m-0-W;-dz

e Assume CRRA Utility U(W) = W;j{l,O <y#1
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Recovering Merton's solution (for this static case)

Applying Ito’s Lemma on log W; gives us:

t 252 t
Ioth:/(r—i-w(u—r)— 5 )-du+/7r~a-dzu
0 0

7['20'2 2 92
=logW ~N(r+7n(p—r)— ——,7°07)
From the section on CRRA Utility, we know we need to maximize:

2 2 2 2
o m<o<(1 —
( 7)
2 2

r+m(p—r)—

2oy

2

=r+m(p—r)-
So optimal investment fraction in risky asset

* m—=r

T
yo2
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