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Intuition on Risk-Aversion and Risk-Premium

Let’s play a game where your payoff is based on outcome of a fair coin

You get $100 for HEAD and $0 for TAIL

How much would you pay to play this game?

You immediately say: “Of course, $50”

Then you think a bit, and say: “A little less than $50”

Less because you want to “be compensated for taking the risk”

The word Risk refers to the degree of variation of the outcome

We call this risk-compensation as Risk-Premium

Our personality-based degree of risk fear is known as Risk-Aversion

So, we end up paying $50 minus Risk-Premium to play the game

Risk-Premium grows with Outcome-Variance & Risk-Aversion
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Specifying Risk-Aversion through a Utility function

We seek a “valuation formula” for the amount we’d pay that:

Increases one-to-one with the Mean of the outcome
Decreases as the Variance of the outcome (i.e.. Risk) increases
Decreases as our Personal Risk-Aversion increases

The last two properties above define the Risk-Premium

But fundamentally why are we Risk-Averse?

Why don’t we just pay the mean of the random outcome?

Reason: Our satisfaction to better outcomes grows non-linearly

We express this satisfaction non-linearity as a mathematical function

Based on a core economic concept called Utility of Consumption

We will illustrate this concept with a real-life example
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Law of Diminishing Marginal Utility
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Utility of Consumption and Certainty-Equivalent Value

Marginal Satisfaction of eating cookies is a diminishing function

Hence, Accumulated Satisfaction is a concave function

Accumulated Satisfaction represents Utility of Consumption U(x)

Where x represents the uncertain outcome being consumed

Degree of concavity represents extent of our Risk-Aversion

Concave U(·) function ⇒ E[U(x)] < U(E[x ])

We define Certainty-Equivalent Value xCE = U−1(E[U(x)])

Denotes certain amount we’d pay to consume an uncertain outcome

Absolute Risk-Premium πA = E[x ]− xCE

Relative Risk-Premium πR = πA
E[x] = E[x]−xCE

E[x] = 1− xCE
E[x]

Ashwin Rao (Stanford) Utility Theory February 3, 2020 5 / 14



Certainty-Equivalent Value
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Calculating the Risk-Premium

We develop mathematical formalism to calculate Risk-Premia πA, πR
To lighten notation, we refer to E[x ] as x̄ and Variance of x as σ2

x

Taylor-expand U(x) around x̄ , ignoring terms beyond quadratic

U(x) ≈ U(x̄) + U ′(x̄) · (x − x̄) +
1

2
U ′′(x̄) · (x − x̄)2

Taylor-expand U(xCE ) around x̄ , ignoring terms beyond linear

U(xCE ) ≈ U(x̄) + U ′(x̄) · (xCE − x̄)

Taking the expectation of the U(x) expansion, we get:

E[U(x)] ≈ U(x̄) +
1

2
· U ′′(x̄) · σ2

x

Since E[U(x)] = U(xCE ), the above two expressions are ≈. Hence,

U ′(x̄) · (xCE − x̄) ≈ 1

2
· U ′′(x̄) · σ2

x

Ashwin Rao (Stanford) Utility Theory February 3, 2020 7 / 14



Absolute & Relative Risk-Aversion

From the last equation on the previous slide, Absolute Risk-Premium

πA = x̄ − xCE ≈ −
1

2
· U
′′(x̄)

U ′(x̄)
· σ2

x

We refer to function A(x) = −U′′(x)
U′(x) as the Absolute Risk-Aversion

πA ≈
1

2
· A(x̄) · σ2

x

In multiplicative uncertainty settings, we focus on variance σ2
x
x̄

of x
x̄

In multiplicative settings, we also focus on Relative Risk-Premium πR

πR =
πA
x̄
≈ −1

2
· U
′′(x̄) · x̄
U ′(x̄)

· σ
2
x

x̄2
= −1

2
· U
′′(x̄) · x̄
U ′(x̄)

· σ2
x
x̄

We refer to function R(x) = −U′′(x)·x
U′(x) as the Relative Risk-Aversion

πR ≈
1

2
· R(x̄) · σ2

x
x̄
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Taking stock of what we’re learning here

We’ve shown that Risk-Premium can be expressed as the product of:

Extent of Risk-Aversion: either A(x̄) or R(x̄)
Extent of uncertainty of outcome: either σ2

x or σ2
x
x̄

We’ve expressed the extent of Risk-Aversion as the ratio of:

Concavity of the Utility function (at x̄): −U ′′(x̄)
Slope of the Utility function (at x̄): U ′(x̄)

For optimization problems, we ought to maximize E[U(x)] (not E[x ])

Linear Utility function U(x) = a + b · x implies Risk-Neutrality

Now we look at typically-used Utility functions U(·) with:

Constant Absolute Risk-Aversion (CARA)
Constant Relative Risk-Aversion (CRRA)
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Constant Absolute Risk-Aversion (CARA)

Consider the Utility function U(x) = 1−e−ax

a for a 6= 0

Absolute Risk-Aversion A(x) = −U′′(x)
U′(x) = a

a is called Coefficient of Constant Absolute Risk-Aversion (CARA)

For a = 0, U(x) = x (meaning Risk-Neutral)

If the random outcome x ∼ N (µ, σ2),

E[U(x)] =

1−e−aµ+ a2σ2

2

a for a 6= 0

µ for a = 0

xCE = µ− aσ2

2

Absolute Risk Premium πA = µ− xCE =
aσ2

2

For optimization problems where σ2 is a function of µ, we seek the
distribution that maximizes µ− aσ2

2
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A Portfolio Application of CARA

We are given $1 to invest and hold for a horizon of 1 year

Investment choices are 1 risky asset and 1 riskless asset

Risky Asset Annual Return ∼ N (µ, σ2)

Riskless Asset Annual Return = r

Determine unconstrained π to allocate to risky asset (1−π to riskless)

Such that Portfolio has maximum Utility of Wealth in 1 year

With CARA Utility U(W ) = 1−e−aW

a for a 6= 0

Portfolio Wealth W ∼ N (1 + r + π(µ− r), π2σ2)

From the section on CARA Utility, we know we need to maximize:

1 + r + π(µ− r)− aπ2σ2

2

So optimal investment fraction in risky asset

π∗ =
µ− r

aσ2
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Constant Relative Risk-Aversion (CRRA)

Consider the Utility function U(x) = x1−γ−1
1−γ for γ 6= 1

Relative Risk-Aversion R(x) = −U′′(x)·x
U′(x) = γ

γ is called Coefficient of Constant Relative Risk-Aversion (CRRA)

For γ = 1, U(x) = log(x). For γ = 0, U(x) = x − 1 (Risk-Neutral)

If the random outcome x is lognormal, with log(x) ∼ N (µ, σ2),

E[U(x)] =

 eµ(1−γ)+ σ2

2 (1−γ)2
−1

1−γ for γ 6= 1

µ for γ = 1

xCE = eµ+σ2

2
(1−γ)

Relative Risk Premium πR = 1− xCE
x̄

= 1− e−
σ2γ

2

For optimization problems where σ2 is a function of µ, we seek the
distribution that maximizes µ+ σ2

2 (1− γ)
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A Portfolio Application of CRRA (Merton 1969)

We work in the setting of Merton’s 1969 Portfolio problem

We only consider the single-period (static) problem with 1 risky asset

Riskless asset: dRt = r · Rt · dt
Risky asset: dSt = µ · St · dt + σ · St · dzt (i.e. Geometric Brownian)

We are given $1 to invest, with continuous rebalancing for 1 year

Determine constant fraction π of Wt to allocate to risky asset

To maximize Expected Utility of Wealth W = W1 (at time t = 1)

Constraint: Portfolio is continuously rebalanced to maintain fraction π

So, the process for wealth Wt is given by:

dWt = (r + π(µ− r)) ·Wt · dt + π · σ ·Wt · dzt

Assume CRRA Utility U(W ) = W 1−γ−1
1−γ , 0 < γ 6= 1
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Recovering Merton’s solution (for this static case)

Applying Ito’s Lemma on logWt gives us:

logWt =

∫ t

0
(r + π(µ− r)− π2σ2

2
) · du +

∫ t

0
π · σ · dzu

⇒ logW ∼ N (r + π(µ− r)− π2σ2

2
, π2σ2)

From the section on CRRA Utility, we know we need to maximize:

r + π(µ− r)− π2σ2

2
+
π2σ2(1− γ)

2

= r + π(µ− r)− π2σ2γ

2
So optimal investment fraction in risky asset

π∗ =
µ− r

γσ2
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