
Stanford CME 241 (Winter 2020) - Final Exam Solutions

1. Consider an MDP with infinite number of states S = {1,2,3, . . .} and finite number of actions
A = {A1,A2, . . . ,Am} for some fixed m ≥ 1. The transition probabilities are as follows: For all
states s ∈ S,

Pr[(s + j)∣(s,Ai)] =

⎧⎪⎪
⎨
⎪⎪⎩

1
i for each 1 ≤ j ≤ i

0 otherwise

For all states s, s′ ∈ S and for all actions a ∈ A, R(s, a, s′) denotes the reward when transitioning
from s to s′ upon taking action a

R(s, a, s′) = (s′ − s)n for some fixed 1 ≤ n ∈ R

Let the discount factor be denoted by 0 ≤ γ < 1.

• 6 points: Derive analytical expressions for the Optimal Value Function V∗(⋅) and for an
Optimal Deterministic Policy (each in terms of m,n, γ).

• 4 points: Now assume that an agent, instead of following an optimal policy, decides to follow
the stochastic policy: π(Ai∣s) =

1
m for all 1 ≤ i ≤ m for all states s ∈ S. Derive an analytical

expression for the Value Function Vπ(⋅) for this policy π (in terms of m,n, γ).

Answer: Let us write out the Bellman Optimality Equation.

V∗(s) = max
1≤i≤m

{
i

∑
j=1

jn + γ ⋅ V∗(s + j)

i
}

We note that since this has an infinite number of states, since the movements are only in one
direction, and since transitions and rewards do not depend on the state s (they depend on the
action Ai and on s′−s respectively), V∗(s) should be independent of s. So we write V∗(s) as simply
the single number V∗. So we rewrite the Bellman Optimality Equation as:

V∗ = max
1≤i≤m

{
i

∑
j=1

jn + γ ⋅ V∗
i

}

⇒ V∗ = max
1≤i≤m

{
1

i

i

∑
j=1

jn + γ ⋅ V∗}

⇒ V∗ − γV∗ = max
1≤i≤m

{
1

i

i

∑
j=1

jn}

Since jn is monotonically increasing as a function of j, we note that:

argmax
1≤i≤m

{
1

i

i

∑
j=1

jn} =m

. Therefore,

(1 − γ)V ∗ =
1

m

m

∑
j=1

jn



⇒ V∗ =
1

m(1 − γ)

m

∑
j=1

jn

Therefore, the optimal policy π∗ ∶ S → A is given by:

π∗(s) =m for all s ∈ Z+

Now we derive the analytical expression for the Value Function Vπ(⋅) for the stochastic policy
π(Ai∣s) =

1
m for all 1 ≤ i ≤m for all states s ∈ S. We start by noting (based on the same argument

as V∗(⋅)) that Vπ(s) is independent of s. So we write Vπ(s) as simply the single number Vπ. The
Bellman Expectation Equation is:

Vπ =
m

∑
i=1

{
1

m
⋅ {

i

∑
j=1

jn + γ ⋅ Vπ
i

}}

⇒ Vπ =
1

m(1 − γ)

m

∑
i=1

{
1

i

i

∑
j=1

jn}

2. Assume you have fixed data available as N complete episodes where each episode is in the form:

S1,R1, S2,R2, . . . , Sn,Rn, T

where S1, S2, . . . , Sn is the sequence of states visited in the episode and R1,R2, . . . ,Rn are the
associated rewards following the visited states. T is the terminal state. Note that n (the length of
an episode) can vary across the N episodes. Note that there are no actions here, so the setting for
this data is an underlying MRP and not MDP. Assume discount factor γ = 1.

Given only this data of fixed N episodes, your task is to implement working Python
code that will estimate the Value Function for discount factor γ = 1 based on a vari-
ety of methods. An outline of the code is made available for you here. A couple of functions
(get state return samples, required for tabular Monte-Carlo, and get state reward next state samples,
required for the other methods) have been implemented for you and you may use them as helper
functions. Your task is to implement the following methods, each compatible with their respective
function interfaces provided in this outline code.

• Tabular Monte-Carlo - 3 points: Implement get mc value function.

• MRP - 6 points: Implement get probability and reward functions and using its output,
implement get mrp value function (based on MRP Bellman Equation).

• Tabular TD(0) with Experience Replay - 5 points: Implement get td value function .

• LSTD - 6 points: Implement get lstd value function .

Make sure to read the comments/hints provided in the outline code (within each of the above
functions you need to implement).

If you run the main code, it will evaluate each of your 4 methods on the data that is set up
in the main code. In your answers-document, include the Python code you implemented and
write the Value Function outputs you obtained for each of the 4 methods (up to 2 decimal places).
Make sure your output Value Functions correspond to discount factor γ = 1.

Answer: The completed code is here. The output upon running main is as follows:

Page 2

https://github.com/coverdrive/MDP-DP-RL/blob/master/src/examples/exam_problems/mrp_tdmc_outline.py
https://github.com/coverdrive/MDP-DP-RL/blob/master/src/examples/exam_problems/mrp_tdmc.py


• Monte-Carlo - A: 9.57, B: 5.64

• MRP - A: 12.93, B: 9,60

• TD - A: 12.88, B: 9.56

• LSTD - A: 12.93, B: 9.60

3. Assume you are the owner of a bank where customers come in randomly everyday to make cash
deposits and to withdraw cash from their accounts. At the end of each day, you can borrow (from
another bank, without transaction costs) any cash amount y > 0 at a constant daily interest rate
R, meaning you will need to pay back a cash amount of y(1+R) at the end of the next day. Also,
at the end of each day, you can invest a portion of your bank’s cash in a risky (high return, high
risk) asset. Assume you can change the amount of your investment in the risky asset each day,
with no transaction costs (this is your mechanism to turn any amount of cash into risky investment
or vice-versa). The key point here is that once you make a decision to invest a portion of your
cash in the risky asset at the end of a day, you will not have access to this invested amount as
cash that otherwise could have been made available to customers who come in the next day for
withdrawals. More importantly, if the cash amount c in your bank at the start of a day is less than
C, the banking regulator will make you pay a penalty of K ⋅ cot(π⋅c2C ) (for a given constant C > 0
and a given constant K > 0).

For convenience, we make the following assumptions:

• Assume that the borrowing and investing is constrained so that we end the day (after bor-
rowing and investing) with positive cash (c > 0) and that any amount of regulator penalty can
be immediately paid (meaning c ≥K ⋅ cot(π⋅c2C ) when c ≤ C).

• Assume that the deposit rate customers earn is so small that it can be ignored.

• Assume for convenience that the first half of the day is reserved for only depositing money
and the second half of the day is reserved for only withdrawal requests.

• Assume that if you do not have sufficient cash to fulfill a customer withdrawal request, you
ask the customer to make the withdrawal request again the next day.

• Assume all quantities are continuous variables.

• 5 points: Your first task is to model an MDP so you can run the bank in the most optimal
manner, i.e., maximizing the Expected Utility of assets less liabilities at the end of a T -day
horizon, conditional on any current situation of assets and liabilities. Specify the states, ac-
tions, transitions, rewards with precise mathematical notation (make sure you do the financial
accounting from one day to the next precisely).

• 5 points: In a practical setting, we do not know the exact probability distributions of the
customer deposits and withdrawals. Neither do we know the exact stochastic process of the
risky asset. But assume we have access to a large set of historical data detailing daily customer
deposits and withdrawal requests, as well as daily historical market valuations of the risky
asset. Assume we also have data on new customers as well as leaving customers (sometimes
due to their withdrawal requests not being satisfied promptly). Describe your approach to
solve this problem with Reinforcement Learning by using the historical data described above.
Specify which Reinforcement Learning algorithm you would use, including any customizations
for the specifics of this problem. Although you are not expected to write any code for this

Page 3



problem, provide sufficient detail that will enable a programmer with knowledge of RL to
implement your ideas.

Answer: Since there are no transactions costs with buying/selling shares or with borrowing
cash, we assume that at the end of each day (after the bank has closed its doors for the day), the
following sequence of events occur:

• Event E1: We sell the entire quantity of stock we purchased the previous day

• Event E2: Then we make a decision to increase or decrease the quantity of cash-borrowing
(i.e. decision to increase or decrease our liability)

• Event E3: Then we make a decision to purchase a certain quantity of stock (to hold over the
course of the next day)

In our MDP, we observe the State after event E1 and before event E2. The State will consist of 5
components:

• The date, denoted as t ∈ {1,2, . . . , T}

• The net cash in the bank after selling the previous day’s stock purchase, denoted as xt ∈ R≥0

• The liability (money currently owed to the bank from whom we borrow), denoted as lt ∈ R≥0

• The quantity of withdrawal requests we were not able to fulfill earlier in the day (backlogged
withdrawals), denoted as bt ∈ R≥0

• The value of a single share of the stock, denoted as st ∈ R≥0

A key element in this problem is the fact that the regulator requires us to have a minimum amount
of cash ct at the start of each day. Since cot is a monotonically decreasing function in (0, π2 ]), we
have the condition ct ≥ cmin where cmin ∈ (0,C) is defined as:

cmin =K ⋅ cot(
π ⋅ cmin

2C
)

Now let us consider event E2. We denote yt ∈ R as the further increase or decrease in our liability,
meaning yt can be positive (meaning: borrow) or negative (meaning: pay off some of the current
liability). Note that if we choose to pay off some of the current liability, there are some constraints.
Firstly, we cannot make our net liability negative (we are not allowed to net-lend money to the
bank from whom we borrow), hence lt + yt ≥ 0 ⇒ yt ≥ −lt. Secondly, we cannot let our net cash
go below cmin, hence xt + yt ≥ cmin ⇒ yt ≥ cmin − xt. Combining these two inequalities, we get the
following constraint on yt:

yt ≥ max(−lt, cmin − xt)

Now let us consider event E3. We denote zt ∈ R≥0 as the number of shares of stock to purchase.
But note that this is constrained by the fact that the net cash cannot fall below cmin. Therefore,
xt + yt − ztst ≥ cmin which sets a constraint on zt as:

0 ≤ zt ≤
xt + yt − cmin

st

In our MDP, the Action is defined as the pair (yt, zt) with the Action Space for t < T defined by
the constraints specified above for yt and zt (note: yT = zT = 0).

To specify the state transitions, we need to define a few random variables that will define the
dynamics of the MDP.

Page 4



• Deposits on day t denoted by the random variable dt ∈ R≥0

• Withdrawal requests on day t denoted by the random variable wt = f(t, bt−1) for 2 ≤ t ≤ T
where f ∶ {1, . . . , T} ×R≥0 → R≥0 describes the usual (random) withdrawal requests as well as
some of the previous day’s unfulfilled withdrawal requests spilling to the current day

• Value of a single share of stock on day t denoted by the random variable st = g(t, st−1) for
2 ≤ t ≤ T where g ∶ {1, . . . , T}×R≥0 → R≥0 describes the stochastic movement of the stock price
from one day to the next

Armed with these random variables, we are now ready to specify the state transitions.

xt+1 = max(xt + yt − ztst −K ⋅ cot(
π ⋅min(xt + yt − ztst,C)

2C
) + dt+1 − f(t + 1, bt),0) + yt ⋅ g(t + 1, st)

lt+1 = (lt + yt)(1 +R)

bt+1 = max(−(xt + yt − ztst −K ⋅ cot(
π ⋅min(xt + yt − ztst,C)

2C
) + dt+1 − f(t + 1, bt)),0)

st+1 = g(t + 1, st)

The Reward on day t for 1 ≤ t ≤ T − 1 is 0, and the Reward on day T is U(xT − lT ) (where U(⋅) is
the Utility function defined by the bank owner’s risk-aversion).

We’d like to solve this problem with Reinforcement Learning. Although there are many different
ways by which we could approach solving this problem and many different potential RL algorithms,
here are some ideas.

• We use the historical data on a) Deposits b) Withdrawals c) Daily Stock Price movements to
build a model of the above MDP (i.e., state transition probabilities based on the statistically-
estimated probabilities of deposits dt, withdrawals f(t, bt−1) and stock moves g(t, st−1)). One
can get more sophisticated here by recording various explanatory factors for deposits, with-
drawals and stock moves (eg: Day of week, demographics of current customers, econometric
factors etc.). We would then have to predict the future movements of some of these explana-
tory factors and use those to predict the probabilities of future deposits, withdrawals and stock
moves. We would use this model of the MDP to generate a large set of simulation episodes
with appropriate sampling from the above-mentioned estimated probability distributions.

• Since the action space is large (large number of possible (yt, zt) tuples), it would be suitable
to employ a Policy Gradient algorithm. Secondly, the state space is also large, so will need a
good function approximation for the Q-value function (that Policy Gradient requires). This
would be an Actor-Critic algorithm. One would need to make a prudent choice of features for
both the Actor and the Critic neural networks (although an initial prototype could be quickly
built with linear-function approximations).

Page 5


