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Hamiltonian cycle problem

1 Overview

The Hamiltonian cycle problem (HCP) is an important graph theory problem that has been studied
by mathematicians for many years due to its NP-completeness. It has also gained recognition due to
its close relation with famous mathematical problems and puzzles such as the Traveling Salesman
Problem (TSP) and the Icosian game. It consists of the following: given a graph G = (V, E),
where V is the set of nodes and E is the set of edges, determine whether any simple cycle of length
N = |V| exists. A simple cycle, or circuit, is a closed path with no repetition of nodes and edges.
Simple cycles of length N are known as Hamiltonian cycles. In this project, you will implement an
optimization algorithm for finding a Hamiltonian cycle of a graph.

(a) Sir William Rowan Hamilton’s Icosian game. (b) Hamiltonian cycle of a directed graph (in red).

2 Problem formulation

Finding a Hamiltonian cycle of a directed graph G = (V, E) can be posed as the optimization
problem

minimize
x

ϕ(x) (1)

subject to x ∈ S.

The vector x is composed of edge transition probabilities xij , (i, j) ∈ E . The objective function ϕ
is given by

ϕ(x) = −det
(
I − P (x) +

1

N
eeT
)
, (2)
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where e is the vector of all ones and P (x) is the transition probability matrix

P (x)ij =

{
xij , if (i, j) ∈ E
0, otherwise.

(3)

The constraint set S represents stochastic constraints, which restrict the transition probabilities xij
to be non-negative, and the rows of P (x) to sum to one. It can be shown that if x∗ is the global
optimum of (1), ϕ(x∗) = −N implies that x∗ corresponds to a Hamiltonian cycle. Conversely, if
ϕ(x∗) > −N , the graph does not have a Hamiltonian cycle [2].

Since x∗ such that ϕ(x∗) = −N corresponds to a Hamiltonian cycle, the columns of P (x∗)
also sum to one. Hence, the optimization can be done over the more restrictive set DS of doubly-
stochastic constraints, which are equal to the stochastic constraints with the additional restriction
that the columns of P (x) also sum to one. In can be shown that when x remains in DS and its
components removed from zero, only the leading principal minor of I −P is needed to compute the
objective function. More specifically,

ϕ(x) = −N det(GNN (x)), (4)

where G(x) = I − P (x) and GNN is G with row N and column N removed.

3 Algorithm implementation and analysis

For this project, you have to implement an active set algorithm for solving the HCP problem. It
is your choice whether to use second derivatives or not, but we recommend using them and in
particular taking advantage of directions of negative curvature. You must try solving the HCP
problem in three different ways:

1. Using the doubly stochastic constraints DS.

2. Using only the stochastic constraints S.

3. Using the stochastic constraints S combined with other constraints that you come up with to
try to get better results.

To test the performance of your algorithm with the different problem formulations, you should
construct various graphs and determine the fraction of them that are solved with each of the formu-
lations. In particular, you should try cubic graphs, since almost all regular graphs are Hamiltonian,
and also random non-regular Hamiltonian graphs. Adequate graph sizes for testing are between 10
to 20 nodes.

4 Report

You are required to write a report in LATEX describing what you did and the results you obtained.
In particular, your report must include the following:

1. A description of your optimization algorithm.

2. A justification of why you are confident that your algorithm works correctly.

3. An explanation of the constraints you added to the stochastic constraints to get better results.
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4. The results you obtained with each of the different problem formulations.

5. A discussion about the possible reasons for any variation in performance.

You are not required to submit code and may use any programming language you wish.

5 Hints

The following are some hints that may help you do the project.

• You should check the rank of the equality constraints and take any necessary actions if they
are rank deficient.

• You should pass your solver an initial feasible point. Such a point should be simple to construct
for regular graphs but it requires a bit more work for non-regular ones (you may use routines
not written by you for this).

• You should consider rounding the variables to determine if a Hamiltonian cycle has been found
before your algorithm has converged.

• You should use finite differences to verify that you have coded the gradient and Hessian of
the objective function correctly before trying your solver on the HCP problem.

• You should make your solver show informative output during every iteration.

• You should design your solver as a collection of small and simple submodules and test them
separately.
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A Objective function and its derivatives

The gradient of the function (2) is given by

∇ϕ(x)(i,j) =
∂ϕ(x)

∂xij
= (−1)i+j det

(
Aij(x)

)
, (5)

for all (i, j) ∈ E , where

A(x) = I − P (x) +
1

N
eeT , (6)

and Aij is A with row i and column j removed. The Hessian is given by

∇2ϕ(x)(i,j),(k,l) =
∂2ϕ(x)

∂xij∂xkl
= (−1)(i+j+k̂+l̂+1) det

(
A[ij],[kl](x)

)
, (7)

for all (i, j) and (k, l) ∈ E such that i 6= k and j 6= l, where A[ij],[kl] is A with rows i and k removed,
and with columns j and l removed. The quantities k̂ and l̂ are defined by

k̂ =

{
k − 1, if k > i

k, otherwise,
(8)

l̂ =

{
l − 1, if l > j

l, otherwise.
(9)

You will find that evaluating (2) and its derivatives using the above formulas is very slow.
With function (4), more efficient formulas can be used. In particular, it can be shown that for
x ∈ relint(DS) (relative interior), an LU factorization G = LU exists without requiring prior
permutations and hence that

ϕ(x) = −N
N−1∏
i=1

uii, (10)

where uii is the i-th diagonal of U . The gradient can be computed with the formula

∇ϕ(x)(i,j) = −ϕ(x)aTj bi, (11)

for all (i, j) ∈ E , where aj and bi are defined by

L̂bi = ei, i = 1, . . . , N (12)

ÛTaj = ej , j = 1, . . . , N, (13)

Û is U with the last column replaced by eN , and L̂ is L with the last row replaced by eTN . Similarly,
the Hessian can be computed efficiently with the formula

∇2ϕ(x)(i,j),(k,l) = ηaTl bi −∇ϕ(x)(i,j)a
T
l bk, (14)

for all (i, j) and (k, l) ∈ E such that i 6= k and j 6= l, where η is defined by

η =

{
−ϕ(x)aTj bk, if ∇ϕ(x)(k,l) 6= 0,

0, otherwise.
(15)
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