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1 Introduction

PDE-condstrained optimization has broad and important applications. It is in some sense
an obvious consequence because both PDE and optimization have broad and important
applications. The PDE-constrained optimization includes optimal design, optimal con-
trol, and inverse problem(parameter estimation). For many years, numerical methods of
solving PDE and optimization have been developed independently. Thus NAND(Nested
Analysis and Design) method, in which independent PDE and optimization solvers can
be used to solve PDE-constrained optimization, has been a way to go. However, for
about past two decades, SAND(Simultaneous Analysis and Design) method has been
developped so intensively that many algorithms are available now. In spite of intensive
research on SAND method, more contributions are needed. Thus this paper is focused on
the SAND method. Also the article is focused on one particular type of PDE-constrainted
optimization problem, that is, optimal control.

Let’s start by telling one cute story of optimal control problem. This short story tells us
what PDE-constrained optimal control can do. One day one of your highly demanding
friend, Paul comes to you, gives a metal bar, and explains that he wants a certain tem-
perature distribution, g, on the bar and a certain temperature at the end of the bar, ..
The figure [If shows the temperature distribution he wants on the bar. He wants you to
find out if you can generate target temperature gy exactly. If yes, he wants you to tell
him where and how much heat source has to be put on the bar. If not possible, you need
to tell him what is the temperature distribution y which is producible and closest to 7 in
some sense. Now he has left and you are alone to figure out an answer to Paul’s request.
You are a good person, so you want to help Paul. However, you do not know how to.
Thus you come to Sam who goes to Stanford university for school. Of course, Sam knows
how to answer Paul’s request. He says solving optimal control problem will do!!

2 PDE-based Optimal Control

As sam said, this kind of question can be answered precisely by solving heat conduction
optimal control problem. Let’s describe how so by describing the formulation of optimal



Figure 1: Paul wants to have temperature distribution on a metal bar as shown in picture
above.

control problem. The typical formulation of optimal control problem is

L 1 _ ¢
minimize  J(y, f) := 5”1/ — gl + §Hf||2G

y.f

subject to  F(y, f) =0,

(1)

where y and f are state and control variables, respectively. M and G are symmetric pos-
itive definite matrix, which define some norms. The state variable y can be temperature
for thermal problem, displacement vector for structural problem. The control variable
f can be either forcing terms or boundary conditions. As you can see, the formulation
above is after the discritization. For linear thermal conduction problem, the partial dif-
ferential equation we must solve is Ay = f on some domain §2 subject to y = y. on I'.
After discretization, we get F(y, f) = Ky — f, where K is stiffness matrix, which reduces
the optimal control problem [I| to be quadratic programming. For nonlinear thermal
problem (i.e. radiation problem), F'(y, f) becomes nonlinear function of f. Although the
optimal control problem [l| becomes nonlinear due to nonlinearity of F(y, f), Newton
type of algorithm of solving nonlinear programming deals with linearized constraints in
successive subproblem anyway, so we will focus on solving quadratic programming. The
first term in the objective function %Hy — y||3; measures difference between y and 3. The
goal is obviously to decrease the difference between them. The second term in the ob-
jective function 2||f||2 is a regularization term where somewhat small value is taken for
¢. Note that the objective function cannot be negative. Thus the problem is well posed
if the feasible set is not empty.

There are several ways of solving quadratic programming A typical way is to find a
saddle ponint of Lagrangian function. Lagrangian function is

Ly, f,A) = J(y, ) + X (Ky — f), (2)



and a saddle point is given by solving the following KKT system of equations.
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From here there are two ways of solving a saddle point. One is to solve dual problem.
The other is to solve primal-dual problem. We will call the first dual method and the
second primal-dual method. First, in dual method, primal variables are eliminated, then
solve for dual variables. The dual problem solves the following equations, to obtain A,

(KM'KT + %G‘l)A = K7. (4)

Note that KM 1KT + éG_l is Schur complement of (1,1)-block in KKT matrix. We
never need to form the matrix KM 1KT + %G_l because we will always use iterative

method to solve . Since both M~! and G~! are symmetric positive definite matrix,
almost any Krylove subspace iterative method is applicable. For example, minres and
gmres are possible to use. If K is not signular, then KM~ 'K7T + éG_l itself becomes
positive definite. Thus even conjugate gradient is applicable. From the numerical ex-
periments, moderate amount of computational time results in convergence even without
preconditioner. After getting A, the state variables are obtained as in following equations,

1 ()

On the other hand, in primal-dual method, the KKT system of equations [3|is solved
simultaneously for both primal and dual variables. Here again we do not form KKT
matrix. Instead we use Krylov subspace iterative method such as minres or gmres.
Unlike dual problem, we need preconditioner. A preconditioner incorporating an exact
Schur complement is used. That is,

M
pP= e, . (6)
KM KT + éG_l

Murphy shows in his note® that if the preconditioner above is used, the resultant ma-
trix has three or four distinct eigenvalues and two or three distinct nonzero eigenvalues.
Thus any Krylov subspace iterative method converges within 3 iterations. This fact has
been proved by our own numerical experiment. One thing to note is that although the
preconditioner [0]is very appealing, if we apply it exactly, then the cost of applying the
preconditioner is the same as solving the dual problem above. Thus there is no com-
putational advantage of applying preconditioner exactly. Note, however, that it is just



a preconditioner. Thus we do not need to apply P exactly. Instead, we use relatively
large convergence threshold in MINRES to apply P so that MINRES on P stops much
earlier. Many other preconditioners have been proposed in literature. The summary of
those preconditioners have been explaine in section [§

There is one more appealing way of solving quadratic programming Note that the
constraint of [1]is Ky = f for linear case. Thus we can plug this into the objective function
and elimiate f. The resultant optimization problem becomes the following unconstrained
optimization problem,

- 1
minimize J(y) := §yT(M + ¢KTGK)y — " My, (7)
v

where we can find an optimal solution as

Y= (M + oKTGK) ' My,

We will call this method unconstrained method. Any method introduced so far can be
used to provide what Paul wants. The solutions of [I} y* and f* are temperature distri-
bution on metal bar and corresponding heat source, respectively. If there is heat source
which generates target temperature distribution y, we will get y* ~ y with very small
error. However, if there is no such heat source, then the optimal control will return y*
producible and closest to 3. Let me make one important note before we move on to some
computational results. The optimal control formulation and all the methods described
above need to be modified to take either boundary or convection conditions into account.
For example, for linear heat conduction problem, if there is Dirichlet boundary condtion
Y. specified, we should write F'(y, f) as Ky — f + Kucy., not Ky — f because f is combi-
nation of both heat source and boundary conditions. The same for convection conditions
holds.

Some results of solving [1I] where the number of degrees of freedom is 180, using various
method mentioned so far, are shown in table [2| Right below are results of other problem
in which the number of degrees of freedom is 96900. The numbers in the parentheses
for primal-dual method are results with preconditioner. Although not much you can say
about computational time advantage either among various methods or preconditioner for
the case of 180 degrees of freedom, it takes much less iteration when preconditioner is
used as expected. However, there is tremendous reduction in computational time when
preconditioner is used in the case of 96900 degrees of freedom. Also note that tempera-
ture distribution is closer to target temperature as ¢ decreases. One may deduce that we
will have perfect solution if ¢ is set to zero, meaning no regularization term in optimal
control problem However, this turns out to be very wrong conclusion becuase if ¢ is
equal to zero, the KKT matrix in equations [3| becomes very ill-conditioned. Similarly,
the dual method does not give correct solutions because KM ~'K7 term in equation
becomes negligible. Indeed, if ¢ is set to be 1.0e~'2, minres becomes stagnated and does
not converge. The lesson to learn is that we need regularization and it affects the solu-
tion. If so, there is a natural question to ask. Is there a better regularization than the
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Table 1: comparison of various methods of solving linear thermal optimal control problem on
bar.

# of dof : 180

method ¢ comput. time(sec) # of iter. difference with target
dual 0.00001 0.01 3 1.74855693e-08
(minres) 0.0001 0.01 3 1.74853013e-07
0.001 0.01 3 1.74826218e-06
0.01 0.01 4 1.74558828e-05
primal & dual 0.00001 0.02(0.01) 34(6) 6.72648805e-08(1.81436529¢-08)
(minres) 0.0001 0.02(0.01) 34(4) 1.91104769¢-07(1.82765295e-07)
0.001 0.02(0.01) 34(6) 1.75505860e-06(1.74823793e-06)
0.01 0.02(0.01) 34(5) 1.74635852¢-05(1.74559038¢-05)
unconstrained  0.00001 0.01 8 1.71522833e-08
(minres) 0.0001 0.01 10 1.74855476e-07
0.001 0.01 11 1.74822134e-06
0.01 0.01 14 1.74558774e-05

one in the formulation The answer to that question is ”it depends.”



Table 2: comparison of various methods of solving linear thermal optimal control problem on
bar.

# of dof : 96900

method ¢ comput. time(sec) # of iter. difference with target
dual 0.00001 3.14 2 1.82738070e-13
(minres) 0.0001 3.15 2 1.81193236e-12
0.001 3.19 2 1.81167574e-11
0.01 3.18 2 1.81166632e-10
primal & dual 0.00001 10.59(3.72) 52(3) 9.33730206e-05(1.34913699e-05)
(minres) 0.0001 10.35(8.99) 52(16) 9.33730206e-05(1.16234951e-03)
0.001 10.62(9.29) 52(16) 9.33730206e-05(2.77568592e-04)
0.01 10.63(9.01) 52(16) 9.33730206¢-05(5.06289542¢-04)
unconstrained  0.00001 7.59 52 9.35276895e-05
(gmres) 0.0001 7.79 53 4.81800609¢-05
0.001 7.79 53 4.68677512e-05
0.01 8.48 56 3.65794083e-05

3 /; Regularization

Now, let’s talk about somewhat different, but possibly useful regularization, namely ¢;-
regularization. Assume now that you know your control variable f must be sparse. That
is, almost all the entries in f are zeros except a few. This is the case if we want to apply
heat source only on some external surfaces, not the whole degrees of freedom of the
metal bar in the example of linear heat condunction optimal control problem in previous
section. You may be restricted to this condition due to some circumstances. Perhaps
there is no way to supply heat source inside of the object body. Or you may simply want
to apply heat source to part of the body, not the whole body. Anyhow if you fall into
any of these cases, what you are looking for as control must be sparse. ¢; penalty or
regularization have been used to get a sparse solution in optimization and compressed
sensing @ . Thus there is strong reason to replace (o-regularization with ¢;-regularization
and hope to get sparser solution than /s-regularization. The optimal control formulation
becomes

1
1l 3 e J , = — — 2 +
mlIlyl’I}HZ 1(y, f) 2||y yllar + @l fllx (9)
subject to  F(y, f) = 0.

An immediate difficulty we have encountered by the introduction of /;-regularization
is that the formulation [9]is no longer quadratic programming even when F(y, f) is
linear. However, it is still convex because ¢ is a convex function. There are two ways
of solving this. One is using subgradient method, and the other transforming to linear
programming. Latter is far more efficient than the former. Thus we will describe this
simple transformation. We introduce two new non-negative variables and replace f with
them. That is, set f = f, — f, and express ¢; norm of f to be || fll1 = D ivy (fui + fui)-
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Thus the ¢;-regularization formulation [ becomes the following linear programming,

L 1 _ -
minimize  J1(y, fu, o) = Slly = 913 + 0D (fui+ fud)
i=1

y,fu, v
subject to Ky = fu, — fo, (10)
fu>=0,
fv>=0.

F(y, fu, [») has been replaced with Ky = f, — f, becasue linear PDE is considered. Note
that inequality constraints appear in transformed formulation. There are two ways of
solving this problem, namely, active set method and interior point method. In interior
point method, all the points need to be strictly feasible during simulation and exact
second order informations are needed. On the other hand, active set method does not
require exact second order information. I will focus on interior point method based on
logarithmic barrier method for now. That is, inequality constraints are penalized with
logarithmic function. The objective function becomes

_Hy yHM‘i‘QSZ fuz+fvz ZInguz ZIngvz

We increase the penalty term ¢ gradually. Multiplying the objective function above by ¢,
the penalized formulation becomes

o . t - m m m
minimize  J(y, fu, foit) = Slly = 3 16> (fui+ foi) = D> _1og fui— > 108 fos
=1 =1 =1

Ys fusfo

subject to Ky = f, — fo.
(11)
Due to the particular structure of penalized formulation [I1] the first and second order
information is easy to get. The gradient is

[ My -9)
Fux
toe — |
1
g= L Fum (12)
fv,l
toe — |
1
L L Fon 1




The hessian is

[ tM

1
2
v,1

1
i fom 4

Let’s denote x to be concatenation of y, f,, and f,. Then seach direction Az is found
by solving following Newton method,

M s a0

where A has block strucuture of [K' — I I|, where [ is identity matrix.



Table 3: computational results of solving restricted control problem on bar.

dof #: 180
method ¢ comput. time(sec) # of iter. difference with target
dual 0.00001 0.02 77 1.20973071e-08
0.0001 0.02 102 1.21527557e-07
0.001 0.02 102 1.21494845e-06
0.01 0.02 102 1.21370058e-05
primal-dual 0.00001 0.02(0.17) (60)6 3.89288936e-06(1.19938432¢-08)
0.0001 0.01(0.14) (60)6 3.89657388e-06(1.21296312¢-07)
0.001 0.01(0.13) (60)6 4.07657391e-06(1.21567732¢-06)
0.01 0.02(0.13) (64)6 1.17759439e-05(1.21377514e-05)

Table 4: computational results of solving wrongly restricted control problem on bar.

# of dof : 180

method ¢ comput. time(sec) # of iter. difference with target
dual 0.00001 0.02 85 3.88274489e-02
(minres) 0.0001 0.02 84 3.88274604e-02
0.001 0.01 83 3.88275760e-02
0.01 0.01 82 3.88287308e-02
primal-dual  0.00001 0.05(0.1) 201(6) 3.88277111e-02(3.88274487e-02)
(minres) 0.0001 0.04(0.1) 201(6) 3.88277226e-02(3.88274605¢-02)
0.001 0.05(0.1) 200(8) 3.88278379¢-02(3.88275760e-02)
0.01 0.04(0.12) 200(9) 3.88289877e-02(3.88287301e-02)

4 A Case of Restricted Control

(1-regularization is helpful to find out a sparse control solution. Now let’s consider the
case where you know a priori the exact location of surface of the body to apply heat
source. The part where you are not going to apply heat source will have zero heat
source. Thus you do not only know that many elements of f will be zero, but also that
which elements of f will be zero for sure. In this case, we can set heat source vector f
to be Bf,., where B is a linear operator which maps local heat source vector f,. to global
heat source vector f. Thus the optimal control formulation [I] becomes

. 1 _ ¢
minimize  J(y, f.) == =|jy — Z/H?\/f + _Hfr||2G
y7f7‘ 2 2

subject to Ky = Bf,.

(15)

Any three methods mentioned in section [2]are applicable to the problem [15]



5 Nonlinear Optimal Control

In this section we will go over the methods of solving nonlinear optimal control problem
[16l Nonlinear Thermal problem comes into play when there are radiation effects. We
consider the following nonlinear optimal control formulation,

o 1 _ ¢
minimize  J(y, f) := §Hy —glI3 + §HfHZG

y.f (16)
subject to  F(y, f) =0,
In SQP method, we solve the following quadratic subproblem.
mipimize J,(Ay, Af) 1= gy + Ay — 5l + SIF -+ Af2
Ay,Af ’ 2 2 (17)
subject to  F(y, f) + KAy — Af =0,
The optimality condition for the subproblem is
M K" ] [ Ay M(y—y)
oG —I Af | = —oGf : (18)
K -1 A —F

Note that any method introduced in section [2]is applicable to solve the equation
above. Once the search direction is obtained by solving the optimality condition for
the subproblem above, the line search method on augmented Lagrangian function is
conducted. The augmented Lagrangian function for the nonliner optimal control is

Lalys S, 57) = 5y = 9l + SIFI + ARG, )+ SIFG G (19)

where 7 is a penalty parameter. The augmented Lagrangian function is known to have
the exact minimizer, meaning that it shares the same minimizer with the original objec-
tive function. Moreover, it is guaranteed to find a finite penalty, 7, such that a descending
direction for augmented Lagrangian function occurs. Furthermore, the augmented La-
grangian is also known to give a unit step when the current point is near the solution,
which is necessary to have quadratic convergence when Newton’s method is used. These
all the benefits of augmented Lagrangian is why we have used this for our line search
method.

Some results are shown in the table where the algorithm above is applied to the
problem size of 6561. The primal-dual method is used to solve for subproblem optimality
condition [18 The numbers in the parentheses are results from applying preconditioner
6l In case of ¢ = 0.000001, the search direction is not as good as other ¢ values in a
sense that it returns much smaller step length than for other ¢ values.
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Table 5: computational results of solving nonlinear thermal optimal control problem on bar.

dof #: 6561
method ¢ comput. time(sec) # of iter. difference with target
SQP 0.000001 6.62(fail) 3(fail) 5.10127915e-11(fail)
(primal-dual)  0.00001 6.67(6.32) 3(3) 5.10127711e-10(5.10127711e-10)
0.0001 6.6(6.21) 3(3) 5.10126484¢-09(5.10126484e-09)
0.001 6.62(6.75) 3(3) 5.10113886e-08(5.10113886e-08)

6 FETI-like Algorithm to Solve Optimal Control Prob-
lem

Parallel computing is so popular that I think I am even correct to say that any com-
putational researchers have thought of efficiently parallelizing their computational algo-
rithms. FETI(Finite Element Tearing and Interconnecting) method @is one such kind
of algorithm for solving PDE. Extending FETI method to optimal control problem is
straightforward. In this section I will describe that extension.

The FETI method solves

K*y® = 5+ BT\ fors=1,..., N,

Ns
Y By =0,
s=1

where Ny is number of subdomains, y* and f° are state variables and controling force
in s-subdomain, respectively. A is Lagrange multipliers and can be thought of as action
reaction forces between interconnecting surfaces. The equation is KKT system of
equations you need to solve for linear PDE or subproblem for nonlinear PDE. Taking
this interpretation of A, considering A\ as extra control variables, and using the KKT
system of equations as constraints, optimal control problem becomes

(20)

Ny
L s IR s )
minimize  J(y, f, ) Z ly* — 4|13 + §Z¢s||f & + 7H>\||2G
2 s=1
subject to  K°y* = f* + BST}\ fors=1,...,Nj, (21)

N,
Z By® = 0.
s=1

M? and G are some symmetric positive measure. For the sake of efficient algorithm, they
need to be easy to invert(i.e. diagonal). I will use M to be diagonal mass matrix and G
identity matrix. The Lagrangian function is

N N
Ly, f A ) = Ty, f,\) + > pl (K°y* = f* = BTN +47> By’ (22)

s=1 s=1
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The KKT optimality condition is

aL S S —S S S S

oy =~ MW 7))+ KT+ BTy =0,
OL

afs:QsSGfS_/'LS:O?

oL AC

ﬁ:—;B frs + OAGA =0, (23)
L

glu — Ksys _fs _BsT/\ — 07

L =

—:ZBsys:O.

aﬁ)/ s=1

Solving first three equations of equation for y*, f° and A in terms of p and ~ is
equivalent to obtaining dual functions,

gys (:ua ’7) = lilsf L(y7 fa )‘7 M, /7)7
gp+(ny) =10f Ly, £, A, . ), (24)
a(p, ) = igfL(y, LA 1, ).

Expressing y*, f® and X in terms of p and v, we get

£ =—G s,
Ps (25)
1
-1 s

Plugging these into the last two equations of equation and organizing it in matrix
form, we get in next landscape page,
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After solving equation [26, plugging p and ~ into the equation gives solutions for
optimal control problem [2I] What we have used to solve optimal control problem
is exactly the dual decomposition technique, which is somewhat popular in optimization
community. Note that K*M* KT BsM* BT KsM*'B*T B*TB* and K*y® for
each s-subdomain can be computed parallelly. The way of solving the equation is
subject to the choice of appropriate iterative method, which only requires matrix-vector
multiplication. One of the candidates for iterative method is preconditioned conjugate
gradient if the matrix is positive definite. Minres for indefinite matrix. Gmres for any
general full-rank matrix. Note also that the optimal control problem could be solved
by other decomposition technique such as primal decomposition method.®
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7 DAE-constrained Optimization and Beyond

KKT system of equations arise when FETI method solves PDE because FETI treats
each subdomain as an independent domain and introduces constraints to connect sub-
domains. FETI-like algorithm introduced in previous section has constraints, which are
KKT system of equations arised when FETI method solves PDE. This idea of having
KKT system of equations as constraints in optimization can be easily generalized to
DAE or DAl-constrained optimization, which has much broader applications: contact
problems in structural mechanics, robotics, and chemical engineering. DAE stands for
differential algebraic equations and DAI differential algebraic inequality. Algebraic equa-
tion or inequality can be thought of as constraints when minimizing action functional.
Thus KKT system of equations are inevitable when the context is to solve DAE or DAI.
Therefore the approach introduced to solve optimal control problem in previous section
can be used to solve DAE-constrained optimization. In this section, I will show the for-
mulation of DAE-constrained Optimization and introduce numerical scheme.

The DAE-constrained optimization, when simple linear PDE is involved, can be formu-
lated as

L 1 _ ¢
minimize J(y. f) 1= 3lly = 5% + /1%
subject to Ky = f, (27)
Cv=0.
Note that the second constraints, C'v = 0, which are algebraic equations, are added to
usual optimal control problem. The Lagrangian function is

1 _p) P ez T K —f
The KKT optimality condition is
L
oL =M(y—y)+ [K'C"]x=0,
dy
oL
a7 = 9Cf — M =0, (29)
oL K —f
wolele 3]
In matrix vector form,
M 0 K' CT Y My
0 oG -1 fl_ 0
K -1 A 0 (30)
C Ao 0

15



Table 6: computational results of solving nonlinear thermal optimal control problem on bar.

# of dof : 189
method ¢ comput. time(sec) # of iter. difference with target
DAE 1.0e7? 0.01 2 2.13539170e-12
1.0e~8 0.01 2 2.13639672e-11
1.0e7 0.02 2 2.13650113e-10
1.0e=6 0.01 4 2.13651127e-09

Solving first two equations of the equation for y and f in terms of A,

y=79—M K"\ — M7'CT )y,

1 31
f - 5G_1)\1. ( )
Plugging these into the last equaiton of the equation gives
KM7IKT +1G=Y KM-1CT 1T N Ky
L1t 1T = - (32)
CM—K CM—C A2 Cy

The matrix in the equation is symmetric. However, the Schur complement of (1,1)
block of the matrix, that is,

CM*CT —CM K" (KM 'K” + %G‘l)‘lKM‘lCT, (33)

may not be positive definite™. Thus conjugate gradient method may not be applicable.
However, Minres or Gmres are applicable.
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8 A Survey for Preconditioners on KKT system

It is hard to say there is a state of the art preconditioner on KKT system which arises in
PDE-constrained optimization. In personal opinion, every preconditioner has pros and
cons. However, much attention has been given to a paper written by Biros and Ghattas
in 2005®@ . Their contribution is to introduce a new preconditioner to the saddle point
system. They applied this preconditioner to nonlinear PDE-constrained optimization,
namely the Dirichlet control of the steady incompressible Navier-Stokes equations. Its
problem size was upto about 620,000 state variables and 8901 control variables. Using
128 processors, it took 5.1 hours to solve. Breifly speaking, their preconditioners use the
Schur complement of control variables and incomplete factorization.

The preconditioner introduced by Biros and Ghattas is not the only available kind for
the saddle-point system. Many studies have been done. For more broad and somewhat
detailed overview on these works, the survey by Benzi, Golub, and Liesen® is strongly
recommended. I would like to mention a paper by Dollar, and etc in 2010®, which is very
interesting. In the paper, they have reformulated many existing preconditioners in one
framework, such as Bramble-Pasciak ®)-like preconditioners, Schur-complement methods,
and constraint preconditionings. They have also introduced a new preconditioner in the
same framework, but handles broader saddle-point system.

Mathew, etc.® have suggested an interesting preconditioner for Schur complement on
control variables. Although it is not a preconditioner for the whole saddle-point system,
it gives us an insight of how the preconditioner can be developped for the reduced size
of KKT system such as in dual and unconstrained method described in the section
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9 Solving PDE-constrained Optimization Using Ac-
tion Functional(incomplete)

It is known that the constitutive equation you need to solve for PDE can be obtained by
minimizing action functional(i.e. potential energy for static problem). This fact opens
an opportunity for new methodology of solving PDE-constrained optimization. PDE-
constrained optimization has its own objective function, J(x), where z is optimization
variable(i.e. state and control variables for optimal control problem).
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