CS101
Spring 2018

NAME (LAST, FIRST):

Midterm Exam

10f15

Instructor: Ashley Taylor
May 10, 2018

SUNET: @stanford.edu
Problem 1 3 4 5 TOTAL
Score
9 10 21 16 65

Instructions:

e The time for this exam is 1 hour and 20 minutes, 80 minutes total. There are 65

points total, so you should spend a little more than 1 minute per point, though your
pacing may be different on different problems.

You are only allowed a pencil, pen, and eraser. Any other materials are strictly
prohibited. You may not use any digital devices other than a clock for timing. You
may ask the proctors for blank scratch paper.

A reference sheet is included as the last page. You may detach it for your reference
during the exam.

For coding problems, we will forgive minor syntax errors (such as missing
semicolons, etc.).

For any problems involving calculations, we will accept an expression (that could be
plugged into a calculator) in lieu of the numerical answer.

Please sign before beginning the exam:

| agree to abide by the spirit and letter of the Honor Code, and to follow the instructions

above.

(Signature) (Date)

20of 15

1. Data Storage

a) (4 points) Describe two types of data that are stored in computers. How is each type
stored?

b) (3 points) Each text message contains a date (which is 8 bytes), a time sent (which is
4 bytes), up to 160 characters of text, and the phone number of the sender (which is
an 8-byte number). How many text messages can you store on an 128GB hard
drive?

c) (2 points) What would happen if you ran out of RAM? What would happen if you ran
out of permanent storage?

30of15

2. Hardware

a) (2 points) Rank the following from most to least abstract, where 1 is the most
abstract:

Programming Language

Transistors

Operating System

Architecture

Applications

Computer Components (CPU, Permanent Storage, and RAM)

b) (3 points) Choose three layers of abstraction (from the list in part a). Describe the
purpose of each layer.

4 0f 15

C) (4 points) Below is information about two different computers:

Computer A Computer B
128GB Flash Drive 512GB Hard Drive
16GB RAM 8GB RAM
150DPI Screen 225DPI Screen
15 inch screen 13 inch screen

Assume that the costs of the two computers are the same. List two strengths of Computer
A and two strengths of Computer B, describing the impact of each strength (as in, the sorts
of tasks that it might be better at as a result). An example has been done for you:

Computer A has a 15 inch screen, whereas Computer B has a 13 inch screen. As a result,

more information can be displayed on Computer A’'s screen at a time, leading to better
multi-tasking.

50f 15

3. Code Reading Questions

a) (3 points) What is the value of x at the end of this code? Assume that 3pixels.jpg has
3 pixels. Show your work for partial credit.

X
1]

35
y =7;
img = new SimpleImage("3pixels.jpg");
for (pixel : img) {

X =X+ Y;
X =X + 1;
y =1;

b) (3 points) The following code is intended to change the top and bottom rows of
X.png to orange. It has two logic bugs and three syntax bugs. Identify and correct
one logic error and two syntax errors, clearly stating which is which.

img = new SimpleImage("x.png");
for (pixel : img) {
if (pixel.getY() == 0 && pixel.getY == img.getHeight() - 1) {
setRGB(@, 255, 125);

}
print(img);

6 0of 15

C) (4 points) Draw what the output of the following code is, clearly labeling each pixel
with its color (each box is a pixel); use English colors (e.g. black) instead of RGB
values. Assume that isOdd(number) is true if number is an odd number.

img = new SimpleImage("output.png");
for (pixel : img) {
if (isOdd(pixel.getX() + pixel.getY())) {
pixel.setRGB(255, @, 255);
} else {
pixel.setRGB(255, 0, 0);

}
print(img);

output.png

7 of 15

4. Code and Spreadsheets

a) (3 points) How would you store a JavaScript pixel in a spreadsheet? Clearly indicate
what columns you would have, and what each row would represent. For reference,
pixels have the following JavaScript methods to get information about the pixel - the
same information should be accessible for a pixel in your spreadsheet.

Note: you should not write code for this part, but drawings of your spreadsheet
are encouraged.

pixel.getX()
pixel.getY()
pixel.getRed()
pixel.getGreen()
pixel.getBlue()

8 0of 15

b) (10 points) Now, we're going to write code to put a JavaScript image into a
spreadsheet. The result is that we should have every pixel in the original JavaScript
image stored correctly in the spreadsheet. We've provided some code below that
will open the image and spreadsheet.

We've also provided the following new code building blocks:
spreadsheet.setColumns("columnNamel”, "columnName2");
include however many column names you have, similar to print

nextRow = spreadsheet.getNextRow();
nextRow is a number representing the next empty row number in the spreadsheet

spreadsheet.setCell(row, "columnName", value);

row should be a number (see above), columnName should be the name of your
column, and value is any value that you want to store in the spreadsheet. As an
example, spreadsheet.setCell(nextRow, "age", 5); would store 5in the age
column of the next row.

Hint: the next line of code should be spreadsheet.setColumns(...);
Write your answer on the next page.

) $,9,0.0,9.9.9.9.9.0.0.9.0.0.9.9.90.9.0.0.9.909.90 0000099990 09.000.990 090090090090 09.000.99 0900990999099
) 9,9.0.0.9.9.0.0.9.9.0.9.9.0.9.9.06.9.909.996.99 0900990099 09900.900.9009.006.9909900.9009009000.90 000004
) $,9,0.0,9.9.9.9.9.0.0.9.0.0.9.9.90.9.00.9.909.90 000009909990 00.0090.990 090090000990 09.000.990 0900900999990
) 9,9.0.0.9.9.0.0.9.90.0.9.9.0.9.9.06.9.909.906.90 0900990099 09900.9009009.906.9009009.9009009000.90 000004
) $,9,0.0.9.9.9.9.9.0.0.9.0.0.9.9.90.9.0.0.9.909.9.0 00000999990 09.000.90 090000900990 09.000.990 0900900999990
) 9,9.0.0.9.9.0.0.9.90.0.9.9.0.9.9.06.9.909.906.990.9009.9009909000.9009009.006.9909000.9009009000.90 000004
) $,9,0.0.9.9.9.9.9.0.0.9.0.0.9.9.90.9.0.0.9.909.9.0 00000999990 09.000.90 090000900990 09.000.990 0900900999990
) 9,9.0.0.9.9.0.0.9.90.0.9.9.0.9.9.06.9.909.906.99 0990990099 09900.90090090.006.9009000.9009009000.90 000004
) 9,9,0.0.9.9.9.9.9.0.0.9.0.0.9.9.90.9.0.0.9.909.9.0 000009909990 09.0090.990 090090090090 09.000.990 0900900999099
) 9,9.0.0.9.9.0.0.9.9.0.9.9.0.9.9.06.9.909.906.99 0900990099 09000.9009009.006.9909000.9009009000.90 090004
) $,9,0.0.9.9.9.9.9.0.0.9.0.0.9.9.90.9.0.0.9.909.9.0 00000990990 09.000.990 090000900990 09.000.99 0900900999099
) 9,9.0.0.9.9.0.0.9.9.0.9.9.0.9.9.06.9.909.996.99 0900990099 09000.90 0900900699 09000.9009009906.90 090004
) $,9,0.0,9.9.9.9.9.0.0.9.0.0.9.9.90.9.0,0.9.909.9.0 000009909990 09.0090.990 0900900900990 09.000.990 0900999999990
) 9,9.0.0.9.9.0.0.9.9.0.9.9.0.9.9.06.9.909.906.99 0000990099 09900.9009009.006.9009009.9009009000.90 000004
) $,9,0.0,9.9.9.9.9.0.0.9.0.0.9.9.90.9.0.0.9.909.9.0 000090990990 09.0090.990 090000900990 09.000.990 0900909999990
) 9,9.0.0.9.9.0.0.9.9.0.9.9.0.9.9.06.9.909.996.99 0900990099 09900.900.9009.000.9909009.9009009000.90 000004
) $,9,0.0.9.9.9.9.9.0.0.9.0.0.9.9.90.9.0.0.9.909.9.0 00000990990 09.0090.990 09000000990 09.000.99 0900900999990
) 9,9.0.0.9.9.0.0.9.9.0.9.9.0.9.9.06.9.9.09.906.99 0900990099 09900.9009009.006.9009000.9009009000.90 000004
) $,9,0.0.9.9.9.9.9.0.0.9.0.0.9.9.90.9.0.0.9.909.9.0 000090990990 09.000.990 09000000990 09.000.99 0900900999990
) 9,9.0.0.9.9.0.0.9.9.0.9.9.0.9.9.06.9.909.996.99 0900990099 09900.9009009.006.9009000.9009009006.90 000004

90of 15

Your code for part b below:

img = new SimpleImage("myimage.jpg");
spreadsheet = new Spreadsheet("partBResult.csv");

10 of 15

c) (8 points) For this part, we're going to make an image grayscale in the spreadsheet.
You should set the cell values directly, rather than trying to convert from the
spreadsheet to an image. You can assume that the spreadsheet is the same as from
part b (so it has the same column names). We've provided the following code
building blocks:

spreadsheet.getCell(row, "columnName");
Gives back the value in a cell at the given row (which is a number) and columnName
(opposite of setCell from part b)

for (row : spreadsheet) { ...

Goes over all the rows in the spreadsheet. Row takes on the values of the used row
in the sheet (i.e. if there were 100 rows in the sheet, row would first be 1, then 2,
and so on up to 100). row can be used as the row argument for getCell and
setCell

spreadsheet = new Spreadsheet("partBResult.csv");

11 of 15

5. Potpourri

a) (2 points) Facebook has had problems with explicit content in Live Videos uploaded
to the site. How could they use Artificial Intelligence to confront this problem? Which
kind(s) of Al that we talked about in class (natural language processing, artificial
vision, and robotics) could be used?

b) (2 points) Describe open-source software. How is it different from traditional
software, and why would users or software developers prefer open-source?

C) (4 points) Describe two ways a program might end. What abstraction layers of a
computer are involved in each?

12 of 15

d) (4 points) Does the Turing Machine below accept or reject the input 1001? What is
one input it accepts and one it rejects (besides 1001)? Each input should at least
start with a number and be at least two non-blank characters.

1—0,R

13 0f 15

e) (2 points) How does a digital camera work?

f) (2 points) What is a tradeoff and a benefit of data compression?

14 of 15

This page is intentionally left blank.

15 0f 15

pixel.getX()

pixel.getY()

pixel.getRed()

pixel.getGreen()

pixel.getBlue()

pixel.setRGB(red, green, blue)
pixel.isSimilarTo(red, green, blue, threshold)

image = new SimpleImage("image.png")
image.countNeighbors(pixel)
image.getHeight()

image.getWidth()

image.getPixel(row, column)

for (pixel : image) {
// your code here

for (neighbor : image.getNeighbors(pixel)) {
// your code here

}

if (condition) {

// your code here
} else {

// your code here

}

&& => and

|| => or

I => not

I= => is not equal
== => 1is equal

1TB = 1000GB
1GB = 1000MB
1IMB = 1000KB
1KB = 1000 bytes

Bit: @ is "off", 1 is "on"

