Machine Learning - Clustering

CS102
Winter 2019
Big Data Tools and Techniques

- **Basic Data Manipulation and Analysis**
 Performing well-defined computations or asking well-defined questions ("queries")

- **Data Mining**
 Looking for patterns in data

- **Machine Learning**
 Using data to build models and make predictions

- **Data Visualization**
 Graphical depiction of data

- **Data Collection and Preparation**
Machine Learning
Using data to build models and make predictions

Supervised machine learning
- Set of labeled examples to learn from: training data
- Develop model from training data
- Use model to make predictions about new data

Unsupervised machine learning
- Unlabeled data, look for patterns or structure (similar to data mining)
Clustering

Like classification, data items consist of values for a set of features (numeric or categorical)

- **Medical patients**
 - **Feature values:** age, gender, symptom1-severity, symptom2-severity, test-result1, test-result2

- **Web pages**
 - **Feature values:** URL domain, length, #images, heading\(_1\), heading\(_2\), ..., heading\(_n\)

- **Products**
 - **Feature values:** category, name, size, weight, price
Clustering

Like classification, data items consist of values for a set of features (numeric or categorical)

- Medical patients
 Feature values: age, gender, symptom1-severity, symptom2-severity, test-result1, test-result2
 Unlike classification, there is no label

- Web pages
 Feature values: URL domain, length, #images, heading_1, heading_2, ..., heading_n

- Products
 Feature values: category, name, size, weight, price
Clustering

Like K-nearest neighbors, for any pair of data items i_1 and i_2, from their feature values can compute distance function: $distance(i_1, i_2)$

Example:

Features - gender, profession, age, income, postal-code

$person_1 = \text{ (male, teacher, 47, $25K, 94305) }$

$person_2 = \text{ (female, teacher, 43, $28K, 94309) }$

$distance(person_1, person_2)$

$distance()$ can be defined as inverse of $similarity()$
Clustering

GOAL: Given a set of data items, partition them into groups (= clusters) so that items within groups are close to each other based on distance function

- Sometimes number of clusters is pre-specified
- Typically clusters need not be same size
Some Uses for Clustering

- **Classification!**
 - Assign labels to clusters
 - New data items get the label of their cluster

- **Identify similar items**
 - For substitutes or recommendations
 - For de-duplication

- **Anomaly (outlier) detection**
 - Items that are far from any cluster
K-Means Clustering

Reminder: for any pair of data items i_1 and i_2 have $\text{distance}(i_1, i_2)$

For a group of items, the mean value (centroid) of the group is the item i (in the group or not) that minimizes the sum of $\text{distance}(i, i')$ for all i' in the group
K-Means Clustering

For a group of items, the mean value (centroid) of the group is the item i (in the group or not) that minimizes the sum of $distance(i,i')$ for all i' in the group.

- Error for each item: distance d from the mean for its group; squared error is d^2
- Error for the entire clustering: sum of squared errors (SSE)

Remind you of anything?
K-Means Clustering

Given set of data items and desired number of clusters \(k \), K-means groups the items into \(k \) clusters minimizing the SSE.

- Extremely difficult to compute efficiently
 - In fact, impossible

- Most algorithms compute an approximate solution (might not be absolute lowest SSE)
Clustering European Cities

By geographic distance, then by temperature
Clustering European Cities

Distance = actual distance, $k = 5$
Clustering European Cities

Distance = actual distance, $k = 8$, with cluster means
Clustering European Cities

Distance = actual distance, $k = 2$, with cluster means
Clustering European Cities

Distance = actual distance, k = 30
Clustering European Cities

Distance = temperature, k = 5
Clustering European Cities

Distance = temperature, \(k = 8 \), with means

8 clusters of sizes:
26, 17, 12, 15, 44, 48, 14, 37

Cluster means:
1 11.243077
2 3.354706
3 17.219167
4 13.310667
5 6.573409
6 8.341667
7 15.330714
8 9.814595
Clustering European Cities

Distance = temperature, k = 2
Clustering European Cities

Distance = temperature, $k = 3$
Clustering European Cities

Distance = temperature, k = 30
Some Uses for Clustering

- **Classification**
 - Assign labels to clusters
 - New data items get the label of their cluster

- **Identify similar items**
 - For substitutes or recommendations
 - For de-duplication

- **Anomaly (outlier) detection**
 - Items that are far from any cluster