CS 102: Working with Data
Tools and Techniques

Spring 2020
Course Staff

Instructor
Jennifer Widom

Course Assistants
Leo Mehr (head)
Kyle D’Souza
Tara Iyer
Aamir Rasheed
Zoom Lecture Protocol

1) For general questions: “Everyone” chat, Prof. Widom will keep an eye on it

2) For private questions: Chat to one of the four TAs, preferably Kyle or Aamir

3) For Prof. Widom’s questions to class: Use “raise hand” feature, will be called on and unmuted
What’s This Course About?

“Aimed at non-CS undergraduate and graduate students who want to learn a variety of tools and techniques for working with data. Many of the world’s biggest discoveries and decisions in science, technology, business, medicine, politics, and society as a whole, are now being made on the basis of analyzing data sets. This course provides a broad and practical introduction to working with data: data analysis techniques including databases, data mining, machine learning, and data visualization; data analysis tools including spreadsheets, Tableau, relational databases and SQL, Python, and R; introduction to network analysis and unstructured data. Tools and techniques are hands-on but at a cursory level, providing a basis for future exploration and application. Prerequisites: comfort with basic logic and mathematical concepts, along with high school AP computer science, CS106A, or other equivalent programming experience.”
What’s This Course About?

“Aimed at non-CS undergraduate and graduate students who want to learn a variety of tools and techniques for working with data. Many of the world's biggest discoveries and decisions in science, technology, business, medicine, politics, and society as a whole, are now being made on the basis of analyzing data sets. This course provides a broad and practical introduction to working with data: data analysis techniques including databases, data mining, machine learning, and data visualization; data analysis tools including spreadsheets, Tableau, relational databases and SQL, Python, and R; introduction to network analysis and unstructured data. Tools and techniques are hands-on but at a cursory level, providing a basis for future exploration and application. Prerequisites: comfort with basic logic and mathematical concepts, along with high school AP computer science, CS106A, or other equivalent programming experience.”
What’s This Course About?

“Aimed at non-CS undergraduate and graduate students who want to learn a variety of tools and techniques for working with data. Many of the world’s biggest discoveries and decisions in science, technology, business, medicine, politics, and society as a whole, are now being made on the basis of analyzing data sets. This course provides a broad and practical introduction to working with data: data analysis techniques including databases, data mining, machine learning, and data visualization; data analysis tools including spreadsheets, Tableau, relational databases and SQL, Python, and R; introduction to network analysis and unstructured data. **Tools and techniques are hands-on but at a cursory level, providing a basis for future exploration and application.** Prerequisites: comfort with basic logic and mathematical concepts, along with high school AP computer science, CS106A, or other equivalent programming experience.”
Who Should Take It?

“Aimed at non-CS undergraduate and graduate students who want to learn a variety of tools and techniques for working with data. Many of the world's biggest discoveries and decisions in science, technology, business, medicine, politics, and society as a whole, are now being made on the basis of analyzing data sets. This course provides a broad and practical introduction to working with data: data analysis techniques including databases, data mining, machine learning, and data visualization; data analysis tools including spreadsheets, Tableau, relational databases and SQL, Python, and R; introduction to network analysis and unstructured data. Tools and techniques are hands-on but at a cursory level, providing a basis for future exploration and application. Prerequisites: comfort with basic logic and mathematical concepts, along with high school AP computer science, CS106A, or other equivalent programming experience.”
Who Should Take It?

“Aimed at non-CS undergraduate and graduate students who want to learn a variety of tools and techniques for working with data. Many of the world's biggest discoveries and decisions in science, technology, business, medicine, politics, and society as a whole, are now being made on the basis of analyzing data sets. This course provides a broad and practical introduction to working with data: data analysis techniques including databases, data mining, machine learning, and data visualization; data analysis tools including spreadsheets, Tableau, relational databases and SQL, Python, and R; introduction to network analysis and unstructured data. Tools and techniques are hands-on but at a cursory level, providing a basis for future exploration and application. Prerequisites: comfort with basic logic and mathematical concepts, along with high school AP computer science, CS106A, or other equivalent programming experience.”
Who Should Take It?

“Aimed at non-CS undergraduate and graduate students who want to learn a variety of tools and techniques for working with data. Many of the world's biggest discoveries and decisions in science, technology, business, medicine, politics, and society as a whole, are now being made on the basis of analyzing data sets. This course provides a broad and practical introduction to working with data: data analysis techniques including databases, data mining, machine learning, and data visualization; data analysis tools including spreadsheets, Tableau, relational databases and SQL, Python, and R; introduction to network analysis and unstructured data. Tools and techniques are hands-on but at a cursory level, providing a basis for future exploration and application. Prerequisites: comfort with basic logic and mathematical concepts, along with high school AP computer science, CS106A, or other equivalent programming experience.”
Who Shouldn’t Take It?

Computer Science or MCS students
(except by petition)
Who’s Taking It - Spring 2020

Undergraduate, Masters, MBA, MD, PhD
All seven of Stanford’s schools, 42 different majors

American Studies
Asian American Studies
Biology
Business Administration
Chemistry
Civil Engineering
Civil & Environmental Engineering
Comparative Studies in Race & Ethnicity
Comparative Literature
Computer Science
Earth System Science
Earth Systems
East Asian Studies
Economics
Education
Electrical Engineering
Engineering
Energy Resources Engineering
English
Environment and Resources
Environmental Systems Engineering
Feminist, Gender, & Sexuality Studies
Geological Sciences
History
Human Biology
Individually Designed Major
International Relations
Law
Linguistics
Management
Management Science & Engineering
Materials Science & Engineering
Math & Computational Science
Mechanical Engineering
Medicine
Philosophy
Political Science
Public Policy
Science, Technology, & Society
Sociology
Theater and Performance Studies
Undeclared
Who’s Taking It

Programs and their respective number of students enrolled in various programs, categorized by program type: Graduate, Profess. (Professorial), Undergraduate. The chart illustrates the distribution of student enrollment across different academic disciplines.
Who’s Taking It
Who’s Taking It
Who’s Taking It
Ordering of Course Topics

- Data Analysis & Visualization Using Spreadsheets
- Advanced Data Visualization Using Tableau
- Relational Databases and SQL
- Python for Data Analysis & Visualization
- Machine Learning - Regression, Classification, Clustering
- Using Python for Machine Learning
- The R Language
- Data Mining Algorithms
- Data Mining Using Python (and SQL)
- Network Analysis
- Unstructured Data
- Correlation and Causation
<table>
<thead>
<tr>
<th>Assignment/Project</th>
<th>Assigned</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment #1</td>
<td>April 13</td>
<td>April 20</td>
</tr>
<tr>
<td>Spreadsheets for Data Analysis and Visualization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #1</td>
<td>April 13</td>
<td>April 27</td>
</tr>
<tr>
<td>Personal Data Analysis</td>
<td></td>
<td>May 18</td>
</tr>
<tr>
<td>Assignment #2</td>
<td>April 20</td>
<td>April 30</td>
</tr>
<tr>
<td>Data Visualization Using Tableau, SQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignment #3</td>
<td>April 30</td>
<td>May 9</td>
</tr>
<tr>
<td>Python for Data Analysis and Visualization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignment #4</td>
<td>May 18</td>
<td>May 25</td>
</tr>
<tr>
<td>Machine Learning, R Language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #2</td>
<td>May 18</td>
<td>June 1</td>
</tr>
<tr>
<td>Movie-Rating Predictions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignment #5</td>
<td>May 28</td>
<td>June 5</td>
</tr>
<tr>
<td>Data Mining, Network Analysis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17
Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm exam</td>
<td>May 12</td>
</tr>
<tr>
<td>During class time*</td>
<td></td>
</tr>
<tr>
<td>Final exam</td>
<td>June 9</td>
</tr>
<tr>
<td>During class time*</td>
<td></td>
</tr>
</tbody>
</table>

Alternate times (but not dates) available by petition
Under the Honor Code at Stanford, you are expected to submit your own original work for assignments, projects, and exams. On many occasions when working on assignments or projects (but never exams!) it is useful to ask others - the instructor, the TAs, or other students - for hints, or to talk generally about aspects of the assignment. Such activity is both acceptable and encouraged, but you must indicate on all submitted work any assistance that you received. Any assistance received that is not given proper citation will be considered a violation of the Honor Code. In any event, you are responsible for understanding, writing up, and being able to explain all work that you submit. The course staff will pursue aggressively all suspected cases of Honor Code violations, and they will be handled through official University channels.
Logistics

- Units - 4 for undergraduates, 3-4 for graduates
- WAYS requirement - Applied Quantitative Reasoning (WAY-AQR)
- Textbook? No Readings? Recommended
- Class “attendance” - Expected
 - Hand-on activities
 - Only cursory notes
 - All class material game for exams
Logistics

- **Grading** - Letter grades calculated, C- or above for S, otherwise NC

- **Grade weighting** - 1/3 each assignments, projects, exams

- **Graded on a curve?** Not really

- **Late policy** - 10%/30% for 24/48 hours late, four free late days
Office Hours

TA office hours - via Zoom
• ~15 hours per week
• Times can vary

Prof. Widom office hours - via Zoom
• Wednesdays 4:00-5:00 PM (usually)

Always check the course calendar for times and links!
Online

Website - http://cs102.stanford.edu

Canvas - Zoom lectures and help sessions, recordings posted afterward

Piazza
• Announcements
• Q&A (private and public)
• Discussion

Gradescope - Assignment submission & grading
For Thursday’s Class

1) Get set up on Google Drive if you’re not already

2) Download Europe city temperatures data from course website (three files)

3) Copy data files into Google Drive, make sure you can open with Google Sheets

4) Be prepared to work on your computer alongside the video

Set-up help session On Wednesday
CS 102: Working with Data
Tools and Techniques

Questions?