Mathematical Proofs
Outline for Today

• **How to Write a Proof**
 • Synthesizing definitions, intuitions, and conventions.

• **Proofs on Numbers**
 • Working with odd and even numbers.

• **Universal and Existential Statements**
 • Two important classes of statements.

• **Proofs on Sets**
 • From Venn diagrams to rigorous math.

• **Subsets and Set Equality**
 • Reasoning about how groups relate.
What is a Proof?
A proof is an argument that demonstrates why a conclusion is true, subject to certain standards of truth.
A **mathematical proof** is an argument that demonstrates why a mathematical statement is true, following the rules of mathematics.
What terms are used in this proof? What do they formally mean?
What terms are used in this proof?
What do they formally mean?

What does this theorem mean?
Why, intuitively, should it be true?
Conventions

What terms are used in this proof? What do they formally mean?

What does this theorem mean? Why, intuitively, should it be true?

What is the standard format for writing a proof? What are the techniques for doing so?
Writing our First Proof
Theorem: If n is an even integer, then n^2 is even.
Conventions

What terms are used in this proof? What do they formally mean? What does this theorem mean? Why, intuitively, should it be true?

What is the standard format for writing a proof? What are the techniques for doing so?
Theorem: If n is an even integer, then n^2 is even.
Theorem: If n is an even integer, then n^2 is even.
An integer n is called **even** if there is an integer k where $n = 2k$.
An integer n is called **odd** if there is an integer k where $n = 2k + 1$.

- $11 = 2 \cdot 5 + 1$
- $7 = 2 \cdot 3 + 1$
- $1 = 2 \cdot 0 + 1$
Going forward, we’ll assume the following:

1. Every integer is either even or odd.
2. No integer is both even and odd.
Theorem: If n is an even integer, then n^2 is even.
What terms are used in this proof? What do they formally mean?

What does this theorem mean? Why, intuitively, should it be true?

What is the standard format for writing a proof? What are the techniques for doing so?
Theorem: If n is an even integer, then n^2 is even.
Theorem: If n is an even integer, then n^2 is even.

Let's Try Some Examples!

\[
\begin{align*}
2^2 &= 4 &= 2 \cdot 2 \\
10^2 &= 100 &= 2 \cdot 50 \\
0^2 &= 0 &= 2 \cdot 0 \\
(-8)^2 &= 64 &= 2 \cdot 32 \\
n^2 &= & 2 \cdot ?
\end{align*}
\]
Let’s Draw Some Pictures!

\[n \]

\[\text{Theorem: If } n \text{ is an even integer, then } n^2 \text{ is even.} \]
Let’s Draw Some Pictures!

Theorem: If n is an even integer, then n^2 is even.
Let’s Draw Some Pictures!

Theorem: If \(n \) is an even integer, then \(n^2 \) is even.
Let’s Draw Some Pictures!

\[n^2 = 2(2k^2) \]

Theorem: If \(n \) is an even integer, then \(n^2 \) is even.
Conventions

What terms are used in this proof? What do they formally mean?

What does this theorem mean? Why, intuitively, should it be true?

What is the standard format for writing a proof? What are the techniques for doing so?
Our First Proof!

Theorem: If n is an even integer, then n^2 is even.
Our First Proof!

Theorem: If \(n \) is an even integer, then \(n^2 \) is even.

Proof: Let \(n \) be an even integer.
Our First Proof!

Theorem: If \(n \) is an even integer, then \(n^2 \) is even.

Proof: Let \(n \) be an even integer.

Since \(n \) is even, there is some integer \(k \) such that \(n = 2k \).
Our First Proof!

Theorem: If n is an even integer, then n^2 is even.

Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n = 2k$.

This means that $n^2 = (2k)^2$
Our First Proof!

Theorem: If n is an even integer, then n^2 is even.

Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n = 2k$.

This means that $n^2 = (2k)^2 = 4k^2$
Our First Proof!

Theorem: If n is an even integer, then n^2 is even.

Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n = 2k$.

This means that $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$.
Theorem: If n is an even integer, then n^2 is even.

Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n = 2k$.

This means that $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$.

From this, we see that there is an integer m (namely, $2k^2$) where $n^2 = 2m$.
Theorem: If n is an even integer, then n^2 is even.

Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n = 2k$.

This means that $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$.

From this, we see that there is an integer m (namely, $2k^2$) where $n^2 = 2m$.

Therefore, n^2 is even.
Our First Proof!

Theorem: If \(n \) is an even integer, then \(n^2 \) is even.

Proof: Let \(n \) be an even integer.

Since \(n \) is even, there is some integer \(k \) such that \(n = 2k \).

This means that \(n^2 = (2k)^2 = 4k^2 = 2(2k^2) \).

From this, we see that there is an integer \(m \) (namely, \(2k^2 \)) where \(n^2 = 2m \).

Therefore, \(n^2 \) is even. ■
Our First Proof!

Theorem: If n is an even integer, then n^2 is even.

Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n = 2k$.

This means that $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$.

From this, we see that there is an integer m (namely, $2k^2$) where $n^2 = 2m$.

Therefore, n^2 is even. ■
Our First Proof!

Theorem: If n is an even integer, then n^2 is even.

Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n = 2k$.

This means that $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$.

From this, we see that there is an integer m (namely, $2k^2$) where $n^2 = 2m$.

Therefore, n^2 is even. ■
Our First Proof!

Theorem: If \(n \) is an even integer, then \(n^2 \) is even.

Proof: Let \(n \) be an even integer.

Since \(n \) is even, there is some integer \(k \) such that \(n = 2k \).

This means that \(n^2 = (2k)^2 = 4k^2 = 2(2k^2) \).

From this, we see that there is an integer \(m \) (namely, \(2k^2 \)) where \(n^2 = 2m \).

Therefore, \(n^2 \) is even. ■

To prove a statement of the form

"If \(P \), then \(Q \)"

Assume that \(P \) is true, then show that \(Q \) must be true as well.
Our First Proof!

Theorem: If n is an even integer, then n^2 is even.

Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n = 2k$.

This means that $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$.

From this, we see that there is an integer m (namely, $2k^2$) where $n^2 = 2m$.

Therefore, n^2 is even. ■
Our First Proof!

Theorem: If \(n \) is an even integer, then \(n^2 \) is even.

Proof: Let \(n \) be an even integer.

Since \(n \) is even, there is some integer \(k \) such that \(n = 2k \).

This means that \(n^2 = (2k)^2 = 4k^2 \).

From this, we have \(n^2 = 2(2k^2) \).

Therefore, \(n^2 \) is even.

This is the definition of an even integer. We need to use this definition to make this proof rigorous.
Our First Proof!

Theorem: If n is an even integer, then n^2 is even.

Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n = 2k$.

This means that $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$.

From this, we see that there is an integer m (namely, $2k^2$) where $n^2 = 2m$.

Therefore, n^2 is even. ■
Our First Proof!

Theorem: If n is an even integer, then n^2 is even.

Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n = 2k$.

This means that $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$.

Notice how we use the value of k that we obtained above. Giving names to quantities, even if we aren't fully sure what they are, allows us to manipulate them. This is similar to variables in programs.
Our First Proof!

Theorem: If n is an even integer, then n^2 is even.

Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n = 2k$.

This means that $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$.

From this, we see that there is an integer m (namely, $2k^2$) where $n^2 = 2m$.

Therefore, n^2 is even.
Our First Proof!

Theorem: If n is an even integer, then n^2 is even.

Proof: Let n be an even integer. Since n is even, there is some integer k such that $n = 2k$. This means that $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$. From this, we see that there is an integer m (namely, $2k^2$) where $n^2 = 2m$. Therefore, n^2 is even. ■
Our First Proof!

Theorem: If \(n \) is an even integer, then \(n^2 \) is even.

Proof: Let \(n \) be an even integer.

Since \(n \) is even, there is some integer \(k \) such that \(n = 2k \).

This means that \(n^2 = (2k)^2 = 4k^2 = 2(2k^2) \).

From this, we see that there is an integer \(m \) (namely, \(2k^2 \)) where \(n^2 = 2m \).

Therefore, \(n^2 \) is even. \(\blacksquare \)
Our First Proof!

Theorem: If n is an even integer, then n^2 is even.

Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n = 2k$.

This means that $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$.

From this, we see that there is an integer m (namely, $2k^2$) where $n^2 = 2m$.

Therefore, n^2 is even. \blacksquare

Hey, that's what we were trying to show! We're done now.
Our First Proof!

Theorem: If n is an even integer, then n^2 is even.

Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n = 2k$.

This means that $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$.

From this, we see that there is an integer m (namely, $2k^2$) where $n^2 = 2m$.

Therefore, n^2 is even. ■
Our Next Proof
Theorem: For any integers \(m \) and \(n \), if \(m \) and \(n \) are odd, then \(m + n \) is even.
Conventions

What terms are used in this proof? What do they formally mean?

Definitions

What does this theorem mean? Why, intuitively, should it be true?

Intuitions

Conventions

What is the standard format for writing a proof? What are the techniques for doing so?
What terms are used in this proof? What do they formally mean?

What does this theorem mean? Why, intuitively, should it be true?

What is the standard format for writing a proof? What are the techniques for doing so?
Theorem: For any integers m and n, if m and n are odd, then $m + n$ is even.
Let’s Try Some Examples!

\[
\begin{align*}
1 + 1 & = 2 = 2 \cdot 1 \\
137 + 103 & = 240 = 2 \cdot 120 \\
-5 + 5 & = 0 = 2 \cdot 0 \\
m + n & = 2 \cdot ?
\end{align*}
\]

What’s the pattern? How do we predict this?

Theorem: For any integers \(m\) and \(n\), if \(m\) and \(n\) are odd, then \(m+n\) is even.
Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.
Theorem: For any integers \(m \) and \(n \), if \(m \) and \(n \) are odd, then \(m+n \) is even.
Let’s Do Some Math!

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.
Let’s Do Some Math!

(2k+1) + (2r+1) = 2(k + r + 1)

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.
Conventions

What terms are used in this proof? What do they formally mean?

What does this theorem mean? Why, intuitively, should it be true?

What is the standard format for writing a proof? What are the techniques for doing so?
Theorem: For any integers m and n, if m and n are odd, then $m + n$ is even.
Theorem: For any integers m and n, if m and n are odd, then $m + n$ is even.

Proof:
Theorem: For any integers m and n, if m and n are odd, then $m + n$ is even.

Proof: Consider any arbitrary integers m and n where m and n are odd.
Theorem: For any integers m and n, if m and n are odd, then $m + n$ is even.

Proof: Consider any arbitrary integers m and n where m and n are odd. Since m is odd, we know that there is an integer k where
\[m = 2k + 1. \]
(1)
Theorem: For any integers \(m \) and \(n \), if \(m \) and \(n \) are odd, then \(m + n \) is even.

Proof: Consider any arbitrary integers \(m \) and \(n \) where \(m \) and \(n \) are odd. Since \(m \) is odd, we know that there is an integer \(k \) where

\[
m = 2k + 1. \tag{1}
\]

Similarly, because \(n \) is odd there must be some integer \(r \) such that

\[
n = 2r + 1. \tag{2}
\]
Theorem: For any integers m and n, if m and n are odd, then $m + n$ is even.

Proof: Consider any arbitrary integers m and n where m and n are odd. Since m is odd, we know that there is an integer k where

$$m = 2k + 1.$$ \hspace{2cm} (1)

Similarly, because n is odd there must be some integer r such that

$$n = 2r + 1.$$ \hspace{2cm} (2)

By adding equations (1) and (2) we learn that

$$m + n = 2k + 1 + 2r + 1$$

...
Theorem: For any integers m and n, if m and n are odd, then $m + n$ is even.

Proof: Consider any arbitrary integers m and n where m and n are odd. Since m is odd, we know that there is an integer k where

$$m = 2k + 1.$$ \hspace{1cm} (1)

Similarly, because n is odd there must be some integer r such that

$$n = 2r + 1.$$ \hspace{1cm} (2)

By adding equations (1) and (2) we learn that

$$m + n = 2k + 1 + 2r + 1$$

$$= 2k + 2r + 2$$
Theorem: For any integers \(m \) and \(n \), if \(m \) and \(n \) are odd, then \(m + n \) is even.

Proof: Consider any arbitrary integers \(m \) and \(n \) where \(m \) and \(n \) are odd. Since \(m \) is odd, we know that there is an integer \(k \) where

\[
m = 2k + 1. \tag{1}
\]

Similarly, because \(n \) is odd there must be some integer \(r \) such that

\[
n = 2r + 1. \tag{2}
\]

By adding equations (1) and (2) we learn that

\[
m + n = 2k + 1 + 2r + 1 = 2k + 2r + 2 = 2(k + r + 1). \tag{3}
\]
Theorem: For any integers m and n, if m and n are odd, then $m + n$ is even.

Proof: Consider any arbitrary integers m and n where m and n are odd. Since m is odd, we know that there is an integer k where

$$m = 2k + 1.$$ \hspace{2cm} (1)

Similarly, because n is odd there must be some integer r such that

$$n = 2r + 1.$$ \hspace{2cm} (2)

By adding equations (1) and (2) we learn that

$$m + n = 2k + 1 + 2r + 1$$

$$= 2k + 2r + 2$$

$$= 2(k + r + 1).$$ \hspace{2cm} (3)

Equation (3) tells us that there is an integer s (namely, $k + r + 1$) such that $m + n = 2s$.

Theorem: For any integers \(m \) and \(n \), if \(m \) and \(n \) are odd, then \(m + n \) is even.

Proof: Consider any arbitrary integers \(m \) and \(n \) where \(m \) and \(n \) are odd. Since \(m \) is odd, we know that there is an integer \(k \) where

\[
m = 2k + 1. \tag{1}
\]

Similarly, because \(n \) is odd there must be some integer \(r \) such that

\[
n = 2r + 1. \tag{2}
\]

By adding equations (1) and (2) we learn that

\[
m + n = 2k + 1 + 2r + 1 = 2k + 2r + 2 = 2(k + r + 1). \tag{3}
\]

Equation (3) tells us that there is an integer \(s \) (namely, \(k + r + 1 \)) such that \(m + n = 2s \). Therefore, we see that \(m + n \) is even, as required.
Theorem: For any integers m and n, if m and n are odd, then $m + n$ is even.

Proof: Consider any arbitrary integers m and n where m and n are odd. Since m is odd, we know that there is an integer k where

$$m = 2k + 1. \quad (1)$$

Similarly, because n is odd there must be some integer r such that

$$n = 2r + 1. \quad (2)$$

By adding equations (1) and (2) we learn that

$$m + n = 2k + 1 + 2r + 1$$

$$= 2k + 2r + 2$$

$$= 2(k + r + 1). \quad (3)$$

Equation (3) tells us that there is an integer s (namely, $k + r + 1$) such that $m + n = 2s$. Therefore, we see that $m + n$ is even, as required. ■
Theorem: For any integers m and n, if m and n are odd, then $m + n$ is even.

Proof: Consider any arbitrary integers m and n where m and n are odd. Since m is odd, we know that there is an integer k where

$$m = 2k + 1. \quad (1)$$

Similarly, because n is odd there must be some integer r such that

$$n = 2r + 1. \quad (2)$$

By adding equations (1) and (2) we learn that

$$m + n = 2k + 1 + 2r + 1 = 2k + 2r + 2 = 2(k + r + 1). \quad (3)$$

Equation (3) tells us that there is an integer s (namely, $k + r + 1$) such that $m + n = 2s$. Therefore, we see that $m + n$ is even, as required. ■

This is called making arbitrary choices. Rather than specifying what m and n are, we're signaling to the reader that they could, in principle, supply any choices of m and n that they'd like.

By picking m and n arbitrarily, anything we prove about m and n will generalize to all possible choices we could have made.
Theorem: For any integers m and n, if m and n are odd, then $m + n$ is even.

Proof: Consider any arbitrary integers m and n where m and n are odd. Since m is odd, we know that there is an integer k where $m = 2k + 1$. (1)

Similarly, because n is odd there must be some integer r such that $n = 2r + 1$. (2)

By adding equations (1) and (2) we learn that

$$m + n = 2k + 1 + 2r + 1 = 2k + 2r + 2 = 2(k + r + 1).$$

(3)

Equation (3) tells us that there is an integer s (namely, $k + r + 1$) such that $m + n = 2s$. Therefore, we see that $m + n$ is even, as required. ■

To prove a statement of the form

"If P, then Q"

Assume that P is true, then show that Q must be true as well.
Theorem: For any integers \(m \) and \(n \), if \(m \) and \(n \) are odd, then \(m + n \) is even.

Proof: Consider any arbitrary integers \(m \) and \(n \) where \(m \) and \(n \) are odd. Since \(m \) is odd, we know that there is an integer \(k \) where
\[
m = 2k + 1. \tag{1}
\]
Similarly, because \(n \) is odd there must be some integer \(r \) such that
\[
n = 2r + 1. \tag{2}
\]
By adding equations (1) and (2) we learn that
\[
m + n = 2k + 1 + 2r + 1 = 2k + 2r + 2 = 2(k + r + 1). \tag{3}
\]
Equation (3) tells us that there is an integer \(s \) (namely, \(k + r + 1 \)) such that \(m + n = 2s \). Therefore, we see that \(m + n \) is even, as required. \(\blacksquare \)
Theorem: For any integers m and n, if m and n are odd, then $m + n$ is even.

Proof: Consider any arbitrary integers m and n where m and n are odd. Since m is odd, we know that there is an integer k where

$$m = 2k + 1.$$

(1)

Similarly, because n is odd there must be an integer r such that

$$n = 2r + 1.$$

(2)

By adding equations (1) and (2) we learn that

$$m + n = 2k + 1 + 2r + 1 = 2k + 2r + 2 = 2(k + r + 1).$$

(3)

Equation (3) tells us that there is an integer s (namely, $k + r + 1$) such that $m + n = 2s$. Therefore, we see that $m + n$ is even, as required. ■

This is a complete sentence: Proofs are expected to be written in complete sentences, so you’ll often use punctuation at the end of formulas.

We recommend using the “mugga mugga” test – if you read a proof and replace all the mathematical notation with “mugga mugga,” what comes back should be a valid sentence.
Theorem: For any integers m and n, if m and n are odd, then $m + n$ is even.

Proof: Consider any arbitrary integers m and n where m and n are odd. Since m is odd, we know that there is an integer k where

$$m = 2k + 1. \quad (1)$$

Similarly, because n is odd there must be some integer r such that

$$n = 2r + 1. \quad (2)$$

By adding equations (1) and (2) we learn that

$$m + n = 2k + 1 + 2r + 1$$
$$= 2k + 2r + 2$$
$$= 2(k + r + 1). \quad (3)$$

Equation (3) tells us that there is an integer s (namely, $k + r + 1$) such that $m + n = 2s$. Therefore, we see that $m + n$ is even, as required. ■
Some Little Exercises

- Here’s a list of other theorems that are true about odd and even numbers:
 - **Theorem:** The sum and difference of any two even numbers is even.
 - **Theorem:** The sum and difference of an odd number and an even number is odd.
 - **Theorem:** The product of any integer and an even number is even.
 - **Theorem:** The product of any two odd numbers is odd.
- Going forward, we’ll just take these results for granted. Feel free to use them in the problem sets.
- If you’d like to practice the techniques from today, try your hand at proving these results!
Universal and Existential Statements
Theorem: For any odd integer n, there exist integers r and s where $r^2 - s^2 = n$.
What terms are used in this proof? What do they formally mean?

What does this theorem mean? Why, intuitively, should it be true?

What is the standard format for writing a proof? What are the techniques for doing so?
Theorem: For any odd integer \(n \), there exist integers \(r \) and \(s \) where \(r^2 - s^2 = n \).
Theorem: For any odd integer \(n \), there exist integers \(r \) and \(s \) where \(r^2 - s^2 = n \).

This result is true for every possible choice of odd integer \(n \). It'll work for \(n = 1 \), \(n = 137 \), \(n = 103 \), etc.
Theorem: For any odd integer \(n \), there exist integers \(r \) and \(s \) where \(r^2 - s^2 = n \).

We aren’t saying this is true for every choice of \(r \) and \(s \). Rather, we’re saying that somewhere out there are choices of \(r \) and \(s \) where this works.
Universal vs. Existential Statements

- A universal statement is a statement of the form
 \[\text{For all } x, \text{[some-property]} \text{ holds for } x. \]
- We've seen how to prove these statements.
- An existential statement is a statement of the form
 \[\text{There is some } x \text{ where [some-property] holds for } x. \]
- How do you prove an existential statement?
Proving an Existential Statement

- Over the course of the quarter, we will see several different ways to prove an existential statement of the form

 There is an \(x \) where \([\text{some-property}]\) holds for \(x \).

- **Simplest approach:** Search far and wide, find an \(x \) that has the right property, then show why your choice is correct.
Conventions

What terms are used in this proof? What do they formally mean?

What does this theorem mean? Why, intuitively, should it be true?

What is the standard format for writing a proof? What are the techniques for doing so?
Let’s Try Some Examples!

1 = __ 2 - __ 2
3 = __ 2 - __ 2
5 = __ 2 - __ 2
7 = __ 2 - __ 2
9 = __ 2 - __ 2

Question: Fill in these blanks and see if you can come up with a pattern for why this result is true.

Theorem: For any odd integer n, there exist integers r and s where $r^2 - s^2 = n$.

Respond at pollev.com/cs103
Let’s Try Some Examples!

\[
\begin{align*}
1 & = 1^2 - 0^2 \\
3 & = 2^2 - 1^2 \\
5 & = 3^2 - 2^2 \\
7 & = 4^2 - 3^2 \\
9 & = 5^2 - 4^2 \\
\end{align*}
\]

We’ve got a pattern – but why does this work?

Theorem: For any odd integer \(n \), there exist integers \(r \) and \(s \) where \(r^2 - s^2 = n \).
Let’s Draw Some Pictures!

\[\begin{array}{cc}
 k & +1 \\
 k & \\
\end{array} \]

Theorem: For any odd integer \(n \), there exist integers \(r \) and \(s \) where \(r^2 - s^2 = n \).
\textbf{Theorem:} For any odd integer \(n \), there exist integers \(r \) and \(s \) where \(r^2 - s^2 = n \).
Conventions

What terms are used in this proof? What do they formally mean?
What does this theorem mean? Why, intuitively, should it be true?

What is the standard format for writing a proof? What are the techniques for doing so?
Theorem: For any odd integer n, there exist integers r and s where $r^2 - s^2 = n$.

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where $n = 2k + 1$. Now, let $r = k + 1$ and $s = k$. Then we see that

$$r^2 - s^2 = (k + 1)^2 - k^2 = k^2 + 2k + 1 - k^2 = 2k + 1$$

This means that $r^2 - s^2 = n$, which is what we needed to show. ■
Theorem: For any odd integer n, there exist integers r and s where $r^2 - s^2 = n$.

Proof: Pick any odd integer n.

$r^2 - s^2 = (k+1)^2 - k^2 = 2k+1 = n$, which is what we needed to show. $lacksquare$
Theorem: For any odd integer n, there exist integers r and s where $r^2 - s^2 = n$.

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where $n = 2k + 1$. Then, let $r = k + 1$ and $s = k$. We have:

$$r^2 - s^2 = (k + 1)^2 - k^2 = k^2 + 2k + 1 - k^2 = 2k + 1 = n.$$
Theorem: For any odd integer \(n \), there exist integers \(r \) and \(s \) where \(r^2 - s^2 = n \).

Proof: Pick any odd integer \(n \). Since \(n \) is odd, we know there is some integer \(k \) where \(n = 2k + 1 \). Now, let \(r = k+1 \) and \(s = k \).
Theorem: For any odd integer n, there exist integers r and s where $r^2 - s^2 = n$.

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where $n = 2k + 1$. Now, let $r = k+1$ and $s = k$. Then we see that

$$r^2 - s^2 = (k+1)^2 - k^2$$
Theorem: For any odd integer n, there exist integers r and s where $r^2 - s^2 = n$.

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where $n = 2k + 1$.

Now, let $r = k+1$ and $s = k$. Then we see that

$$r^2 - s^2 = (k+1)^2 - k^2$$

$$= k^2 + 2k + 1 - k^2$$

This means that $r^2 - s^2 = n$, which is what we needed to show. ■
Theorem: For any odd integer n, there exist integers r and s where $r^2 - s^2 = n$.

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where $n = 2k + 1$. Now, let $r = k+1$ and $s = k$. Then we see that
\[
 r^2 - s^2 = (k+1)^2 - k^2
 = k^2 + 2k + 1 - k^2
 = 2k + 1
\]
Theorem: For any odd integer n, there exist integers r and s where $r^2 - s^2 = n$.

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where $n = 2k + 1$. Now, let $r = k+1$ and $s = k$. Then we see that

\[
r^2 - s^2 = (k+1)^2 - k^2 = k^2 + 2k + 1 - k^2 = 2k + 1 = n.
\]
Theorem: For any odd integer n, there exist integers r and s where $r^2 - s^2 = n$.

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where $n = 2k + 1$.

Now, let $r = k+1$ and $s = k$. Then we see that

$$r^2 - s^2 = (k+1)^2 - k^2$$

$$= k^2 + 2k + 1 - k^2$$

$$= 2k + 1$$

$$= n.$$

This means that $r^2 - s^2 = n$, which is what we needed to show.
Theorem: For any odd integer n, there exist integers r and s where $r^2 - s^2 = n$.

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where $n = 2k + 1$. Now, let $r = k+1$ and $s = k$. Then we see that

\[
 r^2 - s^2 = (k+1)^2 - k^2
 = k^2 + 2k + 1 - k^2
 = 2k + 1
 = n.
\]

This means that $r^2 - s^2 = n$, which is what we needed to show. ■
Theorem: For any odd integer n, there exist integers r and s where $r^2 - s^2 = n$.

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where $n = 2k + 1$.

Now, let $r = k + 1$ and $s = k$. Then we see that

$$r^2 - s^2 = (k+1)^2 - k^2 = k^2 + 2k + 1 - k^2 = 2k + 1 = n.$$

This means that $r^2 - s^2 = n$, which is what we needed to show. ■
Theorem: For any odd integer n, there exist integers r and s where $r^2 - s^2 = n$.

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where $n = 2k + 1$.

Now, let $r = k+1$ and $s = k$. Then we see that

$$r^2 - s^2 = (k+1)^2 - k^2 = 2k + 1$$

This means that $r^2 - s^2 = n$, which is what we needed to show. ■
Theorem: For any odd integer n, there exist integers r and s where $r^2 - s^2 = n$.

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where $n = 2k + 1$.

Now, let $r = k+1$ and $s = k$. Then we see that

\[r^2 - s^2 = (k+1)^2 - k^2 \]
\[= k^2 + 2k + 1 - k^2 \]
\[= 2k + 1 \]
\[= n. \]

This means that $r^2 - s^2 = n$, which is what we needed to show. ■
Let’s take a quick break!
Time-Out for Announcements!
Reading Recommendations

• We’ve released two handouts online that you should read over:
 • How to Succeed in CS103
 • Guide to Proofs
• Additionally, if you haven’t yet read over the Guide to Elements and Subsets, we’d recommend doing so.
Problem Set 0

- Problem Set 0 went out on Monday. It’s due this Friday at 4:00PM.
 - Even though this just involves setting up your compiler and submitting things, please start this one early. If you start things on Friday morning, we can’t help you troubleshoot Qt Creator issues!
 - There’s a very detailed troubleshooting guide up on the CS103 website detailing common fixes. If you’re still having trouble, please feel free to ask on EdStem!
Back to CS103!
Proofs on Sets
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.
What terms are used in this proof? What do they formally mean?

What does this theorem mean? Why, intuitively, should it be true?

What is the standard format for writing a proof? What are the techniques for doing so?
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

This is the *element-of* relation \in. It means that this object x is one of the items inside these sets.
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

What are these, again?
Set Combinations

- In our last lecture, we saw four ways of combining sets together.

- The above pictures give a holistic sense of how these operations work.

- However, mathematical proofs tend to work on sets in a different way.
Important Fact:

Proofs about sets *almost always* focus on individual elements of those sets. It’s rare to talk about how collections relate to one another “in general.”
Set Union

Definition: The set $S \cup T$ is the set where, for any x:

\[x \in S \cup T \quad \text{when} \quad x \in S \text{ or } x \in T \quad \text{(or both)} \]

To prove that $x \in S \cup T$:

Prove either that $x \in S$ or that $x \in T$ (or both).

If you know that $x \in S \cup T$:

You can conclude that $x \in S$ or that $x \in T$ (or both).
Set Intersection

Definition: The set $S \cap T$ is the set where, for any x:

- $x \in S \cap T$ when $x \in S$ and $x \in T$.

To prove that $x \in S \cap T$:
Prove both that $x \in S$ and that $x \in T$.

If you know that $x \in S \cap T$:
You can conclude both that $x \in S$ and that $x \in T$.

\[
S \cap T
\]
Conventions

What terms are used in this proof? What do they formally mean?

What does this theorem mean? Why, intuitively, should it be true?

What is the standard format for writing a proof? What are the techniques for doing so?
Let’s Try Some Examples!

\[A = \{1, 2, 3\} \]
\[B = \{2, 3, 4\} \]
\[C = \{3, 4, 5\} \]

Theorem: If \(A, B, \) and \(C \) are sets, then for any \(x \in (A \cap B) \cup C \), we have \(x \in (A \cup C) \cap (B \cup C) \).
Let’s Try Some Examples!

\[A = \{1, 2, 3\} \]
\[B = \{2, 3, 4\} \]
\[C = \{3, 4, 5\} \]

Question: Pick \(x = 1 \).
Is \(x \in (A \cap B) \cup C \)?
Is \(x \in (A \cup C) \cap (B \cup C) \)?

Now pick \(x = 2 \).
Is \(x \in (A \cap B) \cup C \)?
Is \(x \in (A \cup C) \cap (B \cup C) \)?

Theorem: If \(A, B, \) and \(C \) are sets, then for any \(x \in (A \cap B) \cup C \), we have \(x \in (A \cup C) \cap (B \cup C) \).
Let’s Try Some Examples!

\[A = \{1, 2, 3\} \]
\[B = \{2, 3, 4\} \]
\[C = \{3, 4, 5\} \]

\[x = 1 \]

Is \(x \in (A \cap B) \cup C \)?

✔️ ❗️ ❗️ ❗️

Is \(x \in (A \cup C) \cap (B \cup C) \)?

✔️ ❗️ ❗️ ❗️ ❗️

Theorem: If \(A, B, \) and \(C \) are sets, then for any \(x \in (A \cap B) \cup C \), we have \(x \in (A \cup C) \cap (B \cup C) \).
Let's Try Some Examples!

\[A = \{1, 2, 3\} \]
\[B = \{2, 3, 4\} \]
\[C = \{3, 4, 5\} \]

\[x = 2 \]

Is \(x \in (A \cap B) \cup C \)?

✔️ ✔️ ✗

Is \(x \in (A \cup C) \cap (B \cup C) \)?

✔️ ✗ ✔️ ✗

Theorem: If \(A, B, \) and \(C \) are sets, then for any \(x \in (A \cap B) \cup C \), we have \(x \in (A \cup C) \cap (B \cup C) \).
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.
Let’s Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.
Let’s Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.
Let’s Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.
Let’s Draw Some Pictures!

\[A \cap B \]

\[A \cup B \]

\[B \]

\[A \]

\[A \cup C \]

\[B \cup C \]

\[C \]

Theorem: If \(A, B, \) and \(C \) are sets, then for any \(x \in (A \cap B) \cup C \), we have \(x \in (A \cup C) \cap (B \cup C) \).
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

Let's Draw Some Pictures!
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

Let’s Draw Some Pictures!
Let’s Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.
Let’s Draw Some Pictures!

\[A \cap B \]

\[A \cup C \]

\[B \cup C \]

Theorem: If \(A, B, \) and \(C \) are sets, then for any \(x \in (A \cap B) \cup C \), we have \(x \in (A \cup C) \cap (B \cup C) \).
Let’s Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.
Let’s Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.
Let’s Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.
Let’s Draw Some Pictures!

\[x \in (A \cap B) \cup C \Rightarrow x \in (A \cup C) \cap (B \cup C). \]

Theorem: If \(A, B, \) and \(C \) are sets, then for any \(x \in (A \cap B) \cup C \), we have \(x \in (A \cup C) \cap (B \cup C) \).
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.
Let’s Draw Some Pictures!

Theorem: If \(A, B,\) and \(C\) are sets, then for any \(x \in (A \cap B) \cup C\), we have \(x \in (A \cup C) \cap (B \cup C)\).
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

Let's Draw Some Pictures!
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

Let’s Draw Some Pictures!
Theorem: If \(A, B, \) and \(C \) are sets, then for any \(x \in (A \cap B) \cup C \), we have \(x \in (A \cup C) \cap (B \cup C) \).
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

Let's Draw Some Pictures!
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.
Let’s Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$. Otherwise, we have to pick from C. Let’s Draw Some Pictures!
Let’s Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.
Let’s Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.
Let’s Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.
Let’s Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.
What terms are used in this proof? What do they formally mean?

What does this theorem mean? Why, intuitively, should it be true?

What is the standard format for writing a proof? What are the techniques for doing so?
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.
Theorem: If \(A, B, \) and \(C \) are sets, then for any \(x \in (A \cap B) \cup C \), we have \(x \in (A \cup C) \cap (B \cup C) \).

Proof:
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

Proof: Consider arbitrary sets A, B, and C, then choose any $x \in (A \cap B) \cup C$.
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

Proof: Consider arbitrary sets A, B, and C, then choose any $x \in (A \cap B) \cup C$. We will prove $x \in (A \cup C) \cap (B \cup C)$.
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

Proof: Consider arbitrary sets A, B, and C, then choose any $x \in (A \cap B) \cup C$. We will prove $x \in (A \cup C) \cap (B \cup C)$.

Since $x \in (A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$.
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

Proof: Consider arbitrary sets A, B, and C, then choose any $x \in (A \cap B) \cup C$. We will prove $x \in (A \cup C) \cap (B \cup C)$.

Since $x \in (A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

Proof: Consider arbitrary sets A, B, and C, then choose any $x \in (A \cap B) \cup C$. We will prove $x \in (A \cup C) \cap (B \cup C)$.

Since $x \in (A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Case 1: $x \in C$.

Case 2: $x \in A \cap B$.
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

Proof: Consider arbitrary sets A, B, and C, then choose any $x \in (A \cap B) \cup C$. We will prove $x \in (A \cup C) \cap (B \cup C)$.

Since $x \in (A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Case 1: $x \in C$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.

Case 2: $x \in A \cap B$.
Theorem: If \(A, B, \) and \(C \) are sets, then for any \(x \in (A \cap B) \cup C \), we have \(x \in (A \cup C) \cap (B \cup C) \).

Proof: Consider arbitrary sets \(A, B, \) and \(C \), then choose any \(x \in (A \cap B) \cup C \). We will prove \(x \in (A \cup C) \cap (B \cup C) \).

Since \(x \in (A \cap B) \cup C \), we know that \(x \in A \cap B \) or that \(x \in C \). We consider each case separately.

Case 1: \(x \in C \). This in turn means that \(x \in A \cup C \) and that \(x \in B \cup C \).

Case 2: \(x \in A \cap B \). From \(x \in A \cap B \), we learn that \(x \in A \) and that \(x \in B \).
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

Proof: Consider arbitrary sets A, B, and C, then choose any $x \in (A \cap B) \cup C$. We will prove $x \in (A \cup C) \cap (B \cup C)$.

Since $x \in (A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Case 1: $x \in C$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.

Case 2: $x \in A \cap B$. From $x \in A \cap B$, we learn that $x \in A$ and that $x \in B$. Therefore, we know that $x \in A \cup C$ and that $x \in B \cup C$.
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

Proof: Consider arbitrary sets A, B, and C, then choose any $x \in (A \cap B) \cup C$. We will prove $x \in (A \cup C) \cap (B \cup C)$.

Since $x \in (A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Case 1: $x \in C$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.

Case 2: $x \in A \cap B$. From $x \in A \cap B$, we learn that $x \in A$ and that $x \in B$. Therefore, we know that $x \in A \cup C$ and that $x \in B \cup C$.

In either case, we learn that $x \in A \cup C$ and $x \in B \cup C$.

Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

Proof: Consider arbitrary sets A, B, and C, then choose any $x \in (A \cap B) \cup C$. We will prove $x \in (A \cup C) \cap (B \cup C)$.

Since $x \in (A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Case 1: $x \in C$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.

Case 2: $x \in A \cap B$. From $x \in A \cap B$, we learn that $x \in A$ and that $x \in B$. Therefore, we know that $x \in A \cup C$ and that $x \in B \cup C$.

In either case, we learn that $x \in A \cup C$ and $x \in B \cup C$. This establishes that $x \in (A \cup C) \cap (B \cup C)$, as required.
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

Proof: Consider arbitrary sets A, B, and C, then choose any $x \in (A \cap B) \cup C$. We will prove $x \in (A \cup C) \cap (B \cup C)$.

Since $x \in (A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Case 1: $x \in C$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.

Case 2: $x \in A \cap B$. From $x \in A \cap B$, we learn that $x \in A$ and that $x \in B$. Therefore, we know that $x \in A \cup C$ and that $x \in B \cup C$.

In either case, we learn that $x \in A \cup C$ and $x \in B \cup C$. This establishes that $x \in (A \cup C) \cap (B \cup C)$, as required. ■
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

Proof: Consider arbitrary sets A, B, and C, then choose any $x \in (A \cap B) \cup C$. We will prove $x \in (A \cup C) \cap (B \cup C)$.

Since $x \in (A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Case 1: $x \in C$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.

Case 2: $x \in A \cap B$. From $x \in A \cap B$, we learn that $x \in A$ and that $x \in B$. Therefore, we know that $x \in A \cup C$ and that $x \in B \cup C$.

In either case, we learn that $x \in A \cup C$ and $x \in B \cup C$. This establishes that $x \in (A \cup C) \cap (B \cup C)$, as required. ■
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

Proof: Consider arbitrary sets A, B, and C, then choose any $x \in (A \cap B) \cup C$. We will prove $x \in (A \cup C) \cap (B \cup C)$.

Since $x \in (A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Case 1: $x \in C$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.

Case 2: $x \in A \cap B$. From $x \in A \cap B$, we learn that $x \in A$ and that $x \in B$. Therefore, we know that $x \in A \cup C$ and that $x \in B \cup C$.

In either case, we learn that $x \in A \cup C$ and $x \in B \cup C$. This establishes that $x \in (A \cup C) \cap (B \cup C)$, as required. ■

These are **arbitrary choices**. Rather than specifying what A, B, C, and x are, we're signaling to the reader that they could, in principle, supply any choices of A, B, C, and x that they'd like.
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

Proof: Consider arbitrary sets A, B, and C, then choose any $x \in (A \cap B) \cup C$. We will prove $x \in (A \cup C) \cap (B \cup C)$.

Since $x \in (A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Case 1: $x \in C$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.

Case 2: $x \in A \cap B$. From $x \in A \cap B$, we learn that $x \in A$ and that $x \in B$. Therefore, we know that $x \in A \cup C$ and that $x \in B \cup C$.

If you know that $x \in S \cup T$:
You can conclude that $x \in S$ or that $x \in T$ (or both).

If you know that $x \in S \cap T$:
You can conclude both that $x \in S$ and that $x \in T$.
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

Proof:
Consider arbitrary sets A, B, and C, then choose any $x \in (A \cap B) \cup C$. We will prove $x \in (A \cup C) \cap (B \cup C)$.

Since $x \in (A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$.

We consider each case separately.

Case 1: $x \in C$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.

Case 2: $x \in A \cap B$. From $x \in A \cap B$, we learn that $x \in A$ and that $x \in B$. Therefore, we know that $x \in A \cup C$ and that $x \in B \cup C$.

In either case, we learn that $x \in A \cup C$ and $x \in B \cup C$. This establishes that $x \in (A \cup C) \cap (B \cup C)$, as required. ■

To prove that $x \in S \cup T$:
Prove either that $x \in S$ or that $x \in T$ (or both).

To prove that $x \in S \cap T$:
Prove both that $x \in S$ and that $x \in T$.
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

Proof: Consider arbitrary sets A, B, and C, then choose any $x \in (A \cap B) \cup C$. We will prove $x \in (A \cup C) \cap (B \cup C)$.

Since $x \in (A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Case 1: $x \in C$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.

Case 2: $x \in A \cap B$. From $x \in A \cap B$, we learn that $x \in A$ and that $x \in B$. Therefore, we also have that $x \in A \cup C$ and that $x \in B \cup C$.

In either case, we learn that $x \in (A \cup C) \cap (B \cup C)$, as required. ■

This is called a proof by cases (alternatively, a proof by exhaustion) and works by showing that the theorem is true regardless of what specific outcome arises.
Theorem: If A, B, and C are sets, then for any $x \in (A \cap B) \cup C$, we have $x \in (A \cup C) \cap (B \cup C)$.

Proof: Consider arbitrary sets A, B, and C. Choose any $x \in (A \cap B) \cup C$. We will prove $x \in (A \cup C) \cap (B \cup C)$.

Since $x \in (A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$.

We consider each case separately.

Case 1: $x \in C$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.

Case 2: $x \in A \cap B$. From $x \in A \cap B$, we learn that $x \in A$ and that $x \in B$. Therefore, we know that $x \in A \cup C$ and that $x \in B \cup C$.

In either case, we learn that $x \in A \cup C$ and $x \in B \cup C$. This establishes that $x \in (A \cup C) \cap (B \cup C)$, as required. ■
Theorem: If \(A, B, \) and \(C \) are sets, then for any \(x \in (A \cap B) \cup C \), we have \(x \in (A \cup C) \cap (B \cup C) \).

Proof: Consider arbitrary sets \(A, B, \) and \(C \), then choose any \(x \in (A \cap B) \cup C \). We will prove \(x \in (A \cup C) \cap (B \cup C) \).

Since \(x \in (A \cap B) \cup C \), we know that \(x \in A \cap B \) or that \(x \in C \). We consider each case separately.

Case 1: \(x \in C \). This in turn means that \(x \in A \cup C \) and that \(x \in B \cup C \).

Case 2: \(x \in A \cap B \). From \(x \in A \cap B \), we learn that \(x \in A \) and that \(x \in B \). Therefore, we know that \(x \in A \cup C \) and that \(x \in B \cup C \).

In either case, we learn that \(x \in A \cup C \) and \(x \in B \cup C \). This establishes that \(x \in (A \cup C) \cap (B \cup C) \), as required. ■
Proofs as a Dialog
Proofs as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n = 2k + 1$.

Now, let $z = k - 34$.
Proofs as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n = 2k + 1$.

Now, let $z = k - 34$.

Proof Writer (You)
Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n = 2k + 1$.

Now, let $z = k - 34$.
Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n = 2k + 1$.

Now, let $z = k - 34$.

Proof Writer (You)

Proof Reader
Proofs as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n = 2k + 1$.

Now, let $z = k - 34$.

$n = 137$

Reader Picks
Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n = 2k + 1$.

Now, let $z = k - 34$.
Proofs as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n = 2k + 1$.

Now, let $z = k - 34$.

$n = 137$

Reader Picks

$k = 68$

Neither Picks
Proofs as a Dialog

Let n be an arbitrary odd integer. Since n is an odd integer, there is an integer k such that $n = 2k + 1$.

Now, let $z = k - 34$.

Proof Writer (You)

Proof Reader

$n = 137$

Reader Picks

$k = 68$

Neither Picks
Proofs as a Dialog

Let n be an arbitrary odd integer. Since n is an odd integer, there is an integer k such that $n = 2k + 1$.

Now, let $z = k - 34$.

$Proof Writer (You)$

$Reader$ Picks $n = 137$

$Neither$ Picks $k = 68$

$Writer$ Picks $z = 34$

$Proof Reader$
Proofs as a Dialog

Let \(n \) be an arbitrary odd integer.

Since \(n \) is an odd integer, there is an integer \(k \) such that \(n = 2k + 1 \).

Now, let \(z = k - 34 \).

Proof Writer (You)

Proof Reader

Reader Picks

Writer Picks

Neither Picks

\(n = 137 \)

\(k = 68 \)

\(z = 34 \)
Proofs as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n = 2k + 1$.

Now, let $z = k - 34$.

$n = 137$
$k = 68$
$z = 34$

Proof Writer (You)

Reader Picks

Neither Picks

Proof Reader
Let n be an arbitrary odd integer. Since n is an odd integer, there is an integer k such that $n = 2k + 1$.

Now, let $z = k - 34$.

Each of these variables has a distinct, assigned value. Each variable was either picked by the reader, picked by the writer, or has a value that can be determined from other variables.

- $n = 137$ (Reader Picks)
- $k = 68$ (Reader Picks)
- $z = 34$ (Neither Picks)

Proof Writer (You)
Who Owns What?

• The reader chooses and owns a value if you use wording like this:
 • Pick a natural number \(n \).
 • Consider some \(n \in \mathbb{N} \).
 • Fix a natural number \(n \).
 • Let \(n \) be a natural number.

• The writer (you) chooses and owns a value if you use wording like this:
 • Let \(r = n + 1 \).
 • Pick \(s = n \).

• Neither of you chooses a value if you use wording like this:
 • Since \(n \) is even, we know there is some \(k \in \mathbb{Z} \) where \(n = 2k \).
 • Because \(n \) is odd, there must be some integer \(k \) where \(n = 2k + 1 \).
Proofs as a Dialog

Let x be an arbitrary even integer.
Then for any even x, we know that $x+1$ is odd.
Proofs as a Dialog

Let x be an arbitrary even integer.

Then for any even x, we know that $x+1$ is odd.
Proofs as a Dialog

Let \(x \) be an arbitrary even integer.

Then for any even \(x \), we know that \(x + 1 \) is odd.

\[x = 242 \]

Reader Picks
Proofs as a Dialog

Let \(x \) be an arbitrary even integer.

Then for any even \(x \), we know that \(x + 1 \) is odd.

Reader Picks

\[x = 242 \]
Proofs as a Dialog

Let x be an arbitrary even integer.

Then for any even x, we know that $x+1$ is odd.

$x = 242$

Reader Picks
Proofs as a Dialog

Let x be an arbitrary even integer.

Then for any even x, we know that $x + 1$ is odd.

$\text{Proof Writer (You)}$

$x = 242$

Reader Picks

Proof Reader
Proofs as a Dialog

Let \(x \) be an arbitrary even integer.

Then for any even \(x \), we know that \(x+1 \) is odd.

Proof Writer (You)

Reader Picks

\(x = 242 \)

What does "for any even 242" mean?
Proofs as a Dialog

Let x be an arbitrary even integer.

Since x is even, we know that $x+1$ is odd.
Proof Writer (You)

Proof Reader

Proofs as a Dialog

Let x be an arbitrary even integer.

Since x is even, we know that $x+1$ is odd.
Proofs as a Dialog

Let x be an arbitrary even integer.

Since x is even, we know that $x+1$ is odd.

$x = 242$

Reader Picks
Proofs as a Dialog

Let \(x \) be an arbitrary even integer.

Since \(x \) is even, we know that \(x + 1 \) is odd.

\(x = 242 \)

Reader Picks
Every variable needs a value.

Avoid talking about “all x” or “every x” when manipulating something concrete.

To prove something is true for any choice of a value for x, let the reader pick x.
Once you’ve said something like

Let \(x \) be an integer.
Consider an arbitrary \(x \in \mathbb{Z} \).
Pick any \(x \).

Do not say things like the following:

This means that \textbf{for any} \(x \in \mathbb{Z} \) ...
So \textbf{for all} \(x \in \mathbb{Z} \) ...
Proofs as a Dialog

Proof Writer (You)

Proof Reader
Proofs as a Dialog

Pick two integers m and n where $m+n$ is odd.

Let $n = 1$, which means that $m+1$ is odd.
Proofs as a Dialog

Pick two integers \(m \) and \(n \) where \(m+n \) is odd.

Let \(n = 1 \), which means that \(m+1 \) is odd.
Pick two integers m and n where $m+n$ is odd.

Let $n = 1$, which means that $m+1$ is odd.

$m = 103$

$n = 166$
Proofs as a Dialog

Pick two integers \(m \) and \(n \) where \(m+n \) is odd.

Let \(n = 1 \), which means that \(m+1 \) is odd.

\[
\begin{align*}
\text{Proof Writer (You)} & \\
\text{Reader} & \text{Picks} \\
\text{m} & = 103 \\
\text{Reader} & \text{Picks} \\
n & = 166
\end{align*}
\]
Proofs as a Dialog

Pick two integers m and n where $m+n$ is odd.

Let $n = 1$, which means that $m+1$ is odd.

$m = 103$

Reader Picks

$n = 166$

Reader Picks

Hold on! I already chose a value for n!
Proofs as a Dialog

Let $n = 1$.

Pick any integer m where $m+1$ is odd.
Proofs as a Dialog

Let $n = 1$.

Pick any integer m where $m+1$ is odd.
Proofs as a Dialog

Let $n = 1$.

Pick any integer m where $m+1$ is odd.

Proof Writer (You)

Proof Reader
Proofs as a Dialog

Let $n = 1$.

Pick any integer m where $m+1$ is odd.
Proofs as a Dialog

Let $n = 1$.

Pick any integer m where $m+1$ is odd.

Proof Writer (You)

$n = 1$

Writer Picks

$m = 166$

Reader Picks

Proof Reader
Proofs as a Dialog

Let \(n = 1 \).

Pick any integer \(m \) where \(m+1 \) is odd.

\(m = 166 \)

Reader Picks

\(n = 1 \)

Writer Picks
Proofs as a Dialog

Let $n = 1$.

Pick any integer m where $m+1$ is odd.

Do we even need n here?

$m = 166$

Reader Picks

$n = 1$

Writer Picks
Proofs as a Dialog

Pick any integer m where $m+1$ is odd.
Proofs as a Dialog

Pick any integer m where $m+1$ is odd.

$m = 166$

Reader Picks
Be mindful of who owns what variable.

Don’t change something you don’t own.

You don’t always need to name things, especially if they already have a name.
Your Action Items

- **Read “How to Succeed in CS103.”**
 - There’s a lot of valuable advice in there – take it to heart!

- **Read “Guide to ∈ and ⊆.”**
 - You’ll want to have a handle on how these concepts are related, and on how they differ.

- **Finish and submit Problem Set 0.**
 - Don’t put this off until the last minute!
Next Time

- **Indirect Proofs**
 - How do you prove something without actually proving it?

- **Mathematical Implications**
 - What exactly does “if P, then Q” mean?

- **Proof by Contrapositive**
 - A helpful technique for proving implications.

- **Proof by Contradiction**
 - Proving something is true by showing it can't be false.
Appendix: More Proofs on Sets
Proofs on Subsets
Theorem: If A, B, and C are sets, then $(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C$.
What terms are used in this proof?
What do they formally mean?

What does this theorem mean?
Why, intuitively, should it be true?

What is the standard format for writing a proof?
What are the techniques for doing so?
Set Theory Review

• Recall from last time that we write $x \in S$ if x is an element of set S and $x \notin S$ if x is not an element of set S.

• If S and T are sets, we say that S is a subset of T (denoted $S \subseteq T$) if the following statement is true:

 For every x, if $x \in S$, then $x \in T$.

• What does this mean for proofs?
Subsets

Definition: If S and T are sets, then $S \subseteq T$ when for every $x \in S$, we have $x \in T$.

To prove that $S \subseteq T$:
Pick an arbitrary $x \in S$, then prove $x \in T$.

If you know that $S \subseteq T$:
If you have an $x \in S$, you can conclude $x \in T$.
Conventions

What terms are used in this proof? What do they formally mean?

Definitions

What does this theorem mean? Why, intuitively, should it be true?

Intuitions

What is the standard format for writing a proof? What are the techniques for doing so?
Let’s Draw Some Pictures!

Theorem: If A, B, and C are sets, then $(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C$.
Theorem: If A, B, and C are sets, then $(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C$.

Let's Draw Some Pictures!
Let’s Draw Some Pictures!

Theorem: If A, B, and C are sets, then $(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C$.

Goal: pick elements inside of this shape...

...and explain why they also have to be in this shape.
Let’s Draw Some Pictures!

Observation: Set C is in both of these shapes

Theorem: If A, B, and C are sets, then $(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C$.
Theorem: If A, B, and C are sets, then $(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C$.

Let’s Draw Some Pictures!

If we pick $x \in C$ on the left, then we know that $x \in C$ on the right.
Let’s Draw Some Pictures!

Theorem: If A, B, and C are sets, then $(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C$.
Let’s Draw Some Pictures!

What happens if we pick an x that isn’t in C?

Theorem: If A, B, and C are sets, then $(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C$.
Let’s Draw Some Pictures!

That means that x is in this region up here.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C$.
Theorem: If A, B, and C are sets, then $(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C$.

Let's Draw Some Pictures!
Let’s Draw Some Pictures!

Theorem: If A, B, and C are sets, then $(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C$.

\begin{itemize}
 \item \textbf{Theorem:} If A, B, and C are sets, then $(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C$.
\end{itemize}
Let’s Draw Some Pictures!

Theorem: If A, B, and C are sets, then $(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C$.
Conventions

What terms are used in this proof? What do they formally mean?

Definition

What does this theorem mean? Why, intuitively, should it be true?

Intuitions

What is the standard format for writing a proof? What are the techniques for doing so?
Theorem: If A, B, and C are sets, then
\[(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C.\]

Proof: Pick any sets A, B, and C. Then, choose any element $x \in (A \cup C) \cap (B \cup C)$. We will prove that $x \in (A \cap B) \cup C$.

Since $x \in (A \cup C) \cap (B \cup C)$, we know that $x \in A \cup C$ and that $x \in B \cup C$. We now consider two cases.

Case 1: $x \in C$. This means $x \in (A \cap B) \cup C$ as well.

Case 2: $x \notin C$. Because $x \in A \cup C$, we know that $x \in A$ or that $x \in C$. However, since we have $x \notin C$, we’re left with $x \in A$. By similar reasoning, from $x \in B \cup C$ we learn that $x \in B$.

Collectively, we’ve shown that $x \in A$ and that $x \in B$, so we see that $x \in A \cap B$. This means $x \in (A \cap B) \cup C$. In either case, we see that $x \in (A \cap B) \cup C$, which is what we needed to show. ■
Theorem: If A, B, and C are sets, then
\[(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C.\]

Proof: Pick any sets A, B, and C. Then, choose any element $x \in (A \cup C) \cap (B \cup C)$. We will prove that $x \in (A \cap B) \cup C$.

Since $x \in (A \cup C) \cap (B \cup C)$, we know that $x \in A \cup C$ and that $x \in B \cup C$. We now consider two cases:

Case 1: $x \in C$. This means $x \in (A \cap B) \cup C$ as well.

Case 2: $x \notin C$. Because $x \in A \cup C$, we know that $x \in A$ or that $x \in C$. However, since we have $x \notin C$, we're left with $x \in A$. By similar reasoning, from $x \in B \cup C$ we learn that $x \in B$.

Collectively, we've shown that $x \in A$ and that $x \in B$, so we see that $x \in A \cap B$. This means $x \in (A \cap B) \cup C$.

In either case, we see that $x \in (A \cap B) \cup C$, which is what we needed to show. ■

These are **arbitrary choices**. Rather than specifying what A, B, and C are, we're signaling to the reader that they could, in principle, supply any choices of A, B, and C that they'd like.
Theorem: If A, B, and C are sets, then $(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C$.

Proof: Pick any sets A, B, and C. Then, choose any element $x \in (A \cup C) \cap (B \cup C)$. We will prove that $x \in (A \cap B) \cup C$.

Since $x \in (A \cup C) \cap (B \cup C)$, we know that $x \in A \cup C$ and $x \in B \cup C$. We now consider two cases.

Case 1: $x \in C$. This means $x \in (A \cap B) \cup C$ as well.

Case 2: $x \notin C$. Because $x \in A \cup C$, we know that $x \in A$ or that $x \in C$. However, since we have $x \notin C$, we're left with $x \in A$. By similar reasoning, from $x \in B \cup C$ we learn that $x \in B$.

Collectively, we've shown that $x \in A$ and that $x \in B$, so we see that $x \in A \cap B$. This means $x \in (A \cap B) \cup C$.

In either case, we see that $x \in (A \cap B) \cup C$, which is what we needed to show. ■

To prove that $S \subseteq T$:
Pick an arbitrary $x \in S$, then prove $x \in T$.

Notice that the statement of the theorem doesn't include any variable named x. We introduced this variable because that's what the definition says to do.

This is common in proofwriting. Always call back to the definition to make sure you're proving the right thing!
Theorem: If A, B, and C are sets, then
$$(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C.$$

Proof: Pick any sets A, B, and C. Then, choose any element $x \in (A \cup C) \cap (B \cup C)$. We will prove that $x \in (A \cap B) \cup C$.

Since $x \in (A \cup C) \cap (B \cup C)$, we know that $x \in A \cup C$ and that $x \in B \cup C$. We now consider two cases.

Case 1: $x \in C$. This means $x \in (A \cap B) \cup C$ as well.

Case 2: $x \notin C$. Because $x \in A \cup C$, we know that $x \in A$ or that $x \in C$. However, since we have $x \notin C$, we’re left with $x \in A$. By similar reasoning, from $x \in B \cup C$ we learn that $x \in B$.

Collectively, we’ve shown that $x \in A$ and that $x \in B$, so we see that $x \in A \cap B$. This means $x \in (A \cap B) \cup C$.

In either case, we see that $x \in (A \cap B) \cup C$, which is what we needed to show. ■

As before, it’s good to summarize what we established when splitting into cases.
Theorem: If A, B, and C are sets, then
$$(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C.$$

Proof: Pick any sets A, B, and C. Then, choose any element $x \in (A \cup C) \cap (B \cup C)$. We will prove that $x \in (A \cap B) \cup C$.

Since $x \in (A \cup C) \cap (B \cup C)$, we know that $x \in A \cup C$ and that $x \in B \cup C$. We now consider two cases.

Case 1: $x \in C$. This means $x \in (A \cap B) \cup C$ as well.

Case 2: $x \notin C$. Because $x \in A \cup C$, we know that $x \in A$ or that $x \in C$. However, since we have $x \notin C$, we’re left with $x \in A$. By similar reasoning, from $x \in B \cup C$ we learn that $x \in B$.

Collectively, we’ve shown that $x \in A$ and that $x \in B$, so we see that $x \in A \cap B$. This means $x \in (A \cap B) \cup C$. In either case, we see that $x \in (A \cap B) \cup C$, which is what we needed to show. ■
Theorem: If A, B, and C are sets, then $(A \cup C) \cap (B \cup C) = (A \cap B) \cup C$.
Conventions

What terms are used in this proof? What do they formally mean?
What does this theorem mean? Why, intuitively, should it be true?

Definitions

What is the standard format for writing a proof? What are the techniques for doing so?
Set Equality

\[S = T \]

Definition: If \(S \) and \(T \) are sets, then \(S = T \) if \(S \subseteq T \) and \(T \subseteq S \).

To prove that \(S = T \):
Prove that \(S \subseteq T \) and \(T \subseteq S \).

If you know that \(S = T \):
If you have an \(x \in S \), you can conclude \(x \in T \).
If you have an \(x \in T \), you can conclude \(x \in S \).
Theorem: If A, B, and C are sets, then $(A \cup C) \cap (B \cup C) = (A \cap B) \cup C$.
Conventions

What terms are used in this proof? What do they formally mean?

What does this theorem mean? Why, intuitively, should it be true?

What is the standard format for writing a proof? What are the techniques for doing so?
Theorem: If A, B, and C are sets, then

$$(A \cup C) \cap (B \cup C) = (A \cap B) \cup C.$$

Proof: Fix any sets A, B, and C. We need to show that

$$(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C \quad (1)$$

and that

$$(A \cap B) \cup C \subseteq (A \cup C) \cap (B \cup C). \quad (2)$$

We’ve already proved that (1) holds, so we just need to show (2). To do so, pick any $x \in (A \cap B) \cup C$. We need to prove that $x \in (A \cup C) \cap (B \cup C)$. But this is something we already know – we proved this earlier.

Since both (1) and (2) hold, we know that each of these two sets are subsets of one another, and therefore that the sets are equal. ■
Theorem: If A, B, and C are sets, then
\[(A \cup C) \cap (B \cup C) = (A \cap B) \cup C.\]

Proof: Fix any sets A, B, and C. We need to show that
\[(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C.\] (1)
and that
\[(A \cap B) \cup C \subseteq (A \cup C) \cap (B \cup C).\] (2)
We’ve already proved that (1) holds, so we just need to show (2). To do so, pick any $x \in (A \cap B) \cup C$. We need to prove that $x \in (A \cup C) \cap (B \cup C)$. But this is something we already know – we proved this earlier.

Since both (1) and (2) hold, we know that each of these two sets are subsets of one another, and therefore that the sets are equal. ■
Theorem: If A, B, and C are sets, then
\[(A \cup C) \cap (B \cup C) = (A \cap B) \cup C.\]

Proof: Fix any sets A, B, and C. We need to show that
\[(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C \quad (1)\]
and that
\[(A \cap B) \cup C \subseteq (A \cup C) \cap (B \cup C). \quad (2)\]

We’ve already proved that (1) holds, so we just need to show (2). To do so, pick any $x \in (A \cap B) \cup C$. We need to prove that $x \in (A \cup C) \cap (B \cup C)$. But this is something we already know – we proved this earlier.

Since both (1) and (2) hold, we know that each of these two sets are subsets of one another, and therefore that the sets are equal. ■