Binary Relations
Part II
Outline for Today

• Proving an Equivalence Relation
 • A proof that ~ is an equivalence relation

• Properties of Equivalence Relations
 • What’s so special about those three rules?

• Cyclic Property
 • How it relates to our other three properties, and equivalence relations
\(\forall a \in A. \ aRa \)

\(\forall a \in A. \ \forall b \in A. \ (aRb \rightarrow bRa) \)

\(\forall a \in A. \ \forall b \in A. \ \forall c \in A. \ (aRb \land bRc \rightarrow aRc) \)
Equivalence Relation Proofs

• Let's suppose you've found a binary relation R over a set A and want to prove that it's an equivalence relation.

• How exactly would you go about doing this?
An Example Relation

- Consider the binary relation ~ defined over the set \(\mathbb{Z} \):
 \[
 a \sim b \quad \text{if} \quad a + b \text{ is even}
 \]
- Some examples:
 \[
 0 \sim 4 \quad 1 \sim 9 \quad 2 \sim 6 \quad 5 \sim 5
 \]
- Turns out, this is an equivalence relation! Let's see how to prove it.

We can binary relations by giving a rule, like this:

\[
\text{\(a \sim b \quad \text{if} \quad \text{some property of } a \text{ and } b \text{ holds} \)}
\]

This is the general template for defining a relation. Although we're using “if” rather than “iff” here, the two above statements are definitionally equivalent. For a variety of reasons, definitions are often introduced with “if” rather than “iff.” Check the “Mathematical Vocabulary” handout for details.
What properties must \sim have to be an equivalence relation?

Reflexivity

Symmetry

Transitivity

Let's prove each property independently.
Lemma 1: The binary relation ~ is reflexive.
Lemma 1: The binary relation \(\sim \) is reflexive.

Proof:
$a \sim b$ if $a + b$ is even

Lemma 1: The binary relation \sim is reflexive.

Proof:

What is the formal definition of reflexivity?
The binary relation \sim is reflexive.

Proof:

What is the formal definition of reflexivity?

$$\forall a \in \mathbb{Z}. a \sim a$$
Lemma 1: The binary relation \sim is reflexive.

Proof:

What is the formal definition of reflexivity?

$\forall a \in \mathbb{Z}. \ a \sim a$

Therefore, we'll choose an arbitrary integer a, then go prove that $a \sim a$.
Lemma 1: The binary relation \(\sim \) is reflexive.

Proof:

What is the formal definition of reflexivity?

\[\forall a \in \mathbb{Z}. \ a \sim a \]

ASSUME: Choose an arbitrary integer \(a \).

WANT TO SHOW: We want to show that \(a \sim a \).
Lemma 1: The binary relation ~ is reflexive.

Proof:

What is the formal definition of reflexivity?

\[\forall a \in \mathbb{Z}. \ a \sim a \]

ASSUME: Choose an arbitrary integer \(a \).

WANT TO SHOW: We want to show that \(a \sim a \).
Lemma 1: The binary relation \sim is reflexive.

Proof: Consider an arbitrary $a \in \mathbb{Z}$. We need to prove that $a \sim a$.

$$a \sim b \text{ if } a+b \text{ is even}$$
$a \sim b$ if $a+b$ is even

Lemma 1: The binary relation \sim is reflexive.

Proof: Consider an arbitrary $a \in \mathbb{Z}$. We need to prove that $a \sim a$. From the definition of the \sim relation, this means that we need to prove that $a + a$ is even.

To see this, notice that $a + a = 2a$, so the sum $a + a$ can be written as $2k$ for some integer k (namely, a), so $a + a$ is even. Therefore, $a \sim a$ holds, as required. ■
Lemma 1: The binary relation ~ is reflexive.

Proof: Consider an arbitrary $a \in \mathbb{Z}$. We need to prove that $a \sim a$. From the definition of the ~ relation, this means that we need to prove that $a+a$ is even.

To see this, notice that $a+a = 2a$, so the sum $a+a$ can be written as $2k$ for some integer k (namely, a), so $a+a$ is even.
Lemma 1: The binary relation \sim is reflexive.

Proof: Consider an arbitrary $a \in \mathbb{Z}$. We need to prove that $a \sim a$. From the definition of the \sim relation, this means that we need to prove that $a + a$ is even.

To see this, notice that $a + a = 2a$, so the sum $a + a$ can be written as $2k$ for some integer k (namely, a), so $a + a$ is even. Therefore, $a \sim a$ holds, as required.
$a \sim b$ if $a + b$ is even

Lemma 1: The binary relation \sim is reflexive.

Proof: Consider an arbitrary $a \in \mathbb{Z}$. We need to prove that $a \sim a$. From the definition of the \sim relation, this means that we need to prove that $a + a$ is even.

To see this, notice that $a + a = 2a$, so the sum $a + a$ can be written as $2k$ for some integer k (namely, a), so $a + a$ is even. Therefore, $a \sim a$ holds, as required. ■
Lemma 2: The binary relation \(\sim \) is symmetric.

\(a \sim b \) if \(a + b \) is even
Lemma 2: The binary relation ~ is symmetric.

Which of the following works best as the opening ("assume" part) of this proof?

A. Consider any integers a and b. We will prove $a \sim b$ and $b \sim a$.
B. Pick $\forall a \in \mathbb{Z}$ and $\forall b \in \mathbb{Z}$. We will prove $a \sim b \rightarrow b \sim a$.
C. Consider any integers a and b where $a \sim b$ and $b \sim a$.
D. Consider any integer a where $a \sim a$.
E. The relation ~ is symmetric if for any $a, b \in \mathbb{Z}$, we have $a \sim b \rightarrow b \sim a$.
F. Consider any integers a and b where $a \sim b$. We will prove $b \sim a$.

Answer at PollEv.com/cs103 or text CS103 to 22333 once to join, then A, B, C, D, E, or F.
Lemma 2: The binary relation \sim is symmetric.

Proof:

If $a \sim b$, then $a + b$ is even. Because $a + b = b + a$, this means that $b + a$ is even. Since $b + a$ is even, we know that $b \sim a$, as required. ■
Lemma 2: The binary relation ~ is symmetric.

Proof:

What is the formal definition of symmetry?
Lemma 2: The binary relation \(\sim \) is symmetric.

Proof:

What is the formal definition of symmetry?

\[\forall a \in \mathbb{Z}. \forall b \in \mathbb{Z}. (a \sim b \rightarrow b \sim a) \]
Lemma 2: The binary relation \sim is symmetric.

Proof:

What is the formal definition of symmetry?

$$\forall a \in \mathbb{Z}. \forall b \in \mathbb{Z}. (a \sim b \rightarrow b \sim a)$$

Therefore, we'll choose arbitrary integers a and b where $a \sim b$, then prove that $b \sim a$.
$a \sim b$ if $a+b$ is even

Lemma 2: The binary relation \sim is symmetric.

Proof:

What is the formal definition of symmetry?

$$\forall a \in \mathbb{Z}. \forall b \in \mathbb{Z}. \ (a \sim b \rightarrow b \sim a)$$

Therefore, we'll choose arbitrary integers a and b where $a \sim b$, then prove that $b \sim a$.
Lemma 2: The binary relation \(\sim \) is symmetric.

Proof:

What is the formal definition of symmetry?

\[\forall a \in \mathbb{Z}. \forall b \in \mathbb{Z}. (a \sim b \rightarrow b \sim a) \]

Therefore, we'll choose arbitrary integers \(a \) and \(b \) where \(a \sim b \), then prove that \(b \sim a \).
Lemma 2: The binary relation \sim is symmetric.

Proof: Consider any integers a and b where $a \sim b$. We need to show that $b \sim a$.

$$a \sim b \quad \text{if} \quad a+b \text{ is even}$$
Lemma 2: The binary relation \(\sim \) is symmetric.

Proof: Consider any integers \(a \) and \(b \) where \(a \sim b \). We need to show that \(b \sim a \).

Which of the following works best as the opening ("assume" part) of this proof?

A. Consider any integers \(a \) and \(b \). We will prove \(a \sim b \) and \(b \sim a \).
B. Pick \(\forall a \in \mathbb{Z} \) and \(\forall b \in \mathbb{Z} \). We will prove \(a \sim b \rightarrow b \sim a \).
C. Consider any integers \(a \) and \(b \) where \(a \sim b \) and \(b \sim a \).
D. Consider any integer \(a \) where \(a \sim a \).
E. The relation \(\sim \) is symmetric if for any \(a, b \in \mathbb{Z} \), we have \(a \sim b \rightarrow b \sim a \).
F. Consider any integers \(a \) and \(b \) where \(a \sim b \). We will prove \(b \sim a \).
Lemma 2: The binary relation \(\sim \) is symmetric.

Proof: Consider any integers \(a \) and \(b \) where \(a \sim b \). We need to show that \(b \sim a \).

Since \(a \sim b \), we know that \(a+b \) is even.
Lemma 2: The binary relation \(\sim \) is symmetric.

Proof: Consider any integers \(a \) and \(b \) where \(a \sim b \). We need to show that \(b \sim a \).

Since \(a \sim b \), we know that \(a + b \) is even. Because \(a + b = b + a \), this means that \(b + a \) is even.
Lemma 2: The binary relation \sim is symmetric.

Proof: Consider any integers a and b where $a \sim b$. We need to show that $b \sim a$.

Since $a \sim b$, we know that $a+b$ is even. Because $a+b = b+a$, this means that $b+a$ is even. Since $b+a$ is even, we know that $b \sim a$, as required.
Lemma 2: The binary relation \sim is symmetric.

Proof: Consider any integers a and b where $a \sim b$. We need to show that $b \sim a$.

Since $a \sim b$, we know that $a+b$ is even. Because $a+b = b+a$, this means that $b+a$ is even. Since $b+a$ is even, we know that $b \sim a$, as required. ■
Lemma 3: The binary relation \sim is transitive.
Lemma 3: The binary relation ~ is transitive.

Proof:

\[a \sim b \quad \text{if} \quad a + b \text{ is even} \]
Lemma 3: The binary relation \(\sim \) is transitive.

Proof:

What is the formal definition of transitivity?
Lemma 3: The binary relation \(\sim \) is transitive.

Proof:

What is the formal definition of transitivity?

\[
\forall a \in \mathbb{Z} . \; \forall b \in \mathbb{Z} . \; \forall c \in \mathbb{Z} . \; (a \sim b \land b \sim c \rightarrow a \sim c)
\]
Lemma 3: The binary relation \(\sim \) is transitive.

Proof: Consider arbitrary integers \(a \), \(b \), and \(c \) where \(a \sim b \) and \(b \sim c \). We need to prove that \(a \sim c \), meaning that we need to show that \(a + c \) is even. Since \(a \sim b \) and \(b \sim c \), we know that \(a \sim b \) and \(b \sim c \) are even. This means there are integers \(k \) and \(m \) where \(a + b = 2k \) and \(b + c = 2m \). Notice that \((a + b) + (b + c) = 2k + 2m \). Rearranging, we see that \(a + c + 2b = 2k + 2m \), so \(a + c = 2k + 2m - 2b = 2(k + m - b) \). So there is an integer \(r \), namely \(k + m - b \), such that \(a + c = 2r \). Thus \(a + c \) is even, so \(a \sim c \), as required. ■

What is the formal definition of transitivity?

\[
\forall a \in \mathbb{Z}. \forall b \in \mathbb{Z}. \forall c \in \mathbb{Z}. \ (a \sim b \land b \sim c \rightarrow a \sim c)
\]

Therefore, we'll choose arbitrary integers \(a, b, \) and \(c \) where \(a \sim b \) and \(b \sim c \), then prove that \(a \sim c \).
Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where $a \sim b$ and $b \sim c$. If $a + b$ is even, then $a \sim c$. This can be shown as follows:

Since $a \sim b$ and $b \sim c$, we know that $a + b$ and $b + c$ are even. This means there are integers k and m where $a + b = 2k$ and $b + c = 2m$. Notice that $(a + b) + (b + c) = 2k + 2m$. Rearranging, we see that $a + b + 2b = 2k + 2m$, so $a + b = 2(k + m - b)$. Since $k + m - b$ is an integer, there is an integer r, namely $k + m - b$, such that $a + b = 2r$. Thus $a + b$ is even, so $a \sim c$, as required. ■
Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where $a \sim b$ and $b \sim c$. We need to prove that $a \sim c$, meaning that we need to show that $a+c$ is even.
Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where $a \sim b$ and $b \sim c$. We need to prove that $a \sim c$, meaning that we need to show that $a + c$ is even.

Since $a \sim b$ and $b \sim c$, we know that $a + b$ and $b + c$ are even.
\[a \sim b \quad \text{if} \quad a + b \text{ is even} \]

Lemma 3: The binary relation \(\sim \) is transitive.

Proof: Consider arbitrary integers \(a, b \) and \(c \) where \(a \sim b \) and \(b \sim c \). We need to prove that \(a \sim c \), meaning that we need to show that \(a + c \) is even.

Since \(a \sim b \) and \(b \sim c \), we know that \(a + b \) and \(b + c \) are even. This means there are integers \(k \) and \(m \) where \(a + b = 2k \) and \(b + c = 2m \).
Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where $a\sim b$ and $b\sim c$. We need to prove that $a\sim c$, meaning that we need to show that $a+c$ is even.

Since $a\sim b$ and $b\sim c$, we know that $a+b$ and $b+c$ are even. This means there are integers k and m where $a+b = 2k$ and $b+c = 2m$. Notice that

$$(a+b) + (b+c) = 2k + 2m.$$
\(a \sim b \text{ if } a+b \text{ is even} \)

Lemma 3: The binary relation \(\sim \) is transitive.

Proof: Consider arbitrary integers \(a, b \) and \(c \) where \(a \sim b \) and \(b \sim c \). We need to prove that \(a \sim c \), meaning that we need to show that \(a+c \) is even.

Since \(a \sim b \) and \(b \sim c \), we know that \(a+b \) and \(b+c \) are even. This means there are integers \(k \) and \(m \) where \(a+b = 2k \) and \(b+c = 2m \). Notice that

\[
(a+b) + (b+c) = 2k + 2m.
\]

Rearranging, we see that

\[
a+c + 2b = 2k + 2m,
\]

so there is an integer \(r \), namely \(k + m - b \), such that \(a+c = 2r \). Thus \(a+c \) is even, so \(a \sim c \), as required. ■
Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers \(a, b \) and \(c \) where \(a \sim b \) and \(b \sim c \). We need to prove that \(a \sim c \), meaning that we need to show that \(a+c \) is even.

Since \(a \sim b \) and \(b \sim c \), we know that \(a+b \) and \(b+c \) are even. This means there are integers \(k \) and \(m \) where \(a+b = 2k \) and \(b+c = 2m \). Notice that

\[
(a+b) + (b+c) = 2k + 2m.
\]

Rearranging, we see that

\[
a+c + 2b = 2k + 2m,
\]

so

\[
a+c = 2k + 2m - 2b = 2(k+m-b).
\]
Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where $a \sim b$ and $b \sim c$. We need to prove that $a \sim c$, meaning that we need to show that $a + c$ is even.

Since $a \sim b$ and $b \sim c$, we know that $a + b$ and $b + c$ are even. This means there are integers k and m where $a + b = 2k$ and $b + c = 2m$. Notice that

$$(a+b) + (b+c) = 2k + 2m.$$

Rearranging, we see that

$$a + c + 2b = 2k + 2m,$$

so

$$a + c = 2k + 2m - 2b = 2(k + m - b).$$

So there is an integer r, namely $k + m - b$, such that $a + c = 2r$. Thus $a + c$ is even, so $a \sim c$, as required.
Lemma 3: The binary relation \sim is transitive.

Proof: Consider arbitrary integers a, b and c where $a \sim b$ and $b \sim c$. We need to prove that $a \sim c$, meaning that we need to show that $a + c$ is even.

Since $a \sim b$ and $b \sim c$, we know that $a + b$ and $b + c$ are even. This means there are integers k and m where $a + b = 2k$ and $b + c = 2m$. Notice that

$$(a+b) + (b+c) = 2k + 2m.$$

Rearranging, we see that

$$a + c + 2b = 2k + 2m,$$

so

$$a + c = 2k + 2m - 2b = 2(k + m - b).$$

So there is an integer r, namely $k + m - b$, such that $a + c = 2r$. Thus $a + c$ is even, so $a \sim c$, as required. ■
An Observation
Lemma 1: The binary relation ~ is reflexive.

Proof: Consider an arbitrary $a \in \mathbb{Z}$. We need to prove that $a \sim a$. From the definition of the ~ relation, this means that we need to prove that $a + a$ is even.

To see this, notice that $a + a = 2a$, so the sum $a + a$ can be written as $2k$ for some integer k (namely, a), so $a + a$ is even. Therefore, $a \sim a$ holds, as required. ■
Lemma 2: The binary relation \(\sim \) is symmetric.

Proof: Consider any integers \(a \) and \(b \) where \(a \sim b \). We need to show that \(b \sim a \).

Since \(a \sim b \), we know that \(a + b \) is even. Because \(a + b = b + a \), this means that \(b + a \) is even. Since \(b + a \) is even, we know that \(b \sim a \), as required. ■
\[a \sim b \quad \text{if} \quad a+b \text{ is even} \]

Lemma 3: The binary relation \(\sim \) is transitive.

Proof: Consider arbitrary integers \(a, b \) and \(c \) where \(a \sim b \) and \(b \sim c \). We need to prove that \(a \sim c \), meaning that we need to show that \(a+c \) is even.

Since \(a \sim b \) and \(b \sim c \), we know that \(a+b \) and \(b+c \) are even. This means there are integers \(k \) and \(m \) where \(a+b = 2k \) and \(b+c = 2m \). Notice that

\[
(a+b) + (b+c) = 2k + 2m.
\]

Rearranging, we see that

\[
a+c + 2b = 2k + 2m,
\]

so

\[
a+c = 2k + 2m - 2b = 2(k+m-b).
\]

So there is an integer \(r \), namely \(k+m-b \), such that \(a+c = 2r \). Thus \(a+c \) is even.

The formal definition of transitivity is given in first-order logic, but **this proof does not contain any first-order logic symbols**!
First-Order Logic and Proofs

• First-order logic is an excellent tool for giving formal definitions to key terms.

• While first-order logic *guides* the structure of proofs, it is *exceedingly rare* to see first-order logic in written proofs.

• Follow the example of these proofs:

 • Use the first-order logic definitions to identify your "*assume*" and "*want to show*" parts of the proof.

 • Write the proof in plain English using the conventions we set up in the first week of the class.
Properties of Equivalence Relations
xTy if x and y have the same color
\[xRy \quad \text{if} \quad x \text{ and } y \text{ have the same shape} \]
Equivalence Classes

- Given an equivalence relation R over a set A, for any $x \in A$, the equivalence class of x is the set

$$[x]_R = \{ y \in A \mid xRy \}$$

- Intuitively, the set $[x]_R$ contains all elements of A that are related to x by relation R.
xRy if x and y have the same shape
Recall equivalence classes definition:

$$[x]_R = \{ y \in A \mid xRy \}$$

How many different names could we use to refer to the equivalence class on the right (with the suns)?

Answer at PollEv.com/cs103 or text **CS103** to **22333** once to join, then 0, 1, 2, 3, or 4.
xRy if x and y have the same shape
$x R y$ if x and y have the same shape
xRy if x and y have the same shape
The Fundamental Theorem of Equivalence Relations: Let R be an equivalence relation over a set A. Then every element $a \in A$ belongs to exactly one equivalence class of R.
How’d We Get Here?

- We discovered equivalence relations by thinking about *partitions* of a set of elements.
- We saw that if we had a binary relation that tells us whether two elements are in the same group, it had to be reflexive, symmetric, and transitive.
- The FToER says that, in some sense, these rules precisely capture what it means to be a partition.
- **Question:** What’s so special about these three rules?
\[\forall a \in A. \ aRa \]

\[\forall a \in A. \ \forall b \in A. \ (aRb \rightarrow bRa) \]

\[\forall a \in A. \ \forall b \in A. \ \forall c \in A. \ (aRb \land bRc \rightarrow aRc) \]
A new rule that must be true:

Relation this person holds: “Are these two things in the same partition?” for some mystery partition.
\(aRb \land bRc \rightarrow cRa \)
∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → cRa)
\[\forall a \in A. \ \forall b \in A. \ \forall c \in A. \ (aRb \land bRc \rightarrow cRa) \]

A binary relation with this property is called **cyclic**.
Theorem: A binary relation R over a set A is an equivalence relation if and only if it is reflexive and cyclic.
Theorem: A binary relation R over a set A is an equivalence relation if and only if it is reflexive and cyclic.
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
</table>
| R is an equivalence relation.
 R is reflexive.
 R is symmetric.
 R is transitive. | R is reflexive.
 R is cyclic. |
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>R is an equivalence relation.</td>
<td>R is reflexive. R is cyclic.</td>
</tr>
<tr>
<td>• R is reflexive. R is symmetric. R is transitive.</td>
<td></td>
</tr>
</tbody>
</table>
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>R is an equivalence relation.</td>
<td>R is reflexive.</td>
</tr>
<tr>
<td>R is reflexive.</td>
<td>R is cyclic.</td>
</tr>
<tr>
<td>R is symmetric.</td>
<td></td>
</tr>
<tr>
<td>R is transitive.</td>
<td></td>
</tr>
</tbody>
</table>
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>• R is an equivalence relation.</td>
<td>R is reflexive.</td>
</tr>
<tr>
<td>• R is reflexive.</td>
<td>R is cyclic.</td>
</tr>
<tr>
<td>• R is symmetric.</td>
<td>• If aRb and bRc, then cRa.</td>
</tr>
<tr>
<td>• R is transitive.</td>
<td></td>
</tr>
</tbody>
</table>
Lemma 1: If \(R \) is an equivalence relation over a set \(A \), then \(R \) is reflexive and cyclic.

What We’re Assuming
- \(R \) is an equivalence relation.
 - \(R \) is reflexive.
 - \(R \) is symmetric.
 - \(R \) is transitive.

What We Need To Show
- If \(aRb \) and \(bRc \), then \(cRa \).
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>R is an equivalence relation.</td>
<td>• If aRb and bRc, then cRa.</td>
</tr>
<tr>
<td>R is reflexive.</td>
<td></td>
</tr>
<tr>
<td>R is symmetric.</td>
<td></td>
</tr>
<tr>
<td>• R is transitive.</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image-url)
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

What We’re Assuming

- R is an equivalence relation.
 - R is reflexive.
 - R is symmetric.
 - R is transitive.

What We Need To Show

- If aRb and bRc, then cRa.

![Diagram](attachment:diagram.png)
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.
Lemma 1: If \(R \) is an equivalence relation over a set \(A \), then \(R \) is reflexive and cyclic.

Proof:
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some set A.
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some set A. We need to prove that R is reflexive and cyclic.
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some set A. We need to prove that R is reflexive and cyclic.

Since R is an equivalence relation, we know that R is reflexive, symmetric, and transitive.
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some set A. We need to prove that R is reflexive and cyclic.

Since R is an equivalence relation, we know that R is reflexive, symmetric, and transitive. Consequently, we already know that R is reflexive, so we only need to show that R is cyclic.
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some set A. We need to prove that R is reflexive and cyclic.

Since R is an equivalence relation, we know that R is reflexive, symmetric, and transitive. Consequently, we already know that R is reflexive, so we only need to show that R is cyclic.

- If aRb and bRc, then cRa.

You write the next sentence!
What is our assumption?

Answer at PollEv.com/cs103 or text CS103 to 22333 once to join, then your sentence.
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some set A. We need to prove that R is reflexive and cyclic.

Since R is an equivalence relation, we know that R is reflexive, symmetric, and transitive. Consequently, we already know that R is reflexive, so we only need to show that R is cyclic.

To prove that R is cyclic, consider any arbitrary $a, b, c \in A$ where aRb and bRc.
Lemma 1: If \(R \) is an equivalence relation over a set \(A \), then \(R \) is reflexive and cyclic.

Proof: Let \(R \) be an arbitrary equivalence relation over some set \(A \). We need to prove that \(R \) is reflexive and cyclic.

Since \(R \) is an equivalence relation, we know that \(R \) is reflexive, symmetric, and transitive. Consequently, we already know that \(R \) is reflexive, so we only need to show that \(R \) is cyclic.

To prove that \(R \) is cyclic, consider any arbitrary \(a, b, c \in A \) where \(aRb \) and \(bRc \).

- If \(aRb \) and \(bRc \), then \(cRa \).
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some set A. We need to prove that R is reflexive and cyclic.

Since R is an equivalence relation, we know that R is reflexive, symmetric, and transitive. Consequently, we already know that R is reflexive, so we only need to show that R is cyclic.

To prove that R is cyclic, consider any arbitrary $a, b, c \in A$ where aRb and bRc. We need to prove that cRa holds.
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some set A. We need to prove that R is reflexive and cyclic.

Since R is an equivalence relation, we know that R is reflexive, symmetric, and transitive. Consequently, we already know that R is reflexive, so we only need to show that R is cyclic.

To prove that R is cyclic, consider any arbitrary $a, b, c \in A$ where aRb and bRc. We need to prove that cRa holds. Since R is transitive, from aRb and bRc we see that aRc.
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some set A. We need to prove that R is reflexive and cyclic.

Since R is an equivalence relation, we know that R is reflexive, symmetric, and transitive. Consequently, we already know that R is reflexive, so we only need to show that R is cyclic.

To prove that R is cyclic, consider any arbitrary $a, b, c \in A$ where aRb and bRc. We need to prove that cRa holds. Since R is transitive, from aRb and bRc we see that aRc. Then, since R is symmetric, from aRc we see that cRa, which is what we needed to prove.
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some set A. We need to prove that R is reflexive and cyclic.

Since R is an equivalence relation, we know that R is reflexive, symmetric, and transitive. Consequently, we already know that R is reflexive, so we only need to show that R is cyclic.

To prove that R is cyclic, consider any arbitrary $a, b, c \in A$ where aRb and $b Rc$. We need to prove that cRa holds. Since R is transitive, from aRb and $b Rc$ we see that $a Rc$. Then, since R is symmetric, from $a Rc$ we see that $c Ra$, which is what we needed to prove. ■
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some set A. We need to prove that R is reflexive and cyclic.

Since R is an equivalence relation, we know that R is reflexive, symmetric, and transitive. Consequently, we already know that R is reflexive, so we only need to show that R is cyclic.

To prove that R is cyclic, consider any arbitrary $a, b, c \in A$ where aRb and bRc. We need to prove that cRa holds.

Since R is transitive, from aRb and bRc we see that aRc. Then, since R is symmetric, from aRc we see that cRa, which is what we needed to prove. ■

Notice how the first few sentences of this proof mirror the structure of what needs to be proved. We’re just following the templates from the first week of class!
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some set A. We need to prove that R is reflexive and cyclic. Since R is an equivalence relation, we know that R is reflexive, so we only need to show that R is cyclic. To prove that R is cyclic, consider any arbitrary $a, b, c \in A$ where aRb and bRc. We need to prove that cRa holds. Since R is transitive, from aRb and bRc we see that aRc. Then, since R is symmetric, from aRc we see that cRa, which is what we needed to prove. ■

Notice how this setup mirrors the first-order definition of cyclicity:

$$\forall a \in A. \forall b \in A. \forall c \in A. (aRb \land bRc \rightarrow cRa)$$

When writing proofs about terms with first-order definitions, it’s critical to call back to those definitions!
Lemma: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some set A. We need to prove that R is reflexive and cyclic.

Since R is an equivalence relation, we know that R is reflexive, symmetric, and transitive. Consequently, we already know that R is reflexive, so we only need to show that R is cyclic.

To prove that R is cyclic, consider any arbitrary $a, b, c \in A$ where aRb and bRc. We need to prove that cRa holds. Since R is transitive, from aRb and bRc we see that aRc. Then, since R is symmetric, from aRc we see that cRa, which is what we needed to prove. ■
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some set A. We need to prove that R is reflexive and cyclic.

Since R is an equivalence relation, we know that R is reflexive, symmetric, and transitive. Consequently, we already know that R is reflexive, so we only need to show that R is cyclic.

To prove that R is cyclic, consider any arbitrary $a, b, c \in A$ where aRb and bRc. We need to prove that cRa holds. Since R is transitive, from aRb and bRc we see that aRc. Then, since R is symmetric, from aRc we see that cRa, which is what we needed to prove. ■
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.
Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.
Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>R is reflexive.</td>
<td>R is reflexive.</td>
</tr>
<tr>
<td>R is cyclic.</td>
<td>R is symmetric.</td>
</tr>
<tr>
<td></td>
<td>R is transitive.</td>
</tr>
<tr>
<td></td>
<td>R is an equivalence relation.</td>
</tr>
</tbody>
</table>
Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>R is reflexive.</td>
<td>R is an equivalence relation.</td>
</tr>
<tr>
<td>R is cyclic.</td>
<td>• R is reflexive.</td>
</tr>
</tbody>
</table>
<pre><code> | R is symmetric. |
 | R is transitive. |
</code></pre>
Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>• R is reflexive.</td>
<td>• R is reflexive.</td>
</tr>
<tr>
<td>• R is cyclic.</td>
<td>• R is symmetric.</td>
</tr>
<tr>
<td></td>
<td>• R is transitive.</td>
</tr>
<tr>
<td></td>
<td>• R is an equivalence relation.</td>
</tr>
</tbody>
</table>
Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>• R is reflexive.</td>
<td>R is an equivalence relation.</td>
</tr>
<tr>
<td>• R is cyclic.</td>
<td>R is reflexive.</td>
</tr>
<tr>
<td></td>
<td>• R is symmetric.</td>
</tr>
<tr>
<td></td>
<td>R is transitive.</td>
</tr>
</tbody>
</table>
Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We’re Assuming

- R is reflexive.
- R is cyclic.

What We Need To Show

- R is symmetric.
 - If aRb, then bRa.

![Diagram](attachment:attachment.png)
Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We’re Assuming

- R is reflexive.
 - $\forall x \in A. \ xRx$
- R is cyclic.
 - $xRy \land yRz \rightarrow zRx$

What We Need To Show

- R is symmetric.
 - If aRb, then bRa.

![Diagram showing reflexive and cyclic properties]
Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We’re Assuming

- R is reflexive.
 \[
 \forall x \in A. \ xRx
 \]
- R is cyclic.
 \[
 xRy \land yRz \rightarrow zRx
 \]

What We Need To Show

- R is symmetric.
- If aRb, then bRa.

\[
\begin{array}{ccc}
 a & & b \\
\end{array}
\]
Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>R is reflexive.</td>
<td>R is symmetric.</td>
</tr>
<tr>
<td>$\forall x \in A. \ xRx$</td>
<td>If aRb, then bRa.</td>
</tr>
<tr>
<td>R is cyclic.</td>
<td></td>
</tr>
<tr>
<td>$xRy \land yRz \rightarrow zRx$</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](attachment:relation.png)
Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We’re Assuming

R is reflexive.

- $\forall x \in A. \ xRx$

R is cyclic.

- $xRy \land yRz \rightarrow zRx$

What We Need To Show

- R is symmetric.
 - If aRb, then bRa.
Lemma 2: If \(R \) is a binary relation over a set \(A \) that is reflexive and cyclic, then \(R \) is an equivalence relation.

What We’re Assuming
- \(R \) is reflexive.
 - \(\forall x \in A. \ xRx \)
- \(R \) is cyclic.
 - \(xRy \land yRz \rightarrow zRx \)

What We Need To Show
- \(R \) is symmetric.
 - If \(aRb \), then \(bRa \).
Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We’re Assuming

- R is reflexive.
 \[\forall x \in A. \, xRx \]
- R is cyclic.
 - \[xRy \land yRz \rightarrow zRx \]

What We Need To Show

- R is symmetric.
- If aRb, then bRa.

![Diagram](attachment:entry-diagram.png)
Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We’re Assuming

- R is reflexive.
 - $\forall x \in A. \ xRx$

- R is cyclic.
 - $xRy \land yRz \rightarrow zRx$

What We Need To Show

- R is symmetric.
 - If aRb, then bRa.

![Diagram showing reflexive and cyclic relation](image-url)
Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>R is reflexive.</td>
<td>R is an equivalence relation.</td>
</tr>
<tr>
<td>$\forall x \in A. \ xRx$</td>
<td>R is reflexive.</td>
</tr>
<tr>
<td>R is cyclic.</td>
<td>R is symmetric.</td>
</tr>
<tr>
<td>$xRy \land yRz \rightarrow zRx$</td>
<td>R is transitive.</td>
</tr>
</tbody>
</table>
Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>• R is reflexive.</td>
<td>R is an equivalence relation.</td>
</tr>
<tr>
<td>• $\forall x \in A. \ xRx$</td>
<td>R is reflexive.</td>
</tr>
<tr>
<td>• R is cyclic.</td>
<td>R is symmetric.</td>
</tr>
<tr>
<td>• $xRy \land yRz \rightarrow zRx$</td>
<td>R is transitive.</td>
</tr>
</tbody>
</table>
Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We’re Assuming

- R is reflexive.
 - $\forall x \in A. \ xRx$
- R is cyclic.
 - $xRy \land yRz \rightarrow zRx$

What We Need To Show

- R is transitive.
 - If aRb and bRc, then aRc.

![Diagram](attachment:image.png)
Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>R is reflexive.</td>
<td>R is transitive.</td>
</tr>
<tr>
<td>$\forall x \in A. xRx$</td>
<td>If aRb and bRc, then aRc.</td>
</tr>
<tr>
<td>R is cyclic.</td>
<td></td>
</tr>
<tr>
<td>$xRy \land yRz \rightarrow zRx$</td>
<td></td>
</tr>
</tbody>
</table>
Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We’re Assuming

- R is reflexive.
 - $\forall x \in A. \ xRx$
- R is cyclic.
 - $xRy \land yRz \rightarrow zRx$

What We Need To Show

- R is transitive.
 - If aRb and bRc, then aRc.
Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We’re Assuming

- R is reflexive.
 - $\forall x \in A. \ xRx$
- R is cyclic.
 - $xRy \land yRz \rightarrow zRx$
- R is symmetric
 - $xRy \rightarrow yRx$

What We Need To Show

- R is transitive.
 - If aRb and bRc, then aRc.

![Diagram showing the cyclic relationships between elements a, b, and c.](image)
Lemma 2: If \(R \) is a binary relation over a set \(A \) that is cyclic and reflexive, then \(R \) is an equivalence relation.

Proof: Let \(R \) be an arbitrary binary relation over a set \(A \) that is cyclic and reflexive. We need to prove that \(R \) is an equivalence relation. To do so, we need to show that \(R \) is reflexive, symmetric, and transitive. Since we already know by assumption that \(R \) is reflexive, we just need to show that \(R \) is symmetric and transitive.

First, we'll prove that \(R \) is symmetric. To do so, pick any arbitrary \(a, b \in A \) where \(aRb \) holds. We need to prove that \(bRa \) is true. Since \(R \) is reflexive, we know that \(aRa \) holds. Therefore, by cyclicity, since \(aRa \) and \(aRb \), we learn that \(bRa \), as required.

Next, we'll prove that \(R \) is transitive. Let \(a, b, \) and \(c \) be any elements of \(A \) where \(aRb \) and \(bRc \). We need to prove that \(aRc \). Since \(R \) is cyclic, from \(aRb \) and \(bRc \) we see that \(cRa \). Earlier, we showed that \(R \) is symmetric. Therefore, from \(cRa \) we see that \(aRc \) is true, as required. ■
Lemma 2: If R is a binary relation over a set A that is cyclic and reflexive, then R is an equivalence relation.

Proof:
Lemma 2: If R is a binary relation over a set A that is cyclic and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that is cyclic and reflexive.
Lemma 2: If R is a binary relation over a set A that is cyclic and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that is cyclic and reflexive. We need to prove that R is an equivalence relation.
Lemma 2: If R is a binary relation over a set A that is cyclic and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that is cyclic and reflexive. We need to prove that R is an equivalence relation. To do so, we need to show that R is reflexive, symmetric, and transitive.
Lemma 2: If R is a binary relation over a set A that is cyclic and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that is cyclic and reflexive. We need to prove that R is an equivalence relation. To do so, we need to show that R is reflexive, symmetric, and transitive. Since we already know by assumption that R is reflexive, we just need to show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any arbitrary $a, b \in A$ where aRb holds. We need to prove that bRa is true. Since R is reflexive, we know that aRa holds. Therefore, by cyclicity, since aRa and aRb, we learn that bRa, as required.

Next, we'll prove that R is transitive. Let a, b, c be any elements of A where aRb and bRc. We need to prove that aRc. Since R is cyclic, from aRb and bRc we see that cRa. Earlier, we showed that R is symmetric. Therefore, from cRa we see that aRc is true, as required. ■
Lemma 2: If R is a binary relation over a set A that is cyclic and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that is cyclic and reflexive. We need to prove that R is an equivalence relation. To do so, we need to show that R is reflexive, symmetric, and transitive. Since we already know by assumption that R is reflexive, we just need to show that R is symmetric and transitive.

First, we'll prove that R is symmetric.
Lemma 2: If R is a binary relation over a set A that is cyclic and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that is cyclic and reflexive. We need to prove that R is an equivalence relation. To do so, we need to show that R is reflexive, symmetric, and transitive. Since we already know by assumption that R is reflexive, we just need to show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any arbitrary $a, b \in A$ where aRb holds.
Lemma 2: If R is a binary relation over a set A that is cyclic and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that is cyclic and reflexive. We need to prove that R is an equivalence relation. To do so, we need to show that R is reflexive, symmetric, and transitive. Since we already know by assumption that R is reflexive, we just need to show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any arbitrary $a, b \in A$ where aRb holds. We need to prove that bRa is true.
Lemma 2: If R is a binary relation over a set A that is cyclic and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that is cyclic and reflexive. We need to prove that R is an equivalence relation. To do so, we need to show that R is reflexive, symmetric, and transitive. Since we already know by assumption that R is reflexive, we just need to show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any arbitrary $a, b \in A$ where aRb holds. We need to prove that bRa is true. Since R is reflexive, we know that aRa holds.
Lemma 2: If R is a binary relation over a set A that is cyclic and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that is cyclic and reflexive. We need to prove that R is an equivalence relation. To do so, we need to show that R is reflexive, symmetric, and transitive. Since we already know by assumption that R is reflexive, we just need to show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any arbitrary $a, b \in A$ where aRb holds. We need to prove that bRa is true. Since R is reflexive, we know that aRa holds. Therefore, by cyclicity, since aRa and aRb, we learn that bRa, as required.
Lemma 2: If R is a binary relation over a set A that is cyclic and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that is cyclic and reflexive. We need to prove that R is an equivalence relation. To do so, we need to show that R is reflexive, symmetric, and transitive. Since we already know by assumption that R is reflexive, we just need to show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any arbitrary $a, b \in A$ where aRb holds. We need to prove that bRa is true. Since R is reflexive, we know that aRa holds. Therefore, by cyclicity, since aRa and aRb, we learn that bRa, as required.

Next, we'll prove that R is transitive.
Lemma 2: If R is a binary relation over a set A that is cyclic and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that is cyclic and reflexive. We need to prove that R is an equivalence relation. To do so, we need to show that R is reflexive, symmetric, and transitive. Since we already know by assumption that R is reflexive, we just need to show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any arbitrary $a, b \in A$ where aRb holds. We need to prove that bRa is true. Since R is reflexive, we know that aRa holds. Therefore, by cyclicity, since aRa and aRb, we learn that bRa, as required.

Next, we'll prove that R is transitive. Let $a, b,$ and c be any elements of A where aRb and bRc.
Lemma 2: If R is a binary relation over a set A that is cyclic and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that is cyclic and reflexive. We need to prove that R is an equivalence relation. To do so, we need to show that R is reflexive, symmetric, and transitive. Since we already know by assumption that R is reflexive, we just need to show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any arbitrary $a, b \in A$ where aRb holds. We need to prove that bRa is true. Since R is reflexive, we know that aRa holds. Therefore, by cyclicity, since aRa and aRb, we learn that bRa, as required.

Next, we'll prove that R is transitive. Let a, b, c be any elements of A where aRb and bRc. We need to prove that aRc.
Lemma 2: If R is a binary relation over a set A that is cyclic and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that is cyclic and reflexive. We need to prove that R is an equivalence relation. To do so, we need to show that R is reflexive, symmetric, and transitive. Since we already know by assumption that R is reflexive, we just need to show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any arbitrary $a, b \in A$ where aRb holds. We need to prove that bRa is true. Since R is reflexive, we know that aRa holds. Therefore, by cyclicity, since aRa and aRb, we learn that bRa, as required.

Next, we'll prove that R is transitive. Let $a, b, \text{ and } c$ be any elements of A where aRb and bRc. We need to prove that $a Rc$. Since R is cyclic, from aRb and bRc we see that cRa.
Lemma 2: If R is a binary relation over a set A that is cyclic and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that is cyclic and reflexive. We need to prove that R is an equivalence relation. To do so, we need to show that R is reflexive, symmetric, and transitive. Since we already know by assumption that R is reflexive, we just need to show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any arbitrary $a, b \in A$ where aRb holds. We need to prove that bRa is true. Since R is reflexive, we know that aRa holds. Therefore, by cyclicity, since aRa and aRb, we learn that bRa, as required.

Next, we'll prove that R is transitive. Let $a, b,$ and c be any elements of A where aRb and bRc. We need to prove that aRc. Since R is cyclic, from aRb and bRc we see that cRa. Earlier, we showed that R is symmetric. Therefore, from cRa we see that aRc is true, as required.
Lemma 2: If \(R \) is a binary relation over a set \(A \) that is cyclic and reflexive, then \(R \) is an equivalence relation.

Proof: Let \(R \) be an arbitrary binary relation over a set \(A \) that is cyclic and reflexive. We need to prove that \(R \) is an equivalence relation. To do so, we need to show that \(R \) is reflexive, symmetric, and transitive. Since we already know by assumption that \(R \) is reflexive, we just need to show that \(R \) is symmetric and transitive.

First, we'll prove that \(R \) is symmetric. To do so, pick any arbitrary \(a, b \in A \) where \(aRb \) holds. We need to prove that \(bRa \) is true. Since \(R \) is reflexive, we know that \(aRa \) holds. Therefore, by cyclicity, since \(aRa \) and \(aRb \), we learn that \(bRa \), as required.

Next, we'll prove that \(R \) is transitive. Let \(a, b, \) and \(c \) be any elements of \(A \) where \(aRb \) and \(bRc \). We need to prove that \(aRc \). Since \(R \) is cyclic, from \(aRb \) and \(bRc \) we see that \(cRa \). Earlier, we showed that \(R \) is symmetric. Therefore, from \(cRa \) we see that \(aRc \) is true, as required. ■
Lemma 2: If R is a binary relation over a set A that is cyclic and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that is cyclic and reflexive. We need to prove that R is an equivalence relation. To do so, we need to show that R is reflexive, symmetric, and transitive. Since we already know by assumption that R is reflexive, we just need to show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any arbitrary $a, b \in A$ where aRb holds. We need to prove that bRa is true. Since R is reflexive, we know that aRa holds. Therefore, by cyclicity, since aRa and aRb, we learn that bRa, as required.

Next, we'll prove that R is transitive. Let $a, b, and c$ be any elements of A where aRb and bRc. We need to prove that aRc. Since R is cyclic, from aRb and bRc we see that cRa. Earlier, we showed that R is symmetric. Therefore, from cRa we see that aRc is true, as required. ■
Lemma 2: If R is a binary relation over a set A that is cyclic and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that is cyclic and reflexive. We need to prove that R is an equivalence relation. To do this, we need to show that R is reflexive, symmetric, and transitive. Since we already know by assumption that R is reflexive, we just need to show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any arbitrary $a, b \in A$ where aRb holds. We need to prove that bRa is true. Since R is reflexive, we know that aRa holds. Therefore, by cyclicity, since aRa and aRb, we learn that bRa, as required.

Next, we'll prove that R is transitive. Let $a, b, \text{ and } c$ be any elements of A where aRb and bRc. We need to prove that aRc. Since R is cyclic, from aRb and bRc we see that cRa. Earlier, we showed that R is symmetric. Therefore, from cRa we see that aRc is true, as required. ■

Notice how this setup mirrors the first-order definition of transitivity:

$$\forall a \in A. \forall b \in A. \forall c \in A. (aRb \land bRc \to aRc)$$

When writing proofs about terms with first-order definitions, it’s critical to call back to those definitions!
Lemma 2: If R is a binary relation over a set A that is cyclic and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that is cyclic and reflexive. We need to prove that R is an equivalence relation. To do so, we need to show that R is reflexive, symmetric, and transitive. Since we already know by assumption that R is reflexive, we just need to show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any arbitrary $a, b \in A$ where aRb holds. We need to prove that bRa is true. Since R is reflexive, we know that aRa holds. Therefore, by cyclicity, since aRa and aRb, we learn that bRa, as required.

Next, we'll prove that R is transitive. Let $a, b,$ and c be any elements of A where aRb and bRc. We need to prove that aRc. Since R is cyclic, from aRb and bRc we see that cRa. Earlier, we showed that R is symmetric. Therefore, from cRa we see that aRc is true, as required. ■
Next Time

• **Functions**
 • How do we model transformations in a mathematical sense?

• **Domains and Codomains**
 • Type theory meets mathematics!

• **Injections, Surjections, and Bijections**
 • Three special classes of functions.