Graph Theory
Part One
Graph Theory

For those of you who have already completed CS106B/X:
Chemical Bonds
What's in Common

- Each of these structures consists of
 - a collection of objects and
 - links between those objects.
- **Goal:** find a general framework for describing these objects and their properties.
A graph is a mathematical structure for representing relationships.
A graph is a mathematical structure for representing relationships.

A graph consists of a set of nodes (or vertices) connected by edges (or arcs).
A graph is a mathematical structure for representing relationships. A graph consists of a set of nodes (or vertices) connected by edges (or arcs).
A **graph** is a mathematical structure for representing relationships.

A graph consists of a set of **nodes** (or **vertices**) connected by **edges** (or **arcs**).
Some graphs are *directed*. On these sites, you can follow someone who doesn’t follow you back.

A tournament diagram shows who beat who.
Some graphs are *undirected*.

On this site, if you are friends with someone, they are also friends with you.

Atoms that are adjacent to each other in a molecule.

Words that differ from each other by exactly one letter.
Going forward, we're exclusively focused on undirected graphs.

The term “graph” will mean undirected graphs with a finite number of nodes, (unless specified otherwise).
Formalizing Graphs

• How might we define a graph mathematically?

• We need to specify
 • what the nodes in the graph are, and
 • which edges are in the graph.

• The nodes can be pretty much anything.

• What about the edges?
Formalizing Graphs

- An **unordered pair** is a set \(\{a, b\} \) of two elements \(a \neq b \). (Remember that sets are unordered).
 - \(\{0, 1\} = \{1, 0\} \)
- An **undirected graph** is an ordered pair \(G = (V, E) \), where
 - \(V \) is a set of nodes, which can be anything, and
 - \(E \) is a set of edges, which are unordered pairs of nodes drawn from \(V \).
- **[For your reference, but remember we won’t be focusing on them in this class]** A **directed graph** is an ordered pair \(G = (V, E) \), where
 - \(V \) is a set of nodes, which can be anything, and
 - \(E \) is a set of edges, which are *ordered* pairs of nodes drawn from \(V \).
An **unordered pair** is a set \{a, b\} of two elements \(a \neq b\).

An **undirected graph** is an ordered pair \(G = (V, E)\), where

- \(V\) is a set of nodes, which can be anything, and
- \(E\) is a set of edges, which are unordered pairs of nodes drawn from \(V\).

How many of these drawings are of valid undirected graphs?

Answer at PollEv.com/cs103 or text CS103 to 22333 once to join, then a number.
Self-Loops

- An edge from a node to itself is called a **self-loop**.
- In undirected graphs, self-loops are generally not allowed.
 - Can you see how this follows from the definition?
- In directed graphs, self-loops are generally allowed unless specified otherwise.
Standard Graph Terminology
Two nodes are called *adjacent* if there is an edge between them.
Two nodes are called *adjacent* if there is an edge between them.
Adjacent nodes

- Let $G = (V, E)$ be a graph.
 - Intuitively, two nodes are adjacent if they're linked by an edge.
- Formally speaking, we say that two nodes $u, v \in V$ are adjacent if $\{u, v\} \in E$.

To

From

SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, ..., v_n$ such that any two consecutive nodes in the sequence are adjacent.

SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, ..., v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path $v_1, ..., v_n$ is $n - 1$.

SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea
A **path** in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The **length** of the path v_1, \ldots, v_n is $n - 1$.

(This path has length 10, but visits 11 cities.)
A **path** in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The **length** of the path v_1, \ldots, v_n is $n - 1$.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

Sea, But, SLC, Port, Sea
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, ..., v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path $v_1, ..., v_n$ is $n - 1$.

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac
A **path** in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The **length** of the path v_1, \ldots, v_n is $n - 1$.

A **cycle** in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

(This cycle has length nine and visits nine different cities.)
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

How many paths in this graph are there from SF to LA?

A. 1
B. 4
C. 10
D. 20
E. None of these.
A **path** in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The **length** of the path v_1, \ldots, v_n is $n - 1$.

A **cycle** in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)
A **path** in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The **length** of the path v_1, \ldots, v_n is $n - 1$.

A **cycle** in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

SF, Sac, LA, Phoe, Flag, Bar
A **path** in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The **length** of the path v_1, \ldots, v_n is $n - 1$.

A **cycle** in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)
A path in a graph \(G = (V, E) \) is a sequence of one or more nodes \(v_1, v_2, v_3, \ldots, v_n \) such that any two consecutive nodes in the sequence are adjacent.

The length of the path \(v_1, \ldots, v_n \) is \(n - 1 \).

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is a path that does not repeat any nodes or edges.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is a path that does not repeat any nodes or edges.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, ..., v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path $v_1, ..., v_n$ is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is a path that does not repeat any nodes or edges.

(SF, Sac, LA, Phoe, Flag, Bar, LA)
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is a path that does not repeat any nodes or edges.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is a path that does not repeat any nodes or edges.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is a path that does not repeat any nodes or edges.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is a path that does not repeat any nodes or edges.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is path that does not repeat any nodes or edges.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, ..., v_n$ such that any two consecutive nodes in the sequence are adjacent.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is a path that does not repeat any nodes or edges.

The length of the path $v_1, ..., v_n$ is $n - 1$.

Sac, SLC, Port, Sac, SLC
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is a path that does not repeat any nodes or edges.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, ..., v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path $v_1, ..., v_n$ is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is a path that does not repeat any nodes or edges.
A path in a graph \(G = (V, E) \) is a sequence of one or more nodes \(v_1, v_2, v_3, \ldots, v_n \) such that any two consecutive nodes in the sequence are adjacent.

The length of the path \(v_1, \ldots, v_n \) is \(n - 1 \).

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is a path that does not repeat any nodes or edges.

A simple cycle in a graph is a cycle that does not repeat any nodes or edges except the first/last node.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is a path that does not repeat any nodes or edges.

A simple cycle in a graph is a cycle that does not repeat any nodes or edges except the first/last node.

The length of the path v_1, \ldots, v_n is $n - 1$.

Sac, SLC, Port, Sac, SLC, Port, Sac

(A cycle, not a simple cycle.)
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, ..., v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path $v_1, ..., v_n$ is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is a path that does not repeat any nodes or edges.

A simple cycle in a graph is a cycle that does not repeat any nodes or edges except the first/last node.

Sac, SLC, Port, Sac, SLC, Port, Sac (This cycle has length 6.)
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, ..., v_n$ such that any two consecutive nodes in the sequence are adjacent.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, ..., v_n$ such that any two consecutive nodes in the sequence are adjacent.

Two nodes in a graph are called **connected** if there is a path between them.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

Two nodes in a graph are called connected if there is a path between them.

(These nodes are not connected. No Grand Canyon for you.)
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

Two nodes in a graph are called connected if there is a path between them.

A graph G as a whole is called connected if all pairs of nodes in G are connected.
A path in a graph \(G = (V, E) \) is a sequence of one or more nodes \(v_1, v_2, v_3, \ldots, v_n \) such that any two consecutive nodes in the sequence are adjacent.

Two nodes in a graph are called connected if there is a path between them.

A graph \(G \) as a whole is called connected if all pairs of nodes in \(G \) are connected.

(This graph is not connected.)