Graph Theory
Part One
Graph Theory

For those of you who have already completed CS106B/X:
Chemical Bonds
Zombies are everywhere

Is this guy a zombie?

Yes: Can you escape?

Yes: Hide in a small confined space with a group of people from different backgrounds

No: Yes he is

Death.
What's in Common

• Each of these structures consists of
 • a collection of objects and
 • links between those objects.

• **Goal:** find a general framework for describing these objects and their properties.
A **graph** is a mathematical structure for representing relationships.
A **graph** is a mathematical structure for representing relationships.

A graph consists of a set of **nodes** (or **vertices**) connected by **edges** (or **arcs**).
A graph is a mathematical structure for representing relationships.

A graph consists of a set of nodes (or vertices) connected by edges (or arcs).
A **graph** is a mathematical structure for representing relationships.

A graph consists of a set of **nodes** (or **vertices**) connected by **edges** (or **arcs**).
Some graphs are *directed*.
Some graphs are *undirected*.
Going forward, we're primarily going to focus on undirected graphs.

The term “graph” generally refers to undirected graphs with a finite number of nodes, unless specified otherwise.
Formalizing Graphs

• How might we define a graph mathematically?

• We need to specify
 • what the nodes in the graph are, and
 • which edges are in the graph.

• The nodes can be pretty much anything.

• What about the edges?
Formalizing Graphs

• An **unordered pair** is a set \(\{a, b\} \) of two elements \(a \neq b \). (Remember that sets are unordered).
 • \(\{0, 1\} = \{1, 0\} \)

• An **undirected graph** is an ordered pair \(G = (V, E) \), where
 • \(V \) is a set of nodes, which can be anything, and
 • \(E \) is a set of edges, which are unordered pairs of nodes drawn from \(V \).

• [For your reference, but remember we won’t be focusing on them in this class] A **directed graph** is an ordered pair \(G = (V, E) \), where
 • \(V \) is a set of nodes, which can be anything, and
 • \(E \) is a set of edges, which are **ordered** pairs of nodes drawn from \(V \).
- An **unordered pair** is a set \(\{a, b\} \) of two elements \(a \neq b \).
- An **undirected graph** is an ordered pair \(G = (V, E) \), where
 - \(V \) is a set of nodes, which can be anything, and
 - \(E \) is a set of edges, which are unordered pairs of nodes drawn from \(V \).

How many of these drawings are of valid undirected graphs?

Answer at PollEv.com/cs103 or text **CS103** to **22333** once to join, then a number.
Self-Loops

- An edge from a node to itself is called a **self-loop**.
- In undirected graphs, self-loops are generally not allowed.
 - Can you see how this follows from the definition?
- In directed graphs, self-loops are generally allowed unless specified otherwise.
Standard Graph Terminology
Two nodes are called *adjacent* if there is an edge between them.
Two nodes are called *adjacent* if there is an edge between them.
Two nodes are called *adjacent* if there is an edge between them.
Two nodes are called *adjacent* if there is an edge between them.
Using our Formalisms

- Let $G = (V, E)$ be a graph.
- Intuitively, two nodes are adjacent if they're linked by an edge.
- Formally speaking, we say that two nodes $u, v \in V$ are **adjacent** if $\{u, v\} \in E$.
SF, Sac, Port, Sea
From SF, Sac, SLC, Port, Sea
To SF, Sac, SLC, Port, Sea
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, ..., v_n$ such that any two consecutive nodes in the sequence are adjacent.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

(This path has length 10, but visits 11 cities.)
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.
A **path** in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The **length** of the path v_1, \ldots, v_n is $n - 1$.

Sea, But, SLC, Port, Sea
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac
A **path** in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The **length** of the path v_1, \ldots, v_n is $n - 1$.

A **cycle** in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac
A *path* in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The *length* of the path v_1, \ldots, v_n is $n - 1$.

A *cycle* in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

(This cycle has length nine and visits nine different cities.)

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

How many paths in this graph are there from SF to LA?

A. 1
B. 4
C. 10
D. 20
E. None of these.
A **path** in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The **length** of the path v_1, \ldots, v_n is $n - 1$.

A **cycle** in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, ..., v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path $v_1, ..., v_n$ is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)
A **path** in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, ..., v_n$ such that any two consecutive nodes in the sequence are adjacent.

The **length** of the path $v_1, ..., v_n$ is $n - 1$.

A **cycle** in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)
A **path** in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The **length** of the path v_1, \ldots, v_n is $n - 1$.

A **cycle** in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)
A **path** in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The **length** of the path v_1, \ldots, v_n is $n - 1$.

A **cycle** in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is path that does not repeat any nodes or edges.

SF, Sac, LA, Phoe, Flag, Bar, LA
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is a path that does not repeat any nodes or edges.
A *path* in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The *length* of the path v_1, \ldots, v_n is $n - 1$.

A *cycle* in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A *simple path* in a graph is a path that does not repeat any nodes or edges.

SF, Sac, LA, Phoe, Flag, Bar, LA

(This path has length six.)
A **path** in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, ..., v_n$ such that any two consecutive nodes in the sequence are adjacent.

The **length** of the path $v_1, ..., v_n$ is $n - 1$.

A **cycle** in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A **simple path** in a graph is a path that does not repeat any nodes or edges.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is path that does not repeat any nodes or edges.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The *length* of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is a path that does not repeat any nodes or edges.
A path in a graph \(G = (V, E) \) is a sequence of one or more nodes \(v_1, v_2, v_3, \ldots, v_n \) such that any two consecutive nodes in the sequence are adjacent.

The length of the path \(v_1, \ldots, v_n \) is \(n - 1 \).

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is a path that does not repeat any nodes or edges.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is a path that does not repeat any nodes or edges.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is a path that does not repeat any nodes or edges.

Sac, SLC, Port, Sac, SLC
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is a path that does not repeat any nodes or edges.

The length of the path v_1, \ldots, v_n is $n - 1$.

Sac, SLC, Port, Sac, SLC, Port
A **path** in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The **length** of the path v_1, \ldots, v_n is $n - 1$.

A **cycle** in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A **simple path** in a graph is a path that does not repeat any nodes or edges.
A **path** in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The **length** of the path v_1, \ldots, v_n is $n - 1$.

A **cycle** in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A **simple path** in a graph is a path that does not repeat any nodes or edges.

A **simple cycle** in a graph is a cycle that does not repeat any nodes or edges except the first/last node.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is a path that does not repeat any nodes or edges.

A simple cycle in a graph is a cycle that does not repeat any nodes or edges except the first/last node.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

The length of the path v_1, \ldots, v_n is $n - 1$.

A cycle in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A simple path in a graph is a path that does not repeat any nodes or edges.

A simple cycle in a graph is a cycle that does not repeat any nodes or edges except the first/last node.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, ..., v_n$ such that any two consecutive nodes in the sequence are adjacent.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, ..., v_n$ such that any two consecutive nodes in the sequence are adjacent.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

Two nodes in a graph are called \textit{connected} if there is a path between them.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

Two nodes in a graph are called connected if there is a path between them.

(These nodes are not connected. No Grand Canyon for you.)
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

Two nodes in a graph are called **connected** if there is a path between them.

A graph G as a whole is called **connected** if all pairs of nodes in G are connected.
A path in a graph $G = (V, E)$ is a sequence of one or more nodes $v_1, v_2, v_3, \ldots, v_n$ such that any two consecutive nodes in the sequence are adjacent.

Two nodes in a graph are called connected if there is a path between them.

A graph G as a whole is called connected if all pairs of nodes in G are connected.

(This graph is not connected.)