Finite Automata
Part Two
Recap from Last Time
DFAs

- A **DFA** is a
 - **D**eterministic
 - **F**inite
 - **A**utomaton
- DFAs are the simplest type of automaton that we will see in this course.
DFAs

• A DFA is defined relative to some alphabet Σ.

• For each state in the DFA, there must be exactly one transition defined for each symbol in Σ.
 • This is the “deterministic” part of DFA.

• There is a unique start state.

• There are zero or more accepting states.
If D is a DFA, the **language of D**, denoted $\mathcal{L}(D)$, is $\{ w \in \Sigma^* | D \text{ accepts } w \}$.

A language L is called a **regular language** if there exists a DFA D such that $\mathcal{L}(D) = L$.
NFAs

- An **NFA** is a
 - **N**ondeterministic
 - **F**inite
 - **A**utomaton
- Can have missing transitions or multiple transitions defined on the same input symbol.
- Accepts if *any possible series of choices* leads to an accepting state.
New Stuff!
Intuiting Nondeterminism

Nondeterministic machines are a serious departure from physical computers. How can we build up an intuition for them?

There are two particularly useful frameworks for interpreting nondeterminism:

- Perfect positive guessing
- Massive parallelism
Perfect Positive Guessing

(start) $q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3$
Perfect Positive Guessing

$q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3$

Σ

Start

a b a b a b a
Perfect Positive Guessing

The diagram shows a finite automaton with states $q_0, q_1, q_2,$ and q_3. The transitions are labeled with symbols a and b. The automaton starts at state q_0 and transitions as follows:

- From q_0 to q_1 on input a.
- From q_1 to q_2 on input b.
- From q_2 back to itself on input a.

The input sequence is $a b a b a b a$. The automaton accepts this sequence.
Perfect Positive Guessing

- Start in state q_0
- Transition to q_1 on input a
- Transition to q_2 on input b
- Transition to q_3 on input a

Input sequence: $ababaab$
Perfect Positive Guessing

\[
\begin{align*}
\Sigma & \quad a \quad b \\
q_0 & \quad \rightarrow \quad a \quad b \\
q_1 & \quad \rightarrow \quad b \quad a \\
q_2 & \quad \rightarrow \quad a \quad \rightarrow \quad \text{loop} \\
q_3 &
\end{align*}
\]
Perfect Positive Guessing

\begin{align*}
q_0 & \xrightarrow{a} q_1 \\
q_1 & \xrightarrow{b} q_2 \\
q_2 & \xrightarrow{a} q_3
\end{align*}

\begin{align*}
\Sigma & = \{a, b\}
\end{align*}
Perfect Positive Guessing

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[a \ b \ a \ b \ a \ b \ a \]
Perfect Positive Guessing

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[\text{a b a b a b a} \]
Perfect Positive Guessing

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[\begin{array}{cccccc}
 a & b & a & b & a & a \\
\end{array} \]
Perfect Positive Guessing

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input: \(\Sigma \)
Perfect Positive Guessing

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[\begin{array}{cccccc}
 a & b & a & b & b & a \\
\end{array} \]

SEAL
OF APPROVAL
Perfect Positive Guessing

• We can view nondeterministic machines as having *Magic Superpowers* that enable them to guess choices that lead to an accepting state.
 • If there is at least one choice that leads to an accepting state, the machine will guess it.
 • If there are no choices, the machine guesses any one of the wrong guesses.
• There is no known way to physically model this intuition of nondeterminism – this is quite a departure from reality!
Massive Parallelism

\[\sum \]

\[a \quad b \quad a \quad b \quad a \quad b \quad a \]

Diagram:

- **Start state:** \(q_0 \)
- **Transitions:**
 - \(q_0 \) to \(q_1 \) on \(a \)
 - \(q_1 \) to \(q_2 \) on \(b \)
 - \(q_2 \) to \(q_3 \) on \(a \)
 - \(q_3 \) is a loop
Massive Parallelism

Σ

$\begin{array}{cccccc}
q_0 & \xrightarrow{a} & q_1 & \xrightarrow{b} & q_2 & \xrightarrow{a} & q_3 \\
\text{start} & \quad & \quad & \quad & \quad & \quad & \quad
\end{array}$

\text{a b a b a a
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[a \ b \ a \ b \ a \]

\[\Rightarrow \]
Massive Parallelism

a b a b a b a
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[a \quad b \quad a \quad b \quad a \quad b \quad a \]
Massive Parallelism

\[
\begin{align*}
q_0 & \xrightarrow{a} q_1 \\
q_1 & \xrightarrow{b} q_2 \\
q_2 & \xrightarrow{a} q_3
\end{align*}
\]

Input: a b a b a b a
Massive Parallelism
Massive Parallelism

\[\Sigma \]

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input sequence: a b a b a b a
Massive Parallelism

Σ

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input sequence: a b a b a b a
Massive Parallelism

\[
\Sigma
\]

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input sequence: a b a b a

Diagram:
- Start state: \(q_0\)
- States: \(q_0, q_1, q_2, q_3\)
- Transitions: \(a \rightarrow q_1, b \rightarrow q_2, a \rightarrow q_3\)
- Final state: \(q_3\)
Massive Parallelism
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input sequence: \[a \ b \ b \ a \ b \ a \ a \]
Massive Parallelism

start → q_0 → q_1 → q_2 → q_3

a b a b a b a
Massive Parallelism
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\sum \]

\[\text{start} \quad q_0 \quad q_1 \quad q_2 \quad q_3 \]

\[a \quad b \quad a \quad b \quad a \]

\[\uparrow \]
Massive Parallelism

\[q_0, q_1, q_2, q_3 \]

\[\Sigma \]

Start: \[q_0 \] to \[q_1 \] on \[a \] and \[b \] to \[q_2 \] on \[a \] and \[q_2 \] to \[q_3 \] on \[a \]

Input: \[a b a b a b a \]
Massive Parallelism

\[\Sigma \]

\[
\begin{array}{c}
\text{start} \\
q_0 \\
q_1 \\
q_2 \\
q_3
\end{array}
\]

\[
\begin{array}{c}
a \\
b \\
a
\end{array}
\]

\[
\begin{array}{c}
a \\
ba \\
ba \\
ba
\end{array}
\]
Massive Parallelism

\[\sum \]

\text{start} \quad q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3

\begin{array}{cccccc}
\text{a} & \text{b} & \text{a} & \text{b} & \text{a} & \text{a}
\end{array}
Massive Parallelism

\[q_3 \rightarrow q_2 \rightarrow q_1 \rightarrow q_0 \rightarrow \text{start} \]

Input sequence: \[a \ b \ a \ b \ a \ b \ a \]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input string: \[a\ b\ a\ b\ a\ b\ a \]
Massive Parallelism

\[\sum \]

\[
\begin{array}{c}
\text{start} \\
q_0 \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
q_3 \\
\end{array}
\]

\[
\begin{array}{c}
a \\
b \\
a \\
a \\
\end{array}
\]

\[
\begin{array}{c}
a \\
b \\
\end{array}
\]
Massive Parallelism

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

\[\Sigma \rightarrow a \rightarrow b \rightarrow a \]

Start

a b a b a a
Massive Parallelism

\[\Sigma \]

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

Input sequence:

\[a \ b \ a \ b \ a \ b \ a \]
Using the massive parallelism intuition, if we are in the states q_0 and q_2, what set of states will we be in after reading the character a?

Respond at pollev.com/cs103
Massive Parallelism

\[\Sigma \]

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

\[a, b, a, b, a \]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

Input sequence: \[a \ b \ a \ b \ b \ a \ a \]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input sequence: \[a b a b a b a \]
Massive Parallelism
Massive Parallelism

\[a \quad b \quad a \quad b \quad a \quad a \]
Massive Parallelism

We’re in at least one accepting state, so there’s some path that gets us to an accepting state.
Massive Parallelism

\[
\begin{align*}
q_0 & \xrightarrow{a} q_1 \\
q_1 & \xrightarrow{b} q_2 \\
q_2 & \xrightarrow{a} q_3
\end{align*}
\]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[a \quad b \quad a \quad b \quad a \quad b \]

\[\uparrow \]
Massive Parallelism

\[\Sigma \]

\[\text{start} \quad q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\begin{array}{cccc} a & b & a & b \end{array} \]
Massive Parallelism

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

\[\Sigma \]

\[a \quad b \quad a \quad a \quad b \quad b \]
Massive Parallelism

\[q_0 \xrightarrow{\alpha} q_1 \xrightarrow{\beta} q_2 \xrightarrow{\alpha} q_3 \]

\[\Sigma \]

Input:
- a b a a b b
Massive Parallelism

```
a b a b b
```

\[
\begin{align*}
\text{Start} & \rightarrow q_0 & a & \rightarrow q_1 & b & \rightarrow q_2 & a & \rightarrow q_3
\end{align*}
\]

\[
\Sigma
\]

- Transition from \(q_0 \) to \(q_1 \) on input \(a \)
- Transition from \(q_1 \) to \(q_2 \) on input \(b \)
- Transition from \(q_2 \) to \(q_3 \) on input \(a \)
- Transition from \(q_3 \) to \(q_0 \) on any input \(\Sigma \)
Massive Parallelism

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

Input:\[a \ b \ b \ a \ b \ b \]
Massive Parallelism
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[\text{a b a b b} \]
Massive Parallelism

\[
\begin{align*}
q_0 & \xrightarrow{a} q_1 \\
q_1 & \xrightarrow{b} q_2 \\
q_2 & \xrightarrow{a} q_3
\end{align*}
\]

\(\Sigma\)

a b a b b
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[a \quad b \quad a \quad b \quad a \quad b \]

Diagram showing transitions between states with inputs a, b.
Massive Parallelism

\(\Sigma \)

- start \(q_0 \) → a \(q_1 \) → b \(q_2 \) → a \(q_3 \)

- Input: a b a b b
Massive Parallelism

\[\sum \]

\[
\begin{align*}
\text{start} & \quad q_0 & \quad a & \quad q_1 & \quad b & \quad q_2 & \quad a & \quad q_3 \\
\end{align*}
\]

\[
\begin{array}{cccc}
a & b & a & b \\
\end{array}
\]
Massive Parallelism

\[
\Sigma
\]

\[
\begin{align*}
q_0 & \rightarrow q_1 \\
q_1 & \rightarrow q_2 \\
q_2 & \rightarrow q_3
\end{align*}
\]

Transition:
- \(q_0 \) to \(q_1 \) via \(a \)
- \(q_1 \) to \(q_2 \) via \(b \)
- \(q_2 \) to \(q_3 \) via \(a \)

Input:
- \(a \)
- \(b \)
- \(ab \)
- \(ab \)
- \(b \)
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[
\begin{array}{c}
| & a & b & a & b & b \\
\hline
\end{array}
\]
Massive Parallelism

\[
\Sigma \quad a \quad b
\]

\[
q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3
\]
Massive Parallelism

$q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3$

Σ

start

a b a b b
Massive Parallelism
Massive Parallelism

\[\sum \]

Start \rightarrow q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3

\begin{array}{cccc}
 q_0 & a & q_1 & b \\
 \downarrow & \downarrow & \downarrow & \downarrow \\
 q_2 & a & q_3 & \end{array}

\begin{array}{cccc}
 a & b & a & b \\
 \end{array}
Massive Parallelism

States: q_0, q_1, q_2, q_3

Transitions:
- $q_0 \xrightarrow{a} q_1$
- $q_1 \xrightarrow{b} q_2$
- $q_2 \xrightarrow{a} q_3$

Input alphabet: $\Sigma = \{a, b\}$

Initial state: q_0

Final state: q_3

Input sequence: $a b a b b$
Massive Parallelism

\(q_3 \)

\(q_2 \)

\(q_1 \)

\(q_0 \)

\(\Sigma \)

start

\(a \)

\(b \)

\(a \)

\(b \)

\(a \)

\(b \)

\(b \)
Massive Parallelism

Diagram:
- **Start state**: q_0
- Transition labels: a, b
- Possible inputs: Σ
- States: q_0, q_1, q_2, q_3
- Edges:
 - $q_0 \xrightarrow{a} q_1$
 - $q_1 \xrightarrow{b} q_2$
 - $q_2 \xrightarrow{a} q_3$
- Terminal state: q_3

Sequence: $a \ b \ a \ b$
Massive Parallelism
Massive Parallelism

\begin{align*}
 & \sum \\
 \text{start} & \rightarrow q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3
\end{align*}

\begin{array}{cccc}
 a & b & a & b
\end{array}
Massive Parallelism

\[a \quad b \quad a \quad a \quad b \]

We're not in any accepting state, so no possible path accepts.
Massive Parallelism

• An NFA can be thought of as a DFA that can be in many states at once.

• At each point in time, when the NFA needs to follow a transition, it tries all the options at the same time.

• (Here's a rigorous explanation about how this works; read this on your own time).

 • Start off in the set of all states formed by taking the start state and including each state that can be reached by zero or more ε-transitions.

 • When you read a symbol a in a set of states S:
 − Form the set S’ of states that can be reached by following a single a transition from some state in S.
 − Your new set of states is the set of states in S’, plus the states reachable from S’ by following zero or more ε-transitions.
Designing NFAs

- *Embrace the nondeterminism!*
- Good model: *Guess-and-check*:
 - Is there some information that you'd really like to have? Have the machine *nondeterministically guess* that information.
 - Then, have the machine *deterministically check* that the choice was correct.
- The *guess* phase corresponds to trying lots of different options.
- The *check* phase corresponds to filtering out bad guesses or wrong options.
Guess-and-Check

$L = \{ \ w \in \{0, 1\}^* \ | \ w \text{ ends in } 010 \text{ or } 101 \ \}$
Guess-and-Check

\[L = \{ \ w \in \{0, 1\}^* \mid \text{w ends in 010 or 101} \} \]
Guess-and-Check

\[L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \} \]
Guess-and-Check

\[L = \{ \, w \in \{0,1\}^* \mid w \text{ ends in 010 or 101} \, \} \]

Which of these states should we mark as accepting states?

Respond at pollev.com/cs103
Guess-and-Check

\[L = \{ w \in \{0, 1\}^* \mid \text{w ends in 010 or 101} \} \]

Nondeterministically guess when the end of the string is coming up.

Deterministically check whether you were correct.
Guess-and-Check

\[L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \} \]
Guess-and-Check

\[L = \{ \ w \in \{0, 1\}^* \mid \text{\textit{w} ends in } 010 \text{ or } 101 \ \} \]
Guess-and-Check

\[L = \{ \ w \in \{0, 1\}^* \mid \text{w ends in 010 or 101} \ \} \]
Guess-and-Check

\[L = \{ \ w \in \{0, 1\}^* \mid w \text{ ends in 010 or 101} \} \]
Guess-and-Check

\[L = \{ \ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \} \]
Guess-and-Check

\[L = \{ \ w \in \{0, 1\}^* \mid w \text{ ends in 010 or 101} \} \]
Guess-and-Check

$L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \}$
Guess-and-Check

\[L = \{ \, w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \, \} \]
Guess-and-Check

\[L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \} \]
Guess-and-Check

$L = \{\ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \ \}$
$$L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \}$$
Guess-and-Check

$L = \{ \ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \ \}$
Guess-and-Check

\[L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

\[L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]

Nondeterministically guess which character is missing.

Deterministically check whether that character is indeed missing.
Guess-and-Check

\[L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

\[L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

\[L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

\[L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

\[L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

\[L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

\[L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

$L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \}$
Time-Out For Announcements!
Midterm Exam on Friday!

- Our midterm exam will be on Friday, July 28th from 4:30 – 7:30 PM in Shriram 104 (our normal lecture room).

- You’re responsible for lectures up to the end of week 3 and topics from PS1 – PS3. Later lectures and problem sets won’t be tested here. Exam problems may build on the written or coding components from the problem sets.

- The exam is open-book, open-note, and closed-other-humans/AI.
Back to CS103!
Just how powerful are NFAs?
NFAs and DFAs

- Any language that can be accepted by a DFA can be accepted by an NFA.
- Why?
 - Every DFA essentially already is an NFA!
- **Question:** Can any language accepted by an NFA also be accepted by a DFA?
- Surprisingly, the answer is **yes**!
Thought Experiment:
How would you simulate a finite automata in software?
Tabular DFAs

The diagram shows a deterministic finite automaton (DFA) with states q_0, q_1, q_2, q_3. The transitions are labeled with inputs 0 and 1, leading to respective states q_1, q_2, q_3 for input 0 and q_0, q_1, q_2, q_3 for input 1.
Tabular DFAs

Start state: q_0

Transition table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_1</td>
<td>q_0</td>
</tr>
<tr>
<td>q_1</td>
<td>q_3</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_3</td>
<td>q_0</td>
</tr>
<tr>
<td>q_3</td>
<td>q_3</td>
<td>q_3</td>
</tr>
</tbody>
</table>
Tabular DFAs

![Diagram of a DFA with states and transitions]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>*q₀</td>
<td>q₁</td>
<td>q₀</td>
</tr>
<tr>
<td>q₁</td>
<td>q₃</td>
<td>q₂</td>
</tr>
<tr>
<td>q₂</td>
<td>q₃</td>
<td>q₀</td>
</tr>
<tr>
<td>*q₃</td>
<td>q₃</td>
<td>q₃</td>
</tr>
</tbody>
</table>
Tabular DFAs

These stars indicate accepting states.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>*q₀</td>
<td>q₁</td>
<td>q₀</td>
</tr>
<tr>
<td>q₁</td>
<td>q₃</td>
<td>q₂</td>
</tr>
<tr>
<td>q₂</td>
<td>q₃</td>
<td>q₀</td>
</tr>
<tr>
<td>*q₃</td>
<td>q₃</td>
<td>q₃</td>
</tr>
</tbody>
</table>
Since this is the first row, it's the start state.
Question to ponder: Why isn’t there a column here for Σ?
int kTransitionTable[kNumStates][kNumSymbols] = {
 {0, 0, 1, 3, 7, 1, ...},
 ...
};

bool kAcceptTable[kNumStates] = {
 false,
 true,
 true,
 ...
};

bool SimulateDFA(string input) {
 int state = 0;
 for (char ch: input) {
 state = kTransitionTable[state][ch];
 }
 return kAcceptTable[state];
}
Can we do something similar for NFAs?
\(q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \)

\[\Sigma \]

Start state: \(q_0 \)

Transition:
- \(a \) from \(q_0 \) to \(q_1 \)
- \(b \) from \(q_1 \) to \(q_2 \)
- \(a \) from \(q_2 \) to \(q_3 \)

Transition from \(q_3 \) to \(q_0 \) is labeled with \(\Sigma \)
The diagram illustrates a finite automaton with states q_0, q_1, q_2, and q_3. The transitions are labeled with symbols a and b. The start state is q_0, and there is a transition on symbol Σ leading to q_0. The sequence $a b a b a a$ is shown below the automaton.
The figure shows a finite automaton with states $q_0, q_1, q_2,$ and q_3. The transitions are as follows:

- From q_0 on input a, move to q_1.
- From q_1 on input b, move to q_2.
- From q_2 on input a, move to q_3.
- From q_3, there is a loop on any input.

The table below represents the transitions:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td></td>
</tr>
<tr>
<td>q_0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The given image depicts a transition diagram of a finite state machine (FSM). The diagram consists of a start state labeled with q_0 and transitions labeled with a and b.

The transitions are as follows:
- From q_0, on input a, move to q_1.
- From q_1, on input b, move to q_2.
- From q_2, on input a, move to q_3.
- From q_3, on input a, return to q_0.

The diagram also includes a transition labeled Σ from q_0 to q_3.

The table below the diagram shows the state transitions for inputs a and b:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td></td>
</tr>
</tbody>
</table>
\[\begin{array}{|c|c|c|}
\hline
\text{state} & \text{a} & \text{b} \\
\hline
\{q_0\} & \{q_0, q_1\} & \text{blank} \\
\text{blank} & \text{blank} & \text{blank} \\
\text{blank} & \text{blank} & \text{blank} \\
\text{blank} & \text{blank} & \text{blank} \\
\hline
\end{array} \]
<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
</tbody>
</table>

Diagram:

- Start state: \(q_0\)
- Transitions:
 - From \(q_0\) on \(a\) to \(q_1\)
 - From \(q_1\) on \(b\) to \(q_2\)
 - From \(q_2\) on \(a\) to \(q_3\)
 - \(q_3\) is a final state
<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>q_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:
- Start state q_0
- Transitions:
 - a from q_0 to q_1
 - b from q_1 to q_2
 - a from q_2 to q_3
- Final state q_3

Input alphabet Σ
A finite automaton with the following states and transitions:

- **Start state:** q_0
- **Final state:** q_3
- **Transitions:**
 - From q_0 to q_1 on input a
 - From q_1 to q_2 on input b
 - From q_2 to q_3 on input a

The table below shows the transitions for inputs a and b:

<table>
<thead>
<tr>
<th>Current State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${ q_0 }$</td>
<td>${ q_0, q_1 }$</td>
<td>${ q_0 }$</td>
</tr>
<tr>
<td>${ q_0, q_1 }$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Transition Table

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{q_1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{q_2}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{q_3}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram

- **Start State:** \(q_0\)
- **Final State:** \(q_3\)
- **Transitions:**
 - \(q_0\) on \(a\) to \(q_1\)
 - \(q_1\) on \(b\) to \(q_2\)
 - \(q_2\) on \(a\) to \(q_3\)
 - \(q_3\) on \(\Sigma\) (ε transition) to \(q_3\)
\begin{array}{c|c|c}
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & & \\
& & \\
\end{array}

Transition diagram:
- Start state: q_0
- Transitions:
 - $q_0 \xrightarrow{a} q_1$
 - $q_1 \xrightarrow{b} q_2$
 - $q_2 \xrightarrow{a} q_3$

Accepting states:
- q_3

Input alphabet: Σ

Start state: q_0

Transitions:
- $q_0 \xrightarrow{\Sigma} q_0$
- $q_0 \xrightarrow{a} q_1$
- $q_1 \xrightarrow{b} q_2$
- $q_2 \xrightarrow{a} q_3$
- q_3 is a final state.
<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\begin{align*}
\begin{array}{c|c|c}
 & a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \\
\{q_0, q_1\} & & \\
\end{array}
\end{align*}
The given deterministic finite automaton (DFA) consists of states q_0, q_1, q_2, and q_3. The transitions are as follows:

- From q_0, on reading a it transitions to q_1.
- From q_1, on reading b it transitions to q_2.
- From q_2, on reading a it transitions back to q_3.

The initial state is q_0, marked as the start state. The transitions are shown with arrows labeled by the input symbols a and b.

The corresponding transition table is:

<table>
<thead>
<tr>
<th>Current State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
</tbody>
</table>

The input symbols a and b are shown above the transitions, indicating the actions taken upon reading each symbol from the input.

Additionally, the state q_3 is marked as an accept state, denoted by the double circle.
The given automaton is a Deterministic Finite Automaton (DFA) with the following states and transitions:

- **States:** q_0, q_1, q_2, q_3
- **Start State:** q_0
- **Final State:** q_3
- **Alphabet:** $\Sigma = \{a, b\}$

Transition Table

<table>
<thead>
<tr>
<th>Current State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
</tbody>
</table>
\[
\begin{align*}
\Sigma \\
\text{start} \\
q_0 \\
a \rightarrow q_1 \\
b \rightarrow q_2 \\
a \rightarrow q_3
\end{align*}
\]

<table>
<thead>
<tr>
<th>States</th>
<th>\text{a}</th>
<th>\text{b}</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ q_0 }</td>
<td>{ q_0, q_1 }</td>
<td>{ q_0 }</td>
</tr>
<tr>
<td>{ q_0, q_1 }</td>
<td>{ q_0, q_1 }</td>
<td>{ q_0, q_2 }</td>
</tr>
<tr>
<td>{ q_0, q_2 }</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{array}{c|c|c}
\text{a} & \text{b} \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & & \\
\end{array}
\]
\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

<table>
<thead>
<tr>
<th>State</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({ q_0 })</td>
<td>({ q_0, q_1 })</td>
<td>({ q_0 })</td>
</tr>
<tr>
<td>({ q_0, q_1 })</td>
<td>({ q_0, q_1 })</td>
<td>({ q_0, q_2 })</td>
</tr>
<tr>
<td>({ q_0, q_2 })</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\begin{array}{|c|c|c|}
\hline
& a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \\
\hline
\end{array}
\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

<table>
<thead>
<tr>
<th>State</th>
<th>Transition</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td></td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td></td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td></td>
<td>{q_0, q_1, q_3}</td>
<td></td>
</tr>
<tr>
<td>State Set</td>
<td>a</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
<td></td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
<td></td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}\</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[\sum \]

\[
\begin{array}{ccc}
\text{start} & \rightarrow & q_0 \\
q_0 & \rightarrow & a \rightarrow q_1 \\
q_1 & \rightarrow & b \rightarrow q_2 \\
q_2 & \rightarrow & a \rightarrow q_3 \\
q_3 & \rightarrow & \text{start}
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
\{ q_0 \} & \{ q_0, q_1 \} & \{ q_0 \} \\
\{ q_0, q_1 \} & \{ q_0, q_1 \} & \{ q_0, q_2 \} \\
\{ q_0, q_2 \} & \{ q_0, q_1, q_3 \} & \text{---} \\
\hline
\end{array}
\]
<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_3}$</td>
<td>-</td>
</tr>
</tbody>
</table>
\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Transition Table

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>-</td>
</tr>
</tbody>
</table>
\[
\begin{align*}
\text{start} & \quad \xrightarrow{\Sigma} \quad q_0 \\
q_0 & \quad \xrightarrow{a} \quad q_1 \\
q_1 & \quad \xrightarrow{b} \quad q_2 \\
q_2 & \quad \xrightarrow{a} \quad q_3
\end{align*}
\]

| \{q_0\} | \{q_0, q_1\} | \{q_0\} \\
| \{q_0, q_1\} | \{q_0, q_1\} | \{q_0, q_2\} \\
| \{q_0, q_2\} | \{q_0, q_1, q_3\} | \{q_0\} \\

| a | b |
|---|---|---|
| \{q_0\} | \{q_0, q_1\} | \{q_0\} \\
| \{q_0, q_1\} | \{q_0, q_1\} | \{q_0, q_2\} \\
| \{q_0, q_2\} | \{q_0, q_1, q_3\} | \{q_0\} \\

The diagram represents a nondeterministic finite automaton (NFA) with states \(q_0, q_1, q_2, q_3\) and transitions labeled with \(a\) and \(b\). The start state is \(q_0\), and \(q_3\) is a final state. The transitions are as follows:

- From \(q_0\) on \(a\) to \(q_1\)
- From \(q_1\) on \(b\) to \(q_2\)
- From \(q_2\) on \(a\) to \(q_3\)

The table specifies the transition function for \(a\) and \(b\) for the given states.
\[
\begin{array}{cccc}
\text{state} & a & b \\
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & & \\
\end{array}
\]
\[
\begin{array}{|c|c|c|}
\hline
q & a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & & \\
\hline
\end{array}
\]
\[
\begin{array}{c|cc}
\{ q_0 \} & \{ q_0, q_1 \} & \{ q_0 \} \\
\{ q_0, q_1 \} & \{ q_0, q_1 \} & \{ q_0, q_2 \} \\
\{ q_0, q_2 \} & \{ q_0, q_1, q_3 \} & \{ q_0 \} \\
\{ q_0, q_1, q_3 \} & & \\
\end{array}
\]
\[\begin{array}{c|cc}
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & & \\
\end{array} \]
<table>
<thead>
<tr>
<th>State Set</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1, q_3}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1, q_3}</td>
<td>{q_0, q_1}</td>
<td></td>
</tr>
</tbody>
</table>
Automaton

![Automaton Diagram](attachment:automaton.png)

Transition Table

<table>
<thead>
<tr>
<th>Current State</th>
<th>On a</th>
<th>On b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0, q_1}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
</tbody>
</table>
start

Σ

q_0 -> q_1 (a)
q_1 -> q_2 (b)
q_2 -> q_3 (a)

Transition Table

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
</tbody>
</table>

Diagrams

start

- b from $\{q_0\}$
- a from $\{q_0\}$
- b from $\{q_0, q_2\}$
- a from $\{q_0, q_1\}$
- a from $\{q_0, q_1, q_3\}$
\begin{align*}
\{q_0\} & \quad \{q_0, q_1\} & \quad \{q_0\} \\
\{q_0, q_1\} & \quad \{q_0, q_1\} & \quad \{q_0, q_2\} \\
\{q_0, q_2\} & \quad \{q_0, q_1, q_3\} & \quad \{q_0\} \\
*\{q_0, q_1, q_3\} & \quad \{q_0, q_1\} & \quad \{q_0, q_2\}
\end{align*}
\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[
\begin{array}{ccccccc}
\text{a} & \text{b} & \text{a} & \text{a} & \text{a} & \text{b} & \text{a} & \text{a} \\
\end{array}
\]

\[
\begin{array}{c}
\{ q_0 \} \\
\{ q_0, q_1 \} \\
\{ q_0, q_2 \} \\
\{ q_0, q_1, q_3 \}
\end{array}
\]
q₀ \rightarrow q₁ \rightarrow q₂ \rightarrow q₃

\Sigma

\{q₀, q₁\}

\{q₀, q₂\}

\{q₀, q₁, q₃\}
The diagram depicts a state transition diagram for a deterministic finite automaton (DFA). The initial state is q_0, and the transitions are labeled with symbols a and b.

- From q_0, on input a, move to q_1.
- From q_1, on input b, move to q_2.
- From q_2, on input a, move back to q_0.
- From q_3, which is a final state, there is a loop labeled with Σ.

The input sequence presented is "a b a a a b a a."
The Subset Construction

- This procedure for turning an NFA for a language L into a DFA for a language L is called the subset construction.
 - It’s sometimes called the powerset construction; it’s different names for the same thing!
- Intuitively:
 - Each state in the DFA corresponds to a set of states from the NFA.
 - Each transition in the DFA corresponds to what transitions would be taken in the NFA when using the massive parallel intuition.
 - The accepting states in the DFA correspond to which sets of states would be considered accepting in the NFA when using the massive parallel intuition.
The Subset Construction

- In converting an NFA to a DFA, the DFA's states correspond to sets of NFA states.
- **Useful fact:** $|\mathcal{P}(S)| = 2^{|S|}$ for any finite set S.
- In the worst-case, the construction can result in a DFA that is exponentially larger than the original NFA.
- **Question to ponder:** Can you find a family of languages that have NFAs of size n, but no DFAs of size less than 2^n?
A language L is called a **regular language** if there exists a DFA D such that $\mathcal{L}(D) = L$.
An Important Result

Theorem: A language L is regular if and only if there is some NFA N such that $\mathcal{L}(N) = L$.

Proof Sketch: Pick a language L. First, assume L is regular. That means there’s a DFA D where $\mathcal{L}(D) = L$. Every DFA is “basically” an NFA, so there’s an NFA (D) whose language is L.

Next, assume there’s an NFA N such that $\mathcal{L}(N) = L$. Using the subset construction, we can build a DFA D where $\mathcal{L}(N) = \mathcal{L}(D)$. Then we have that $\mathcal{L}(D) = L$, so L is regular. ■-ish
Why This Matters

• We now have two perspectives on regular languages:
 • Regular languages are languages accepted by DFAs.
 • Regular languages are languages accepted by NFAs.
• We can now reason about the regular languages in two different ways.
Properties of Regular Languages
The Complement of a Language

- Given a language $L \subseteq \Sigma^*$, the complement of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:

 $$\overline{L} = \Sigma^* - L$$
The Complement of a Language

- Given a language $L \subseteq \Sigma^*$, the **complement** of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:

$$\overline{L} = \Sigma^* - L$$
The Complement of a Language

- Given a language $L \subseteq \Sigma^*$, the *complement* of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:
 \[\overline{L} = \Sigma^* - L \]
The Complement of a Language

- Given a language $L \subseteq \Sigma^*$, the complement of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:

$$\overline{L} = \Sigma^* - L$$
The Complement of a Language

- Given a language $L \subseteq \Sigma^*$, the \textit{complement} of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.

- Formally:

 $$\overline{L} = \Sigma^* - L$$

Good proofwriting exercise: prove $\overline{\overline{L}} = L$ for any language L.
Complementing Regular Languages

\[L = \{ \ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring} \} \]

\[\bar{L} = \{ \ w \in \{a, b\}^* \mid w \text{ does not contain } aa \text{ as a substring} \} \]
Complementing Regular Languages

\(L = \{ w \in \{a, *, /\}^* \mid w \text{ represents a C-style comment} \} \)
Complementing Regular Languages

\[L = \{ w \in \{ a, *, / \}^* \mid w \text{ doesn't represent a C-style comment} \} \]
Complementing Regular Languages

\[\overline{L} = \{ \ w \in \{a, *, /\}^* \ | \ w \text{ doesn't represent a C-style comment} \} \]
Closure Properties

- **Theorem:** If L is a regular language, then \overline{L} is also a regular language.
- As a result, we say that the regular languages are **closed under complementation**.

Question to ponder: are the nonregular languages closed under complementation?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

• If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

• Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

Hey, it's De Morgan's laws!
Concatenation
String Concatenation

- If $w \in \Sigma^*$ and $x \in \Sigma^*$, the **concatenation** of w and x, denoted wx, is the string formed by tacking all the characters of x onto the end of w.

- Example: if $w = \text{quo}$ and $x = \text{kka}$, the concatenation $wx = \text{quokka}$.

- This is analogous to the + operator for strings in many programming languages.

- Some facts about concatenation:
 - The empty string ε is the **identity element** for concatenation:

 \[
 w\varepsilon = \varepsilon w = w
 \]

 - Concatenation is **associative**:

 \[
 wxy = w(xy) = (wx)y
 \]
Concatenation

- The *concatenation* of two languages L_1 and L_2 over the alphabet Σ is the language

$$L_1L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \land x \in L_2 \}$$
Concatenation Example

Let \(\Sigma = \{ a, b, \ldots, z, A, B, \ldots, Z \} \) and consider these languages over \(\Sigma \):

- **Noun** = \{ Puppy, Rainbow, Whale, \ldots \}
- **Verb** = \{ Hugs, Juggles, Loves, \ldots \}
- **The** = \{ The \}
- **The language** **TheNounVerbTheNoun** is
Concatenation

• The *concatenation* of two languages L_1 and L_2 over the alphabet Σ is the language

$$L_1L_2 = \{ wx \in \Sigma^* | w \in L_1 \land x \in L_2 \}$$

• Two views of L_1L_2:
 • The set of all strings that can be made by concatenating a string in L_1 with a string in L_2.
 • The set of strings that can be split into two pieces: a piece from L_1 and a piece from L_2.
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

\[\text{Machine for } L_1 \quad \text{start} \]
\[\text{Machine for } L_2 \quad \text{start} \]
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

```
bookkeeper
```
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

![Machine for L_1](image1)

![Machine for L_2](image2)

bookkeeper
Concatenating Regular Languages

• If L_1 and L_2 are regular languages, is L_1L_2?
• Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Machine for L_1

Machine for L_2
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?
- **Idea:**
 - Run a DFA/NFA for L_1 on w.
 - Whenever it reaches an accepting state, optionally hand the rest of w to a DFA/NFA for L_2.
 - If the automaton for L_2 accepts the rest, $w \in L_1L_2$.
 - If the automaton for L_2 rejects the remainder, the split was incorrect.
Concatenating Regular Languages
Concatenating Regular Languages

Machine for L_1
Concatenating Regular Languages

Machine for L_1

Machine for L_2
Concatenating Regular Languages

Machine for L_1

Machine for L_2
Concatenating Regular Languages

Machine for L_1

Machine for L_2
Concatenating Regular Languages

Machine for L_1

Machine for L_2

Machine for L_1L_2
Lots and Lots of Concatenation

• Consider the language \(L = \{ \text{aa, b} \} \)

• \(LL \) is the set of strings formed by concatenating pairs of strings in \(L \).

 \[
 \{ \text{aaaa, aab, baa, bb} \}
 \]

• \(LLL \) is the set of strings formed by concatenating triples of strings in \(L \).

 \[
 \{ \text{aaaaaa, aaaaab, aabaa, aabb, baaaa, baab, bbbaa, bbb} \}
 \]

• \(LLLLL \) is the set of strings formed by concatenating quadruples of strings in \(L \).

 \[
 \{ \text{aaaaaaaa, aaaaaaab, aaaaaabaa, aaaaabb, aabaaaa, aabaab, abbaaa, aabbaab, aabbb, baaaaaa, baaaaab, baabaa, baabb, bbaaaa, bbaab, bbbaa, bbb} \}
 \]
Language Exponentiation

• We can define what it means to “exponentiate” a language as follows:

• $L^0 = \{\varepsilon\}$
 • Intuition: The only string you can form by gluing no strings together is the empty string.
 • Notice that $\{\varepsilon\} \neq \emptyset$. Can you explain why?

• $L^{n+1} = LL^n$
 • Idea: Concatenating $(n+1)$ strings together works by concatenating n strings, then concatenating one more.

• **Question to ponder:** Why define $L^0 = \{\varepsilon\}$?

• **Question to ponder:** What is \emptyset^0?
The Kleene Star
The Kleene Closure

• An important operation on languages is the **Kleene Closure**, which is defined as

\[L^* = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N}. w \in L^n \} \]

• Mathematically:

\[w \in L^* \iff \exists n \in \mathbb{N}. w \in L^n \]

• Intuitively, \(L^* \) is the language all possible ways of concatenating zero or more strings in \(L \) together, possibly with repetition.

• **Question to ponder:** What is \(\emptyset^* \)?
The Kleene Closure

If $L = \{ a, bb \}$, then $L^* = \{$

$\varepsilon,$

$a, bb,$

$aa, aabb, abba, aabbb, bbbaa, bbabb, bbbba, bbbbbbb,$

\ldots\}$

Think of L^* as the set of strings you can make if you have a collection of stamps – one for each string in L – and you form every possible string that can be made from those stamps.
Idea: Can we convert an NFA for language L to an NFA for language L^*?
The Kleene Star

Machine for L
The Kleene Star
The Kleene Star

Machine for L
The Kleene Star
The Kleene Star

Machine for L
The Kleene Star

Machine for L

Machine for L^*
The Kleene Star

Machine for L

Machine for L^*

Question: Why add the new state out front? Why not just make the old start state accepting?
Closure Properties

- **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ, then so are the following languages:
 - $\overline{L_1}$
 - $L_1 \cup L_2$
 - $L_1 \cap L_2$
 - $L_1 L_2$
 - L_1^*

- These properties are called **closure properties of the regular languages**.
Next Time

• *Regular Expressions*
 • Building languages from the ground up!

• *Thompson’s Algorithm*
 • A UNIX Programmer in Theoryland.

• *Kleene’s Theorem*
 • From machines to programs!