Mathematical Induction
Part Two
Recap from Last Time
Let P be some predicate. The **principle of mathematical induction** states that if

- $P(0)$ is true
- \(\forall k \in \mathbb{N}. (P(k) \rightarrow P(k+1)) \)

then

- $\forall n \in \mathbb{N}. P(n)$

...and it stays true...

...then it's always true.
Theorem: The sum of the first n powers of two is $2^n - 1$.

Proof: Let $P(n)$ be the statement “the sum of the first n powers of two is $2^n - 1.” We will prove, by induction, that $P(n)$ is true for all $n \in \mathbb{N}$, from which the theorem follows.

For our base case, we need to show $P(0)$ is true, meaning that the sum of the first zero powers of two is $2^0 - 1$. Since the sum of the first zero powers of two is zero and $2^0 - 1$ is zero as well, we see that $P(0)$ is true.

For the inductive step, assume that for some arbitrary $k \in \mathbb{N}$ that $P(k)$ holds, meaning that

$$2^0 + 2^1 + \ldots + 2^{k-1} = 2^k - 1. \tag{1}$$

We need to show that $P(k + 1)$ holds, meaning that the sum of the first $k + 1$ powers of two is $2^{k+1} - 1$. To see this, notice that

$$2^0 + 2^1 + \ldots + 2^{k-1} + 2^k = (2^0 + 2^1 + \ldots + 2^{k-1}) + 2^k = 2^k - 1 + 2^k \quad \text{(via (1))}$$

$$= 2(2^k) - 1$$

$$= 2^{k+1} - 1.$$

Therefore, $P(k + 1)$ is true, completing the induction. ■
Theorem: The sum of the first \(n \) powers of two is \(2^n - 1 \).

Proof: Let \(P(n) \) be the statement “the sum of the first \(n \) powers of two is \(2^n - 1 \).” We will prove, by induction, that \(P(n) \) is true for all \(n \in \mathbb{N} \), from which the theorem follows.

For our base case, we need to show \(P(0) \) is true, meaning that the sum of the first zero powers of two is \(2^0 - 1 \). Since the sum of the first zero powers of two is zero and \(2^0 - 1 \) is zero as well, we see that \(P(0) \) is true.

For the inductive step, assume that for some arbitrary \(k \in \mathbb{N} \) that \(P(k) \) holds, meaning that

\[
2^0 + 2^1 + \ldots + 2^{k-1} = 2^k - 1. \tag{1}
\]

We need to show that \(P(k + 1) \) holds, meaning that the sum of the first \(k + 1 \) powers of two is \(2^{k+1} - 1 \). To see this, notice that

\[
2^0 + 2^1 + \ldots + 2^{k} + 2^{k} = (2^0 + 2^1 + \ldots + 2^{k-1}) + 2^k
= 2^k - 1 + 2^k \quad \text{(via (1))}
= 2(2^k) - 1
= 2^{k+1} - 1.
\]

Therefore, \(P(k + 1) \) is true, completing the induction. ■
Theorem: The sum of the first n powers of two is $2^n - 1$.

Proof: Let $P(n)$ be the statement “the sum of the first n powers of two is $2^n - 1$.” We will prove, by induction, that $P(n)$ is true for all $n \in \mathbb{N}$, from which the theorem follows.

For our base case, we need to show $P(0)$ is true, meaning that the sum of the first zero powers of two is $2^0 - 1$. Since the sum of the first zero powers of two is zero and $2^0 - 1$ is zero as well, we see that $P(0)$ is true.

For the inductive step, assume that for some arbitrary $k \in \mathbb{N}$ that $P(k)$ holds, meaning that

$$2^0 + 2^1 + \ldots + 2^{k-1} = 2^k - 1.$$ \hspace{1cm} (1)

We need to show that $P(k + 1)$ holds, meaning that the sum of the first $k + 1$ powers of two is $2^{k+1} - 1$. To see this, notice that

$$2^0 + 2^1 + \ldots + 2^{k-1} + 2^k = (2^0 + 2^1 + \ldots + 2^{k-1}) + 2^k$$
$$= 2^k - 1 + 2^k \hspace{1cm} (via \ (1))$$
$$= 2(2^k) - 1$$
$$= 2^{k+1} - 1.$$

Therefore, $P(k + 1)$ is true, completing the induction. \blacksquare
Theorem: The sum of the first n powers of two is $2^n - 1$.

Proof: Let $P(n)$ be the statement “the sum of the first n powers of two is $2^n - 1.” We will prove, by induction, that $P(n)$ is true for all $n \in \mathbb{N}$, from which the theorem follows.

For our base case, we need to show $P(0)$ is true, meaning that the sum of the first zero powers of two is $2^0 - 1$. Since the sum of the first zero powers of two is zero and $2^0 - 1$ is zero as well, we see that $P(0)$ is true.

For the inductive step, assume that for some arbitrary $k \in \mathbb{N}$ that $P(k)$ holds, meaning that
\[2^0 + 2^1 + \ldots + 2^{k-1} = 2^k - 1. \quad (1) \]
We need to show that $P(k + 1)$ holds, meaning that the sum of the first $k + 1$ powers of two is $2^{k+1} - 1$. To see this, notice that
\[
2^0 + 2^1 + \ldots + 2^{k-1} + 2^k = (2^0 + 2^1 + \ldots + 2^{k-1}) + 2^k \\
= 2^k - 1 + 2^k \quad \text{(via (1))} \\
= 2(2^k) - 1 \\
= 2^{k+1} - 1.
\]
Therefore, $P(k + 1)$ is true, completing the induction. ■
New Stuff!
Theorem: The sum of the first \(n \) powers of two is \(2^n - 1 \).

Proof: Let \(P(n) \) be the statement “the sum of the first \(n \) powers of two is \(2^n - 1 \).” We will prove, by induction, that \(P(n) \) is true for all \(n \in \mathbb{N} \), from which the theorem follows.

For our base case, we need to show \(P(0) \) is true, meaning that the sum of the first zero powers of two is \(2^0 - 1 \). Since the sum of the first zero powers of two is zero and \(2^0 - 1 \) is zero as well, we see that \(P(0) \) is true.

For the inductive step, assume that for some arbitrary \(k \in \mathbb{N} \) that \(P(k) \) holds, meaning that

\[
2^0 + 2^1 + \ldots + 2^{k-1} = 2^k - 1. \tag{1}
\]

We need to show that \(P(k + 1) \) holds, meaning that the sum of the first \(k + 1 \) powers of two is \(2^{k+1} - 1 \). To see this, notice that

\[
2^0 + 2^1 + \ldots + 2^{k-1} + 2^k = (2^0 + 2^1 + \ldots + 2^{k-1}) + 2^k
\]

\[
= 2^k - 1 + 2^k \tag{via (1)}
\]

\[
= 2(2^k) - 1
\]

\[
= 2^{k+1} - 1.
\]

Therefore, \(P(k + 1) \) is true, completing the induction. ■
Induction in Practice

• Typically, a proof by induction will not explicitly state $P(n)$.

• Rather, the proof will describe $P(n)$ implicitly and leave it to the reader to fill in the details.

• Provided that there is sufficient detail to determine
 • what $P(n)$ is;
 • that $P(0)$ is true; and that
 • whenever $P(k)$ is true, $P(k+1)$ is true, the proof is usually valid.
Theorem: The sum of the first n powers of two is $2^n - 1$.

Proof: By induction.

For our base case, we'll prove the theorem is true when $n = 0$. The sum of the first zero powers of two is zero, and $2^0 - 1 = 0$, so the theorem is true in this case.

For the inductive step, assume the theorem holds when $n = k$ for some arbitrary $k \in \mathbb{N}$. Then we have

$$2^0 + 2^1 + \ldots + 2^{k-1} + 2^k = (2^0 + 2^1 + \ldots + 2^{k-1}) + 2^k$$

$$= 2^k - 1 + 2^k$$

$$= 2(2^k) - 1$$

$$= 2^{k+1} - 1.$$

So the theorem is true when $n = k+1$, completing the induction. ■
Application: The Limits of Data Compression
Bitstrings

• A *bitstring* is a finite sequence of 0s and 1s.

• Examples:
 • 11011100
 • 010101010101
 • 0000
 • ε (the *empty string*)

• There are 2^n bitstrings of length n.
Data Compression

- Inside a computer, all data are represented as sequences of 0s and 1s (bitstrings).
- To transfer data over a network or on a flash drive, it is useful to reduce the number of 0s and 1s you need to send.
- Most real-world data can be compressed by exploiting redundancies.
 - Text repeats common patterns ("the", "and", etc.)
 - Bitmap images use similar colors throughout the image.
- **Idea**: Replace each bitstring with a shorter bitstring that contains all the original information.
 - This is called *lossless data compression*.
101010101010101010101010101010
Compress

1111010
Compress

Transmit

Decompress
Lossless Data Compression

• A lossless data compression system needs
 • a compression function C, and
 • a decompression function D.
• We need to have $D(C(x)) = x$ for any bitstring x.
 • Otherwise, we can't uniquely encode or decode some bitstring.
• **Question:** What does this tell you about D and C?
 • Since D is a left inverse of C, the function C must be injective.
 • Since C is a right inverse of D, the function D must be surjective. (*We won’t use this going forward, but it’s true!*)

A Perfect Compression Function

• Ideally, the compressed version of a bitstring would always be shorter than the original bitstring.

• **Question**: Can we find a lossless compression algorithm that always compresses a string into a shorter string?

• To handle the issue of the empty string (which can't get any shorter), let's assume we only care about strings of length at least 10.
A Counting Argument

- Let \mathbb{B}^n be the set of bitstrings of length n, and $\mathbb{B}^{<n}$ be the set of bitstrings of length less than n.

- How many bitstrings of length n are there?
 - \textbf{Answer:} 2^n

- How many bitstrings of length \textit{less than} n are there?
 - \textbf{Answer:} $2^0 + 2^1 + \ldots + 2^{n-1} = 2^n - 1$

- By the pigeonhole principle, no function from \mathbb{B}^n to $\mathbb{B}^{<n}$ can be injective – at least two elements must collide!

- Since a perfect compression function would have to be an injection from \mathbb{B}^n to $\mathbb{B}^{<n}$, \textit{there is no perfect compression function!}
Why this Result is Interesting

- Our result says that no matter how hard we try, it is **impossible** to compress every string into a shorter string.
- No matter how clever you are, you cannot write a lossless compression algorithm that always makes strings shorter.
- In practice, only highly redundant data can be compressed.
- The fields of **information theory** and **Kolmogorov complexity** explore the limits of compression; if you're interested, go explore!
Variations on Induction: *Starting Later*
Induction Starting at 0

- To prove that $P(n)$ is true for all natural numbers greater than or equal to 0:
 - Show that $P(0)$ is true.
 - Show that for any $k \geq 0$, that if $P(k)$ is true, then $P(k+1)$ is true.
 - Conclude $P(n)$ holds for all natural numbers greater than or equal to 0.
Induction Starting at m

- To prove that $P(n)$ is true for all natural numbers greater than or equal to m:
 - Show that $P(m)$ is true.
 - Show that for any $k \geq m$, that if $P(k)$ is true, then $P(k+1)$ is true.
 - Conclude $P(n)$ holds for all natural numbers greater than or equal to m.
Variations on Induction: *Bigger Steps*
Subdividing a Square

These regions aren't squares.
Subdividing a Square

Squares can’t overlap or hang off the figure.
For what values of \(n \) can a square be subdivided into \(n \) squares?
Each of the original corners needs to be covered by a corner of the new smaller squares.
Each of the original corners needs to be covered by a corner of the new smaller squares.

corners: 4
squares: <4
Each of the original corners needs to be covered by a corner of the new smaller squares.

By the pigeonhole principle, at least one smaller square needs to cover at least two of the original square’s corners.
corners: 4
squares: 5
At least one square cannot be covering *any* of the original corners.
<table>
<thead>
<tr>
<th>5</th>
<th>6</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
The Key Insight

- If we can subdivide a square into \(n \) squares, we can also subdivide it into \(n + 3 \) squares.
- Since we can subdivide a bigger square into 6, 7, and 8 squares, we can subdivide a square into \(n \) squares for any \(n \geq 6 \):
 - For multiples of three, start with 6 and keep adding three squares until \(n \) is reached.
 - For numbers congruent to one modulo three, start with 7 and keep adding three squares until \(n \) is reached.
 - For numbers congruent to two modulo three, start with 8 and keep adding three squares until \(n \) is reached.
Theorem: For any \(n \geq 6 \), it is possible to subdivide a square into \(n \) smaller squares.
Theorem: For any $n \geq 6$, it is possible to subdivide a square into n smaller squares.

Proof:
Theorem: For any $n \geq 6$, it is possible to subdivide a square into n smaller squares.

Proof: Let $P(n)$ be the statement “a square can be subdivided into n smaller squares.”
Theorem: For any \(n \geq 6 \), it is possible to subdivide a square into \(n \) smaller squares.

Proof: Let \(P(n) \) be the statement “a square can be subdivided into \(n \) smaller squares.” We will prove by induction that \(P(n) \) holds for all \(n \geq 6 \), from which the theorem follows.
Theorem: For any $n \geq 6$, it is possible to subdivide a square into n smaller squares.

Proof: Let $P(n)$ be the statement “a square can be subdivided into n smaller squares.” We will prove by induction that $P(n)$ holds for all $n \geq 6$, from which the theorem follows.

As our base cases, we prove $P(6), P(7),$ and $P(8)$, that a square can be subdivided into 6, 7, and 8 squares.
Theorem: For any \(n \geq 6 \), it is possible to subdivide a square into \(n \) smaller squares.

Proof: Let \(P(n) \) be the statement “a square can be subdivided into \(n \) smaller squares.” We will prove by induction that \(P(n) \) holds for all \(n \geq 6 \), from which the theorem follows.

As our base cases, we prove \(P(6) \), \(P(7) \), and \(P(8) \), that a square can be subdivided into 6, 7, and 8 squares. This is shown here:
Theorem: For any $n \geq 6$, it is possible to subdivide a square into n smaller squares.

Proof: Let $P(n)$ be the statement “a square can be subdivided into n smaller squares.” We will prove by induction that $P(n)$ holds for all $n \geq 6$, from which the theorem follows.

As our base cases, we prove $P(6)$, $P(7)$, and $P(8)$, that a square can be subdivided into 6, 7, and 8 squares. This is shown here:

For the inductive step, assume that for some arbitrary $k \geq 6$ that $P(k)$ is true and that a square can be subdivided into k squares.
Theorem: For any \(n \geq 6 \), it is possible to subdivide a square into \(n \) smaller squares.

Proof: Let \(P(n) \) be the statement “a square can be subdivided into \(n \) smaller squares.” We will prove by induction that \(P(n) \) holds for all \(n \geq 6 \), from which the theorem follows.

As our base cases, we prove \(P(6), P(7), \) and \(P(8) \), that a square can be subdivided into 6, 7, and 8 squares. This is shown here:

For the inductive step, assume that for some arbitrary \(k \geq 6 \) that \(P(k) \) is true and that a square can be subdivided into \(k \) squares. We prove \(P(k+3) \), that a square can be subdivided into \(k+3 \) squares.
Theorem: For any $n \geq 6$, it is possible to subdivide a square into n smaller squares.

Proof: Let $P(n)$ be the statement “a square can be subdivided into n smaller squares.” We will prove by induction that $P(n)$ holds for all $n \geq 6$, from which the theorem follows.

As our base cases, we prove $P(6)$, $P(7)$, and $P(8)$, that a square can be subdivided into 6, 7, and 8 squares. This is shown here:

```
1  2  
6 5  4
```
```
1  2
6 7 3
5 4
```
```
1  2  3
8 7 6 5
```

For the inductive step, assume that for some arbitrary $k \geq 6$ that $P(k)$ is true and that a square can be subdivided into k squares. We prove $P(k+3)$, that a square can be subdivided into $k+3$ squares. To see this, start by obtaining (via the inductive hypothesis) a subdivision of a square into k squares.
Theorem: For any $n \geq 6$, it is possible to subdivide a square into n smaller squares.

Proof: Let $P(n)$ be the statement “a square can be subdivided into n smaller squares.” We will prove by induction that $P(n)$ holds for all $n \geq 6$, from which the theorem follows.

As our base cases, we prove $P(6)$, $P(7)$, and $P(8)$, that a square can be subdivided into 6, 7, and 8 squares. This is shown here:

For the inductive step, assume that for some arbitrary $k \geq 6$ that $P(k)$ is true and that a square can be subdivided into k squares. We prove $P(k+3)$, that a square can be subdivided into $k+3$ squares. To see this, start by obtaining (via the inductive hypothesis) a subdivision of a square into k squares. Then, choose any of the squares and split it into four equal squares.
Theorem: For any $n \geq 6$, it is possible to subdivide a square into n smaller squares.

Proof: Let $P(n)$ be the statement “a square can be subdivided into n smaller squares.” We will prove by induction that $P(n)$ holds for all $n \geq 6$, from which the theorem follows.

As our base cases, we prove $P(6)$, $P(7)$, and $P(8)$, that a square can be subdivided into 6, 7, and 8 squares. This is shown here:

For the inductive step, assume that for some arbitrary $k \geq 6$ that $P(k)$ is true and that a square can be subdivided into k squares. We prove $P(k+3)$, that a square can be subdivided into $k+3$ squares. To see this, start by obtaining (via the inductive hypothesis) a subdivision of a square into k squares. Then, choose any of the squares and split it into four equal squares. This removes one of the k squares and adds four more, so there will be a net total of $k+3$ squares.
Theorem: For any $n \geq 6$, it is possible to subdivide a square into n smaller squares.

Proof: Let $P(n)$ be the statement “a square can be subdivided into n smaller squares.” We will prove by induction that $P(n)$ holds for all $n \geq 6$, from which the theorem follows.

As our base cases, we prove $P(6)$, $P(7)$, and $P(8)$, that a square can be subdivided into 6, 7, and 8 squares. This is shown here:

```
1  2
3  4
6  5
```

```
1  2
6  7
3  5
4
```

```
1  2
3  4
5
6
7
8
```

For the inductive step, assume that for some arbitrary $k \geq 6$ that $P(k)$ is true and that a square can be subdivided into k squares. We prove $P(k+3)$, that a square can be subdivided into $k+3$ squares. To see this, start by obtaining (via the inductive hypothesis) a subdivision of a square into k squares. Then, choose any of the squares and split it into four equal squares. This removes one of the k squares and adds four more, so there will be a net total of $k+3$ squares. Thus $P(k+3)$ holds, completing the induction.
Theorem: For any $n \geq 6$, it is possible to subdivide a square into n smaller squares.

Proof: Let $P(n)$ be the statement “a square can be subdivided into n smaller squares.” We will prove by induction that $P(n)$ holds for all $n \geq 6$, from which the theorem follows.

As our base cases, we prove $P(6)$, $P(7)$, and $P(8)$, that a square can be subdivided into 6, 7, and 8 squares. This is shown here:

For the inductive step, assume that for some arbitrary $k \geq 6$ that $P(k)$ is true and that a square can be subdivided into k squares. We prove $P(k+3)$, that a square can be subdivided into $k+3$ squares. To see this, start by obtaining (via the inductive hypothesis) a subdivision of a square into k squares. Then, choose any of the squares and split it into four equal squares. This removes one of the k squares and adds four more, so there will be a net total of $k+3$ squares. Thus $P(k+3)$ holds, completing the induction. ■
Why This Works

- This induction has three consecutive base cases and takes steps of size three.
- Thinking back to our “induction machine” analogy:

\[P(k) \rightarrow P(k+3) \]

\[P(6) \quad P(7) \quad P(8) \]
Why This Works

- This induction has three consecutive base cases and takes steps of size three.
- Thinking back to our “induction machine” analogy:
Why This Works

- This induction has three consecutive base cases and takes steps of size three.
- Thinking back to our “induction machine” analogy:
Why This Works

- This induction has three consecutive base cases and takes steps of size three.
- Thinking back to our “induction machine” analogy:

\[P(k) \rightarrow P(k+3) \]
Why This Works

- This induction has three consecutive base cases and takes steps of size three.
- Thinking back to our “induction machine” analogy:
Why This Works

- This induction has three consecutive base cases and takes steps of size three.
- Thinking back to our “induction machine” analogy:
Why This Works

- This induction has three consecutive base cases and takes steps of size three.
- Thinking back to our “induction machine” analogy:
Why This Works

- This induction has three consecutive base cases and takes steps of size three.
- Thinking back to our “induction machine” analogy:
Why This Works

- This induction has three consecutive base cases and takes steps of size three.
- Thinking back to our “induction machine” analogy:

\[P(k) \rightarrow P(k+3) \]

\[P(8) \]

\[P(9) \]

\[P(10) \]
Why This Works

- This induction has three consecutive base cases and takes steps of size three.
- Thinking back to our “induction machine” analogy:
Why This Works

- This induction has three consecutive base cases and takes steps of size three.
- Thinking back to our “induction machine” analogy:
Why This Works

- This induction has three consecutive base cases and takes steps of size three.
- Thinking back to our “induction machine” analogy:
Why This Works

• This induction has three consecutive base cases and takes steps of size three.

• Thinking back to our “induction machine” analogy:

$$P(k) \rightarrow P(k+3)$$

$$P(9) \quad P(10) \quad P(11)$$
Generalizing Induction

• When doing a proof by induction,
 • feel free to use multiple base cases, and
 • feel free to take steps of sizes other than one.
• Just be careful to make sure you cover all the numbers you think that you're covering!
 • We won't require that you prove you've covered everything, but it doesn't hurt to double-check!
More on Square Subdivisions

• There are a ton of interesting questions that come up when trying to subdivide a rectangle or square into smaller squares.

• In fact, one of the major players in early graph theory (William Tutte) got his start playing around with these problems.

• Good starting resource: this Numberphile video on *Squaring the Square*.
Time-Out for Announcements!
Problem Set Five

• Problem Set Four was due at 2:30PM today.
 • Want to use late days? One late day will extend the deadline to Saturday at 2:30PM, and a second will extend it to Sunday at 2:30PM.
• Problem Set Five goes out today. It’s due next Friday at 2:30PM.
 • Play around with everything we’ve covered so far, plus a healthy dose of induction and inductive problem-solving.
Your Questions
“Can someone with a CS Minor from Stanford, with no prior CS experience, be considered a software engineer?”

Here’s a different question – can someone with a degree in biology be considered a doctor? There’s a distinction between what official degree you have and what you do professionally.

Can you become a software engineer with just a CS minor and no other experience? Absolutely! One friend of mine was an English major from Berkeley and is now a software engineer at YouTube. Another was a particle physics PhD and now is a software engineer at Facebook.

If your specific goal is to become a software engineer, I think it would be worthwhile to take advantage of the courses available here while they’re easily accessible to you. It’s very cool that you have that opportunity!
Back to CS103!
Complete Induction
Guess what?
It’s time for Mathematical Calesthenics!
It’s time for Mathematically esthetenics!
If you are the *leftmost* person in your row, stand up right now.

Everyone else: stand up as soon as the person to your left in your row stands up.

This is kinda like $P(0)$.

This is kinda like $P(k) \rightarrow P(k+1)$.
Everyone, please be seated.
Let’s do this again… with a twist!
If you are the *leftmost* person in your row, stand up right now.

Everyone else: stand up as soon as *everyone* left of you in your row stands up.

This is kinda like $P(0)$.

What sort of sorcery is this?
Please be seated.

You all did a great job!
Let P be some predicate. The principle of complete induction states that if

1. $P(0)$ is true,
2. and for any $k \in \mathbb{N}$, if $P(0), P(1), \ldots, P(k)$ are true, then $P(k+1)$ is true

then

$$\forall n \in \mathbb{N}. P(n)$$

...and it stays true...

If it starts true...

...then it's always true.
Mathematical Induction

• You can write proofs using the principle of mathematical induction as follows:
 • Define some predicate $P(n)$ to prove by induction on n.
 • Choose and prove a base case (probably, but not always, $P(0)$).
 • Pick an arbitrary $k \in \mathbb{N}$ and assume that $P(k)$ is true.
 • Prove $P(k+1)$.
 • Conclude that $P(n)$ holds for all $n \in \mathbb{N}$.
Complete Induction

• You can write proofs using the principle of complete induction as follows:
 • Define some predicate $P(n)$ to prove by induction on n.
 • Choose and prove a base case (probably, but not always, $P(0)$).
 • Pick an arbitrary $k \in \mathbb{N}$ and assume that $P(0), P(1), P(2), \ldots, \text{and } P(k)$ are all true.
 • Prove $P(k+1)$.
 • Conclude that $P(n)$ holds for all $n \in \mathbb{N}$.
A Motivating Example: *Rat Mazes*
Rat Mazes

- Suppose you want to make a rat maze consisting of an $n \times m$ grid of pegs with slats between them.
Rat Mazes

• Suppose you want to make a rat maze consisting of an \(n \times m \) grid of pegs with slats between them.
Rat Mazes

- Suppose you want to make a rat maze consisting of an $n \times m$ grid of pegs with slats between them.
- The maze should have these properties:
 - There is one entrance and one exit in the border.
 - Every spot in the maze is reachable from every other spot.
 - There is exactly one path from each spot in the maze to each other spot.
Question: If you have an \(n \times m \) grid of pegs, how many slats do you need to make?
A Special Type of Graph: *Trees*
A tree is a connected, nonempty graph with no simple cycles.

According to the above definition of trees, how many of these graphs are trees?
Trees

• A **tree** is a connected, nonempty graph with no simple cycles.
Trees

- A **tree** is a connected, nonempty graph with no simple cycles.
- Trees have tons of nice properties:
 - They're *maximally acyclic* (adding any missing edge creates a simple cycle)

Proofs of these results are in the course reader if you're interested. They're also great exercises.
Trees

• A **tree** is a connected, nonempty graph with no simple cycles.

• Trees have tons of nice properties:
 • They're *maximally acyclic* (adding any missing edge creates a simple cycle)

Proofs of these results are in the course reader if you're interested. They're also great exercises.
Trees

• A **tree** is a connected, nonempty graph with no simple cycles.
• Trees have tons of nice properties:
 • They're *maximally acyclic* (adding any missing edge creates a simple cycle)
Trees

- A **tree** is a connected, nonempty graph with no simple cycles.
- Trees have tons of nice properties:
 - They're *maximally acyclic* (adding any missing edge creates a simple cycle)
 - They're *minimally connected* (deleting any edge disconnects the graph)

Proofs of these results are in the course reader if you're interested. They're also great exercises.
Trees

• A **tree** is a connected, nonempty graph with no simple cycles.

• Trees have tons of nice properties:
 • They're *maximally acyclic* (adding any missing edge creates a simple cycle)
 • They're *minimally connected* (deleting any edge disconnects the graph)

Proofs of these results are in the course reader if you're interested. They're also great exercises.
Trees

- A **tree** is a connected, nonempty graph with no simple cycles.
- Trees have tons of nice properties:
 - They're *maximally acyclic* (adding any missing edge creates a simple cycle)
 - They're *minimally connected* (deleting any edge disconnects the graph)

Proofs of these results are in the course reader if you're interested. They're also great exercises.
Trees

- A **tree** is a connected, nonempty graph with no simple cycles.
- Trees have tons of nice properties:
 - They're **maximally acyclic** (adding any missing edge creates a simple cycle)
 - They're **minimally connected** (deleting any edge disconnects the graph)

Proofs of these results are in the course reader if you're interested. They're also great exercises.
Trees

• A tree is a connected, nonempty graph with no simple cycles.

• Trees have tons of nice properties:
 • They're **maximally acyclic** (adding any missing edge creates a simple cycle)
 • They're **minimally connected** (deleting any edge disconnects the graph)

• Proofs of these results are in the course reader if you're interested. They're also great exercises.
• **Theorem:** If T is a tree with at least two nodes, then deleting any edge from T splits T into two nonempty trees T_1 and T_2.

• **Proof:** Left as an exercise to the reader. ☺
• **Theorem:** If T is a tree with at least two nodes, then deleting any edge from T splits T into two nonempty trees T_1 and T_2.

• **Proof:** Left as an exercise to the reader. ☺
Trees

- **Theorem:** If T is a tree with at least two nodes, then deleting any edge from T splits T into two nonempty trees T_1 and T_2.

- **Proof:** Left as an exercise to the reader. ☺
Trees

• **Theorem:** If T is a tree with at least two nodes, then deleting any edge from T splits T into two nonempty trees T_1 and T_2.

• **Proof:** Left as an exercise to the reader. ☺
Theorem: If T is a tree with at least two nodes, then deleting any edge from T splits T into two nonempty trees T_1 and T_2.

Proof: Left as an exercise to the reader. 😊
Theorem: If T is a tree with at least two nodes, then deleting any edge from T splits T into two nonempty trees T_1 and T_2.

Proof: Left as an exercise to the reader. ☺
Theorem: If T is a tree with at least two nodes, then deleting any edge from T splits T into two nonempty trees T_1 and T_2.

Proof: Left as an exercise to the reader. ☺
• **Theorem:** If T is a tree with at least two nodes, then deleting any edge from T splits T into two nonempty trees T_1 and T_2.

• **Proof:** Left as an exercise to the reader. ☺
• **Theorem:** If T is a tree with $n \geq 1$ nodes, then T has exactly $n-1$ edges.

• **Proof:** Up next!
Theorem: If T is a tree with $n \geq 1$ nodes, then T has exactly $n-1$ edges.

Proof: Up next!
Trees

• **Theorem:** If T is a tree with $n \geq 1$ nodes, then T has exactly $n-1$ edges.

• **Proof:** Up next!
Our Base Case
Assume any tree with at most k nodes has one more node than edge.
Assume any tree with at most \(k \) nodes has one more node than edge.

Consider an arbitrary tree with \(k+1 \) nodes.
Assume any tree with at most k nodes has one more node than edge.

Consider an arbitrary tree with $k+1$ nodes.
Assume any tree with at most k nodes has one more node than edge.

Consider an arbitrary tree with $k+1$ nodes.
Assume any tree with at most k nodes has one more node than edge.

Consider an arbitrary tree with $k+1$ nodes.
Assume any tree with at most k nodes has one more node than edge.

Consider an arbitrary tree with $k+1$ nodes.
Assume any tree with at most k nodes has one more node than edge.

Consider an arbitrary tree with $k+1$ nodes.

Suppose there are r nodes in the yellow tree.
Assume any tree with at most k nodes has one more node than edge.

Consider an arbitrary tree with $k+1$ nodes.

Suppose there are r nodes in the yellow tree.

Then there are $(k+1) - r$ nodes in the blue tree.
Assume any tree with at most \(k \) nodes has one more node than edge.

Consider an arbitrary tree with \(k+1 \) nodes.

Suppose there are \(r \) nodes in the yellow tree.

Then there are \((k+1) - r\) nodes in the blue tree.

There are \(r-1 \) edges in the yellow tree and \(k-r \) edges in the blue tree.
Assume any tree with at most k nodes has one more node than edge.

Consider an arbitrary tree with $k+1$ nodes.

Suppose there are r nodes in the yellow tree.

Then there are $(k+1) - r$ nodes in the blue tree.

There are $r-1$ edges in the yellow tree and $k-r$ edges in the blue tree.
Assume any tree with at most k nodes has one more node than edge.

Consider an arbitrary tree with $k+1$ nodes.

Suppose there are r nodes in the yellow tree.

Then there are $(k+1) - r$ nodes in the blue tree.

There are $r-1$ edges in the yellow tree and $k-r$ edges in the blue tree.

Adding in the initial edge we cut, there are $r-1 + k-r + 1 = k$ edges in the original tree.
Theorem: If T is a tree with $n \geq 1$ nodes, then T has $n-1$ edges.
Theorem: If T is a tree with $n \geq 1$ nodes, then T has $n-1$ edges.

Proof: Let $P(n)$ be the statement “any tree with n nodes has $n-1$ edges.”
Theorem: If T is a tree with $n \geq 1$ nodes, then T has $n-1$ edges.

Proof: Let $P(n)$ be the statement “any tree with n nodes has $n-1$ edges.” We will prove by induction that $P(n)$ holds for all $n \geq 1$, from which the theorem follows.
Theorem: If T is a tree with $n \geq 1$ nodes, then T has $n-1$ edges.

Proof: Let $P(n)$ be the statement “any tree with n nodes has $n-1$ edges.” We will prove by induction that $P(n)$ holds for all $n \geq 1$, from which the theorem follows.

As a base case, we will prove $P(1)$, that any tree with 1 node has 0 edges.
Theorem: If T is a tree with $n \geq 1$ nodes, then T has $n-1$ edges.

Proof: Let $P(n)$ be the statement “any tree with n nodes has $n-1$ edges.” We will prove by induction that $P(n)$ holds for all $n \geq 1$, from which the theorem follows.

As a base case, we will prove $P(1)$, that any tree with 1 node has 0 edges. Any such tree has single node, so it cannot have any edges.
Theorem: If T is a tree with $n \geq 1$ nodes, then T has $n-1$ edges.

Proof: Let $P(n)$ be the statement “any tree with n nodes has $n-1$ edges.” We will prove by induction that $P(n)$ holds for all $n \geq 1$, from which the theorem follows.

As a base case, we will prove $P(1)$, that any tree with 1 node has 0 edges. Any such tree has single node, so it cannot have any edges.

Now, assume for some arbitrary $k \geq 1$ that $P(1)$, $P(2)$, ..., and $P(k)$ are true, so any tree with between 1 and k nodes has one more node than edge.
Theorem: If T is a tree with $n \geq 1$ nodes, then T has $n-1$ edges.

Proof: Let $P(n)$ be the statement “any tree with n nodes has $n-1$ edges.” We will prove by induction that $P(n)$ holds for all $n \geq 1$, from which the theorem follows.

As a base case, we will prove $P(1)$, that any tree with 1 node has 0 edges. Any such tree has single node, so it cannot have any edges.

Now, assume for some arbitrary $k \geq 1$ that $P(1)$, $P(2)$, ..., and $P(k)$ are true, so any tree with between 1 and k nodes has one more node than edge. We will prove $P(k+1)$, that any tree with $k+1$ nodes has k edges.
Theorem: If T is a tree with $n \geq 1$ nodes, then T has $n-1$ edges.

Proof: Let $P(n)$ be the statement “any tree with n nodes has $n-1$ edges.” We will prove by induction that $P(n)$ holds for all $n \geq 1$, from which the theorem follows.

As a base case, we will prove $P(1)$, that any tree with 1 node has 0 edges. Any such tree has single node, so it cannot have any edges.

Now, assume for some arbitrary $k \geq 1$ that $P(1), P(2), \ldots, P(k)$ are true, so any tree with between 1 and k nodes has one more node than edge. We will prove $P(k+1)$, that any tree with $k+1$ nodes has k edges. Consider any tree T with $k+1$ nodes.
Theorem: If T is a tree with $n \geq 1$ nodes, then T has $n-1$ edges.

Proof: Let $P(n)$ be the statement “any tree with n nodes has $n-1$ edges.” We will prove by induction that $P(n)$ holds for all $n \geq 1$, from which the theorem follows.

As a base case, we will prove $P(1)$, that any tree with 1 node has 0 edges. Any such tree has single node, so it cannot have any edges.

Now, assume for some arbitrary $k \geq 1$ that $P(1)$, $P(2)$, ..., and $P(k)$ are true, so any tree with between 1 and k nodes has one more node than edge. We will prove $P(k+1)$, that any tree with $k+1$ nodes has k edges.

Consider any tree T with $k+1$ nodes. Since T has at least two nodes and is connected, it must contain at least one edge.
Theorem: If T is a tree with $n \geq 1$ nodes, then T has $n-1$ edges.

Proof: Let $P(n)$ be the statement “any tree with n nodes has $n-1$ edges.” We will prove by induction that $P(n)$ holds for all $n \geq 1$, from which the theorem follows.

As a base case, we will prove $P(1)$, that any tree with 1 node has 0 edges. Any such tree has single node, so it cannot have any edges.

Now, assume for some arbitrary $k \geq 1$ that $P(1), P(2), \ldots, P(k)$ are true, so any tree with between 1 and k nodes has one more node than edge. We will prove $P(k+1)$, that any tree with $k+1$ nodes has k edges.

Consider any tree T with $k+1$ nodes. Since T has at least two nodes and is connected, it must contain at least one edge. Choose any edge in T and delete it.
Theorem: If T is a tree with $n \geq 1$ nodes, then T has $n-1$ edges.

Proof: Let $P(n)$ be the statement “any tree with n nodes has $n-1$ edges.” We will prove by induction that $P(n)$ holds for all $n \geq 1$, from which the theorem follows.

As a base case, we will prove $P(1)$, that any tree with 1 node has 0 edges. Any such tree has single node, so it cannot have any edges.

Now, assume for some arbitrary $k \geq 1$ that $P(1)$, $P(2)$, ..., and $P(k)$ are true, so any tree with between 1 and k nodes has one more node than edge. We will prove $P(k+1)$, that any tree with $k+1$ nodes has k edges.

Consider any tree T with $k+1$ nodes. Since T has at least two nodes and is connected, it must contain at least one edge. Choose any edge in T and delete it. This splits T into two nonempty trees T_1 and T_2.
Theorem: If T is a tree with $n \geq 1$ nodes, then T has $n-1$ edges.

Proof: Let $P(n)$ be the statement “any tree with n nodes has $n-1$ edges.” We will prove by induction that $P(n)$ holds for all $n \geq 1$, from which the theorem follows.

As a base case, we will prove $P(1)$, that any tree with 1 node has 0 edges. Any such tree has single node, so it cannot have any edges.

Now, assume for some arbitrary $k \geq 1$ that $P(1), P(2), \ldots, \text{and } P(k)$ are true, so any tree with between 1 and k nodes has one more node than edge. We will prove $P(k+1)$, that any tree with $k+1$ nodes has k edges.

Consider any tree T with $k+1$ nodes. Since T has at least two nodes and is connected, it must contain at least one edge. Choose any edge in T and delete it. This splits T into two nonempty trees T_1 and T_2. Every edge in T is part of T_1, is part of T_2, or is the initial edge we deleted.
Theorem: If T is a tree with $n \geq 1$ nodes, then T has $n-1$ edges.

Proof: Let $P(n)$ be the statement “any tree with n nodes has $n-1$ edges.” We will prove by induction that $P(n)$ holds for all $n \geq 1$, from which the theorem follows.

As a base case, we will prove $P(1)$, that any tree with 1 node has 0 edges. Any such tree has single node, so it cannot have any edges.

Now, assume for some arbitrary $k \geq 1$ that $P(1)$, $P(2)$, ..., and $P(k)$ are true, so any tree with between 1 and k nodes has one more node than edge. We will prove $P(k+1)$, that any tree with $k+1$ nodes has k edges.

Consider any tree T with $k+1$ nodes. Since T has at least two nodes and is connected, it must contain at least one edge. Choose any edge in T and delete it. This splits T into two nonempty trees T_1 and T_2. Every edge in T is part of T_1, is part of T_2, or is the initial edge we deleted.

Let r be the number of nodes in T_1.
Theorem: If T is a tree with $n \geq 1$ nodes, then T has $n-1$ edges.

Proof: Let $P(n)$ be the statement “any tree with n nodes has $n-1$ edges.” We will prove by induction that $P(n)$ holds for all $n \geq 1$, from which the theorem follows.

As a base case, we will prove $P(1)$, that any tree with 1 node has 0 edges. Any such tree has single node, so it cannot have any edges.

Now, assume for some arbitrary $k \geq 1$ that $P(1)$, $P(2)$, ..., and $P(k)$ are true, so any tree with between 1 and k nodes has one more node than edge. We will prove $P(k+1)$, that any tree with $k+1$ nodes has k edges.

Consider any tree T with $k+1$ nodes. Since T has at least two nodes and is connected, it must contain at least one edge. Choose any edge in T and delete it. This splits T into two nonempty trees T_1 and T_2. Every edge in T is part of T_1, is part of T_2, or is the initial edge we deleted.

Let r be the number of nodes in T_1. Since every node in T belongs to either T_1 or T_2, we see that T_2 has $(k+1)-r$ nodes.
Theorem: If T is a tree with $n \geq 1$ nodes, then T has $n-1$ edges.

Proof: Let $P(n)$ be the statement “any tree with n nodes has $n-1$ edges.”

We will prove by induction that $P(n)$ holds for all $n \geq 1$, from which the theorem follows.

As a base case, we will prove $P(1)$, that any tree with 1 node has 0 edges. Any such tree has single node, so it cannot have any edges.

Now, assume for some arbitrary $k \geq 1$ that $P(1), P(2), ..., P(k)$ are true, so any tree with between 1 and k nodes has one more node than edge. We will prove $P(k+1)$, that any tree with $k+1$ nodes has k edges.

Consider any tree T with $k+1$ nodes. Since T has at least two nodes and is connected, it must contain at least one edge. Choose any edge in T and delete it. This splits T into two nonempty trees T_1 and T_2. Every edge in T is part of T_1, is part of T_2, or is the initial edge we deleted.

Let r be the number of nodes in T_1. Since every node in T belongs to either T_1 or T_2, we see that T_2 has $(k+1)-r$ nodes. Additionally, since T_1 and T_2 are nonempty, neither T_1 nor T_2 contains all the nodes from T.

Thus the total number of edges in T is $1 + (r-1) + (k-r) = k$, as required. Therefore, $P(k+1)$ is true, completing the induction. ■
Theorem: If T is a tree with $n \geq 1$ nodes, then T has $n-1$ edges.

Proof: Let $P(n)$ be the statement “any tree with n nodes has $n-1$ edges.” We will prove by induction that $P(n)$ holds for all $n \geq 1$, from which the theorem follows.

As a base case, we will prove $P(1)$, that any tree with 1 node has 0 edges. Any such tree has a single node, so it cannot have any edges.

Now, assume for some arbitrary $k \geq 1$ that $P(1)$, $P(2)$, ..., and $P(k)$ are true, so any tree with between 1 and k nodes has one more node than edge. We will prove $P(k+1)$, that any tree with $k+1$ nodes has k edges.

Consider any tree T with $k+1$ nodes. Since T has at least two nodes and is connected, it must contain at least one edge. Choose any edge in T and delete it. This splits T into two nonempty trees T_1 and T_2. Every edge in T is part of T_1, is part of T_2, or is the initial edge we deleted.

Let r be the number of nodes in T_1. Since every node in T belongs to either T_1 or T_2, we see that T_2 has $(k+1)-r$ nodes. Additionally, since T_1 and T_2 are nonempty, neither T_1 nor T_2 contains all the nodes from T. Therefore, T_1 and T_2 each have between 1 and k nodes.
Theorem: If \(T \) is a tree with \(n \geq 1 \) nodes, then \(T \) has \(n-1 \) edges.

Proof: Let \(P(n) \) be the statement “any tree with \(n \) nodes has \(n-1 \) edges.”

We will prove by induction that \(P(n) \) holds for all \(n \geq 1 \), from which the theorem follows.

As a base case, we will prove \(P(1) \), that any tree with 1 node has 0 edges. Any such tree has single node, so it cannot have any edges.

Now, assume for some arbitrary \(k \geq 1 \) that \(P(1) \), \(P(2) \), \(..., \) and \(P(k) \) are true, so any tree with between 1 and \(k \) nodes has one more node than edge. We will prove \(P(k+1) \), that any tree with \(k+1 \) nodes has \(k \) edges.

Consider any tree \(T \) with \(k+1 \) nodes. Since \(T \) has at least two nodes and is connected, it must contain at least one edge. Choose any edge in \(T \) and delete it. This splits \(T \) into two nonempty trees \(T_1 \) and \(T_2 \). Every edge in \(T \) is part of \(T_1 \), is part of \(T_2 \), or is the initial edge we deleted.

Let \(r \) be the number of nodes in \(T_1 \). Since every node in \(T \) belongs to either \(T_1 \) or \(T_2 \), we see that \(T_2 \) has \((k+1)-r\) nodes. Additionally, since \(T_1 \) and \(T_2 \) are nonempty, neither \(T_1 \) nor \(T_2 \) contains all the nodes from \(T \). Therefore, \(T_1 \) and \(T_2 \) each have between 1 and \(k \) nodes. We can then apply our inductive hypothesis to see that \(T_1 \) has \(r-1 \) edges and \(T_2 \) has \(k-r \) edges.
Theorem: If T is a tree with $n \geq 1$ nodes, then T has $n-1$ edges.

Proof: Let $P(n)$ be the statement “any tree with n nodes has $n-1$ edges.”

We will prove by induction that $P(n)$ holds for all $n \geq 1$, from which the theorem follows.

As a base case, we will prove $P(1)$, that any tree with 1 node has 0 edges. Any such tree has single node, so it cannot have any edges.

Now, assume for some arbitrary $k \geq 1$ that $P(1)$, $P(2)$, ..., and $P(k)$ are true, so any tree with between 1 and k nodes has one more node than edge. We will prove $P(k+1)$, that any tree with $k+1$ nodes has k edges.

Consider any tree T with $k+1$ nodes. Since T has at least two nodes and is connected, it must contain at least one edge. Choose any edge in T and delete it. This splits T into two nonempty trees T_1 and T_2. Every edge in T is part of T_1, is part of T_2, or is the initial edge we deleted.

Let r be the number of nodes in T_1. Since every node in T belongs to either T_1 or T_2, we see that T_2 has $(k+1)-r$ nodes. Additionally, since T_1 and T_2 are nonempty, neither T_1 nor T_2 contains all the nodes from T. Therefore, T_1 and T_2 each have between 1 and k nodes. We can then apply our inductive hypothesis to see that T_1 has $r-1$ edges and T_2 has $k-r$ edges. Thus the total number of edges in T is $1 + (r-1) + (k-r) = k$, as required.
Theorem: If T is a tree with $n \geq 1$ nodes, then T has $n-1$ edges.

Proof: Let $P(n)$ be the statement “any tree with n nodes has $n-1$ edges.” We will prove by induction that $P(n)$ holds for all $n \geq 1$, from which the theorem follows.

As a base case, we will prove $P(1)$, that any tree with 1 node has 0 edges. Any such tree has single node, so it cannot have any edges.

Now, assume for some arbitrary $k \geq 1$ that $P(1)$, $P(2)$, ..., and $P(k)$ are true, so any tree with between 1 and k nodes has one more node than edge. We will prove $P(k+1)$, that any tree with $k+1$ nodes has k edges.

Consider any tree T with $k+1$ nodes. Since T has at least two nodes and is connected, it must contain at least one edge. Choose any edge in T and delete it. This splits T into two nonempty trees T_1 and T_2. Every edge in T is part of T_1, is part of T_2, or is the initial edge we deleted.

Let r be the number of nodes in T_1. Since every node in T belongs to either T_1 or T_2, we see that T_2 has $(k+1)-r$ nodes. Additionally, since T_1 and T_2 are nonempty, neither T_1 nor T_2 contains all the nodes from T. Therefore, T_1 and T_2 each have between 1 and k nodes. We can then apply our inductive hypothesis to see that T_1 has $r-1$ edges and T_2 has $k-r$ edges. Thus the total number of edges in T is $1 + (r-1) + (k-r) = k$, as required. Therefore, $P(k+1)$ is true, completing the induction.
Theorem: If T is a tree with $n \geq 1$ nodes, then T has $n-1$ edges.

Proof: Let $P(n)$ be the statement “any tree with n nodes has $n-1$ edges.” We will prove by induction that $P(n)$ holds for all $n \geq 1$, from which the theorem follows.

As a base case, we will prove $P(1)$, that any tree with 1 node has 0 edges. Any such tree has single node, so it cannot have any edges.

Now, assume for some arbitrary $k \geq 1$ that $P(1)$, $P(2)$, ..., and $P(k)$ are true, so any tree with between 1 and k nodes has one more node than edge. We will prove $P(k+1)$, that any tree with $k+1$ nodes has k edges.

Consider any tree T with $k+1$ nodes. Since T has at least two nodes and is connected, it must contain at least one edge. Choose any edge in T and delete it. This splits T into two nonempty trees T_1 and T_2. Every edge in T is part of T_1, is part of T_2, or is the initial edge we deleted.

Let r be the number of nodes in T_1. Since every node in T belongs to either T_1 or T_2, we see that T_2 has $(k+1)-r$ nodes. Additionally, since T_1 and T_2 are nonempty, neither T_1 nor T_2 contains all the nodes from T. Therefore, T_1 and T_2 each have between 1 and k nodes. We can then apply our inductive hypothesis to see that T_1 has $r-1$ edges and T_2 has $k-r$ edges. Thus the total number of edges in T is $1 + (r-1) + (k-r) = k$, as required. Therefore, $P(k+1)$ is true, completing the induction. □
Theorem: If T is a tree with $n \geq 1$ nodes, then T has $n-1$ edges.

Proof: Let $P(n)$ be the statement “any tree with n nodes has $n-1$ edges.” We will prove by induction that $P(n)$ holds for all $n \geq 1$, from which the theorem follows.

As a base case, we will prove $P(1)$, that any tree with 1 node has 0 edges. Any such tree has single node, so it cannot have any edges.

Now, assume for some arbitrary $k \geq 1$ that $P(1)$, $P(2)$, ..., and $P(k)$ are true, so any tree with between 1 and k nodes has one more node than edge. We will prove $P(k+1)$, that any tree with $k+1$ nodes has k edges.

Consider any tree T with $k+1$ nodes. Since T has at least two nodes and is connected, it must contain at least one edge. Choose any edge in T and delete it. This splits T into two nonempty trees T_1 and T_2. Every edge in T is part of T_1, is part of T_2, or is the initial edge we deleted.

Let r be the number of nodes in T_1. Since every node in T belongs to either T_1 or T_2, we see that T_2 has $(k+1)-r$ nodes. Additionally, since T_1 and T_2 are nonempty, neither T_1 nor T_2 contains all the nodes from T. Therefore, T_1 and T_2 each have between 1 and k nodes. We can then apply our inductive hypothesis to see that T_1 has $r-1$ edges and T_2 has $k-r$ edges. Thus the total number of edges in T is $1 + (r-1) + (k-r) = k$, as required. Therefore, $P(k+1)$ is true, completing the induction. ■
Induction vs. Complete Induction

I can solve smaller versions of the problem

I can solve bigger versions of the problem
Induction vs. Complete Induction

Regular Induction

Complete Induction
Induction vs. Complete Induction

Regular Induction

Exactly k squares

Exactly $k+3$ squares

Complete Induction

At most k nodes; not sure how many

Exactly $k+1$ nodes
Induction vs. Complete Induction

Regular Induction

Exactly k squares

Exactly $k+3$ squares

Complete Induction

At most k nodes; not sure how many

Regular induction is great when you know exactly how much smaller your "smaller" problem instance is.
Induction vs. Complete Induction

Regular Induction

- At most k nodes, but not sure how many
- Exactly $k+3$ squares

Complete Induction

- Exactly $k+1$ nodes
- Complete induction is great when you know things get smaller, but you're not sure by how much.
Rat Mazes

- Suppose you want to make a rat maze consisting of an $n \times m$ grid of pegs with slats between them.

- **Question:** How many slats do you need to create?
Rat Mazes

• Suppose you want to make a rat maze consisting of an $n \times m$ grid of pegs with slats between them.

• **Question:** How many slats do you need to create?

Answer: $mn - 2$.
Rat Mazes

- Suppose you want to make a rat maze consisting of an $n \times m$ grid of pegs with slats between them.

- **Question:** How many slats do you need to create?

\[mn - 2. \]
Rat Mazes

- Suppose you want to make a rat maze consisting of an $n \times m$ grid of pegs with slats between them.
- **Question**: How many slats do you need to create?

\[mn - 2. \]
Suppose you want to make a rat maze consisting of an $n \times m$ grid of pegs with slats between them.

Question: How many slats do you need to create?

Answer: $mn - 2$.

This is a tree!
For more on trees, take CS161 / 261!
An Important Milestone
Recap: *Discrete Mathematics*

• The past five weeks have focused exclusively on discrete mathematics:

<table>
<thead>
<tr>
<th>Induction</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphs</td>
<td>The Pigeonhole Principle</td>
</tr>
<tr>
<td>Relations</td>
<td>Mathematical Logic</td>
</tr>
<tr>
<td>Set Theory</td>
<td>Cardinality</td>
</tr>
</tbody>
</table>

• These are building blocks we will use throughout the rest of the quarter.

• These are building blocks you will use throughout the rest of your CS career.
Next Up: *Computability Theory*

• It's time to switch gears and address the limits of what can be computed.

• We'll explore these questions:
 • How do we model computation itself?
 • What exactly is a computing device?
 • What problems can be solved by computers?
 • What problems *can't* be solved by computers?

• *Get ready to explore the boundaries of what computers could ever be made to do.*
Next Time

- **Formal Language Theory**
 - How are we going to formally model computation?

- **Finite Automata**
 - A simple but powerful computing device made entirely of math!

- **DFAs**
 - A fundamental building block in computing.