Finite Automata

Part Two
Recap from Last Time
Formal Language Theory

- An **alphabet** is a set, usually denoted Σ, consisting of elements called **characters**.

- A **string over Σ** is a finite sequence of zero or more characters taken from Σ.

- The **empty string** has no characters and is denoted ε.

- A **language over Σ** is a set of strings over Σ.

- The language Σ^* is the set of all strings over Σ.
DFAs

- A **DFA** is a
 - **D**eterministic
 - **F**inite
 - **A**utomaton

- DFAs are the simplest type of automaton that we will see in this course.
DFAs

• A DFA is defined relative to some alphabet Σ.
• For each state in the DFA, there must be exactly one transition defined for each symbol in Σ.
 • This is the “deterministic” part of DFA.
• There is a unique start state.
• There are zero or more accepting states.
The Language of an Automaton

- If D is a DFA that processes strings over Σ, the **language of D**, denoted $\mathcal{L}(D)$, is the set of all strings D accepts.

- Formally:

$$\mathcal{L}(D) = \{ \ w \in \Sigma^* \mid D \text{ accepts } w \ \}$$
New Stuff!
Recognizing Languages with DFAs

\[L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring} \} \]
Recognizing Languages with DFAs

\[L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring} \} \]
Recognizing Languages with DFAs

\[L = \{ \ w \in \{a, b\}^* \mid \text{w contains } aa \text{ as a substring} \} \]
Recognizing Languages with DFAs

\[L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring} \} \]
Recognizing Languages with DFAs

\[L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring} \} \]
Recognizing Languages with DFAs

\[L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring} \} \]
Recognizing Languages with DFAs

$L = \{ w \in \{a, b\}^* | w \text{ contains } aa \text{ as a substring } \}$
Recognizing Languages with DFAs

\[L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring} \} \]
Recognizing Languages with DFAs

\[L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring } \} \]
Recognizing Languages with DFAs

\[L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring} \} \]
Recognizing Languages with DFAs

\[L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring} \} \]
More Elaborate DFAs

\[L = \{ w \in \{a, *, /\}* | w \text{ represents a C-style comment} \} \]

Let's have the \(a \) symbol be a placeholder for "some character that isn't a star or slash."

Let's design a DFA for C-style comments. Those are the ones that start with /* and end with */.

Accepted:
- /*aa*/
- /**/
- /***/
- /*aaa*aaa*/
- /*a/a*/

Rejected:
- /***/a/*aa*/
- aaa/***/aa
- /*
- /***/
- //aaaa
More Elaborate DFAs

\[L = \{ w \in \{a, *, /\}^* \mid w \text{ represents a C-style comment} \} \]
Tabular DFAs

\[
\begin{array}{c|cc}
\text{0} & \text{1} \\
\hline
q_0 & \text{start} \\
q_1 & 0 \\
q_2 & 1 \\
q_3 & \Sigma \\
\end{array}
\]
Tabular DFAs

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_1</td>
<td>q_0</td>
</tr>
<tr>
<td>q_1</td>
<td>q_3</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_3</td>
<td>q_0</td>
</tr>
<tr>
<td>q_3</td>
<td>q_3</td>
<td>q_3</td>
</tr>
</tbody>
</table>
Tabular DFAs

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>*q₀</td>
<td>q₁</td>
<td>q₀</td>
</tr>
<tr>
<td>q₁</td>
<td>q₃</td>
<td>q₂</td>
</tr>
<tr>
<td>q₂</td>
<td>q₃</td>
<td>q₀</td>
</tr>
<tr>
<td>*q₃</td>
<td>q₃</td>
<td>q₃</td>
</tr>
</tbody>
</table>
Tabular DFAs

These stars indicate accepting states.
Tabular DFAs

Since this is the first row, it's the start state.
Tabular DFAs

Question to ponder: Why isn't there a column here for Σ?
int kTransitionTable[kNumStates][kNumSymbols] = {
 {0, 0, 1, 3, 7, 1, ...},
 ...
};

bool kAcceptTable[kNumStates] = {
 false,
 true,
 true,
 true,
 ...
};

bool SimulateDFA(string input) {
 int state = 0;
 for (char ch: input) {
 state = kTransitionTable[state][ch];
 }
 return kAcceptTable[state];
}
The Regular Languages
A language L is called a **regular language** if there exists a DFA D such that $\mathcal{L}(D) = L$.

If L is a language and $\mathcal{L}(D) = L$, we say that D **recognizes** the language L.
The Complement of a Language

• Given a language \(L \subseteq \Sigma^* \), the *complement* of that language (denoted \(\overline{L} \)) is the language of all strings in \(\Sigma^* \) that aren't in \(L \).

• Formally:

\[
\overline{L} = \Sigma^* - L
\]
The Complement of a Language

• Given a language $L \subseteq \Sigma^*$, the complement of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.

• Formally:

$$\overline{L} = \Sigma^* - L$$
The Complement of a Language

- Given a language \(L \subseteq \Sigma^* \), the complement of that language (denoted \(\overline{L} \)) is the language of all strings in \(\Sigma^* \) that aren't in \(L \).

- Formally:

\[
\overline{L} = \Sigma^* - L
\]
The Complement of a Language

- Given a language $L \subseteq \Sigma^*$, the complement of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.

- Formally:

$$\overline{L} = \Sigma^* - L$$
The Complement of a Language

• Given a language $L \subseteq \Sigma^*$, the complement of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.

• Formally:

$$\overline{L} = \Sigma^* - L$$

Good proofwriting exercise: prove $\overline{L} = L$ for any language L.
Complementing Regular Languages

\[L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring} \} \]

\[\overline{L} = \{ w \in \{a, b\}^* \mid w \text{ does not contain } aa \text{ as a substring} \} \]
Complementing Regular Languages

$L = \{ \ w \in \{a, *, /\}* \mid w \text{ represents a C-style comment} \ \}$
Complementing Regular Languages

\(\overline{L} = \{ w \in \{a, *, /\}^* \mid w \text{ doesn't represent a C-style comment} \} \)
Complementing Regular Languages

\[\overline{L} = \{ w \in \{a, *, /\}^* \mid w \text{ doesn't represent a C-style comment} \} \]
Closure Properties

- **Theorem:** If L is a regular language, then \overline{L} is also a regular language.
- As a result, we say that the regular languages are **closed under complementation**.

Question to ponder: are the nonregular languages closed under complementation?
NFAs
Revisiting a Problem

\[q_0 \rightarrow 1 \rightarrow q_1 \rightarrow 1 \rightarrow q_2 \]

\[q_0 \rightarrow 0 \rightarrow 1 \rightarrow q_3 \]

\[q_3 \rightarrow 0 \rightarrow 1 \rightarrow q_3 \]

Start state: \(q_0 \)
NFAs

• An *NFA* is a
 • *N*ondeterministic
 • *F*inite
 • *A*utomaton

• Structurally similar to a DFA, but represents a fundamental shift in how we'll think about computation.
(Non)determinism

- A model of computation is **deterministic** if at every point in the computation, there is exactly one choice that can make.
 - The machine accepts if that series of choices leads to an accepting state.
- A model of computation is **nondeterministic** if the computing machine has a finite number of choices available to make at each point, possibly including zero.
 - The machine accepts if *any* series of choices leads to an accepting state.
 - (This sort of nondeterminism is technically called **existential nondeterminism**, the most philosophical-sounding term we’ll introduce all quarter.)
A Simple NFA

\begin{figure}
\centering
\begin{tikzpicture}
\node[state, initial] (q0) {q_0};
\node[state] (q1) [right of=q0] {q_1};
\node[state, accepting] (q2) [right of=q1] {q_2};
\node[state] (q3) [below of=q2] {q_3};
\path[->]
(q0) edge node {1} (q1)
(q1) edge node {1} (q2)
(q0) edge node {$0, 1$} (q3)
(q2) edge[bend right] node {0} (q3)
(q3) edge[bend right] node {$0, 1$} (q0);
\end{tikzpicture}
\end{figure}
A Simple NFA

q_0 has two transitions defined on 1!
A Simple NFA
A Simple NFA

q_0 1 q_1

q_0 0, 1 q_1

q_0 0 q_3

q_3 0, 1 q_2

q_3 0, 1

0 1 0 1 1
A Simple NFA
A Simple NFA

start

q_0 1 q_1

0, 1

q_1 1 q_2

q_3

0, 1

0, 1

0, 1

0 1 0 1 1
A Simple NFA
A Simple NFA

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

- Transition 1: \(q_0 \rightarrow q_1 \) with inputs 0, 1
- Transition 2: \(q_1 \rightarrow q_2 \) with input 1
- Loop: \(q_2 \rightarrow q_3 \) with inputs 0, 1
- Transition 3: \(q_3 \rightarrow q_0 \) with inputs 0, 1
A Simple NFA

\[\begin{array}{c}
\text{start} \\
q_0 \quad 1 \\
q_1 \quad 1 \\
q_2 \\
q_3 \quad 0, 1 \\
\end{array} \]
A Simple NFA
A Simple NFA

\begin{tikzpicture}
 \node[state, initial] (q0) {q_0};
 \node[state] (q1) [right of=q0] {q_1};
 \node[state, accepting] (q2) [right of=q1] {q_2};
 \node[state] (q3) [below of=q2] {q_3};

 \draw[->] (q0) -- node[above] {1} (q1);
 \draw[->] (q1) -- node[above] {1} (q2);
 \draw[->] (q2) -- node[above] {$0, 1$} (q3);
 \draw[->] (q3) -- node[above] {$0, 1$} (q2);
 \draw[->] (q3) -- node[above, pos=0.25] {$0, 1$} (q3);
 \draw[->] (q0) -- node[below] {$0, 1$} (q1);

\end{tikzpicture}
A Simple NFA

\[
\begin{array}{c}
\text{start} \\
q_0 \\
q_1 \\
q_2 \\
q_3 \\
0, 1 \\
0, 1 \\
0, 1 \\
0, 1 \\
0, 1 \\
1 \\
1 \\
1 \\
1 \\
\end{array}
\]
A Simple NFA
A Simple NFA

0 1 0 1 1
A Simple NFA
A Simple NFA

\[q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_2 \]

Transition labels:
- \(q_0 \) to \(q_1 \) on 1
- \(q_1 \) to \(q_2 \) on 1
- \(q_3 \) on any input

Input string: 0 1 0 1 1
A Simple NFA

\[
\begin{align*}
&\text{start} \\
&\quad q_0 \quad 1 \quad q_1 \\
&\quad q_1 \quad 1 \quad q_2 \\
&\quad q_3 \\
&\quad 0, 1 \\
&0 \quad 1 \quad 0 \quad 1 \quad 1
\end{align*}
\]
A Simple NFA
A Simple NFA
A Simple NFA

```
q_0 1 q_1 1 q_2
0, 1

start

q_0 q_1 q_2

q_3
0, 1

0 1 0 1 1
```
A Simple NFA

Start → q_0 \(\xrightarrow{1} q_1\) \(\xrightarrow{1} q_2\)

$0, 1$

0

$0, 1$

$0, 1$

Input: 01011
A Simple NFA

![NFA Diagram](image_url)
A Simple NFA

start

q_0 1 q_1 1 q_2

q_0, 1

q_3

q_0, 1

q_0, 0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1
A Simple NFA

start

q_0 1 q_1

q_1 1 q_2

q_3

$q_0, 1$

q_1

q_2

q_3

$q_0, 1$

$q_0, 1$
A Simple NFA

Start

$q_0 \xrightarrow{0,1} q_1 \xrightarrow{1} q_2$

$q_3 \xrightarrow{0,1} q_3$

Input: 0 1 0 1 1
A Simple NFA
A Simple NFA

- **Start state:** q_0
- **States:** q_0, q_1, q_3, q_2
- **Transitions:**
 - q_0 to q_1: 1
 - q_1 to q_0: $0, 1$
 - q_1 to q_2: 1
 - q_2 to q_3: $0, 1$
 - q_3 to q_2: $0, 1$

Input sequence: 0 1 0 1 1
A Simple NFA
A Simple NFA

![A Simple NFA Diagram](image)
A More Complex NFA
A More Complex NFA

If a NFA needs to make a transition when no transition exists, the automaton dies and that particular path does not accept.
A More Complex NFA

+ start \rightarrow q_0 \quad \text{1} \quad q_1 \quad \text{1} \quad q_2
+ q_0 \quad \text{0, 1} \quad q_1
+ 0 1 0 1 1
A More Complex NFA

```
0 1 0 1 1
```

Diagram:
- Start state: q_0
- Transitions:
 - q_0 on input 1 to q_1
 - q_1 on input 1 to q_2
 - q_0 on input 0, 1 to itself
- Final state: q_2
A More Complex NFA

start \rightarrow q_0 \rightarrow q_1 \rightarrow q_2

0, 1

0 1 0 1 1
A More Complex NFA

- Start state: q_0
- Transitions:
 - From q_0 to q_1: 1
 - From q_1 to q_2: 1
- Accepting state: q_2

Input string: 01011
A More Complex NFA

Start state: q_0

Transitions:
- From q_0 to q_1 on input 1
- From q_1 to q_2 on input 1

Input string: 01011

Final state: q_2
A More Complex NFA
A More Complex NFA

Oh no! There's no transition defined!
A More Complex NFA

\[
\begin{array}{c}
q_0 \quad 1 \quad q_1 \quad 1 \quad q_2 \\
\text{start} \quad 0, 1
\end{array}
\]
A More Complex NFA

Start state: q_0

Transitions:
- $q_0 \xrightarrow{1} q_1$
- $q_1 \xrightarrow{1} q_2$
- $q_1 \xrightarrow{0, 1} q_1$

Input string: 01011
A More Complex NFA

Start

q_0 1 q_1 1 q_2

0, 1

0 1 0 1 1
A More Complex NFA

0, 1

0, 1, 0, 1, 1
A More Complex NFA
A More Complex NFA

start → q_0 (1) → q_1 (1) → q_2

Input: 0, 1, 0, 1, 1
A More Complex NFA

[start] q_0 \rightarrow 1 \rightarrow [0, 1] \rightarrow [1] \rightarrow q_2}

Input: 010111
A More Complex NFA

0 1 0 1 1
A More Complex NFA

start

q_0 1 q_1 1 q_2

0, 1

0 1 0 1 1
A More Complex NFA

\[q_0 \xrightarrow{1} q_1, q_1 \xrightarrow{1} q_2 \]

Input sequence: 010111
A More Complex NFA
Hello, NFA!
Hello, NFA!
Hello, NFA!
Hello, NFA!

-start-

$q_0 \xrightarrow{h} q_1 \xrightarrow{i} q_2$

$h \, \, i$
Hello, NFA!
Hello, NFA!
Tragedy in Paradise

start

q_0 h q_1 i q_2

h i p
Tragedy in Paradise
Tragedy in Paradise

\[\text{start} \quad q_0 \quad \xrightarrow{h} \quad q_1 \quad \xrightarrow{i} \quad q_2 \]

\[\begin{align*} \text{h} & \quad \text{i} & \quad \text{p} \end{align*} \]
Tragedy in Paradise

Start

\(q_0 \) \(q_1 \) \(q_2 \)

\(h \) \(i \)

\[h \quad i \quad p \]
Tragedy in Paradise

start $\rightarrow q_0 \rightarrow h \rightarrow q_1 \rightarrow i \rightarrow q_2$

$h \quad i \quad p$

Tragedy in Paradise

Diagram:

- Start state: q_0
- Transition: h from q_0 to q_1
- Transition: i from q_1 to q_2

Words on tape: hip
Tragedy in Paradise

\[q_0 \rightarrow q_1 \rightarrow \text{sad emoji} \]
Tragedy in Paradise

start q_0 \text{ h } q_1 \text{ i } q_2$

h i p

Image of an otter.
The **language of an NFA** is
\[\mathcal{L}(N) = \{ w \in \Sigma^* \mid N \text{ accepts } w \} \].

What is the language of each NFA? (Assume \(\Sigma = \{a, b\} \).)

Note that flipping the accept and reject states of an NFA doesn’t always give an NFA for the complement of the original language. *Why?*

Question to ponder:
Why is the answer \(\{ w \in \Sigma^* \mid w \text{ ends in } aaa \} \) not correct?

\(\{ w \in \Sigma^* \mid w \text{ ends in } aa \} \)

\(\emptyset \)

\(\{ \varepsilon \} \)

\(\Sigma^* \)
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
\(\varepsilon\)-Transitions

- NFAs have a special type of transition called the \textbf{\(\varepsilon\)-transition}.
- An NFA may follow any number of \(\varepsilon\)-transitions at any time without consuming any input.
\(\varepsilon\)-Transitions

- NFAs have a special type of transition called the \textbf{\(\varepsilon\)-transition}.
- An NFA may follow any number of \(\varepsilon\)-transitions at any time without consuming any input.
ε-Transitions

• NFAs have a special type of transition called the **ε-transition**.

• An NFA may follow any number of ε-transitions at any time without consuming any input.
\(\varepsilon \)-Transitions

- NFAs have a special type of transition called the \(\varepsilon \)-transition.
- An NFA may follow any number of \(\varepsilon \)-transitions at any time without consuming any input.
\(\varepsilon\)-Transitions

- NFAs have a special type of transition called the \textbf{\(\varepsilon\)-transition}.
- An NFA may follow any number of \(\varepsilon\)-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

![Diagram of ε-transitions](image)
\(\epsilon\)-Transitions

- NFAs have a special type of transition called the **\(\epsilon\)-transition**.
- An NFA may follow any number of \(\epsilon\)-transitions at any time without consuming any input.
\textbf{ε-Transitions}

- NFAs have a special type of transition called the \textbf{ε-transition}.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the *ε-transition*.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
- NFAs are not *required* to follow ε-transitions. It's simply another option at the machine's disposal.
Time-Out For Announcements!
Problem Set Three Graded

• Your diligent and hardworking TAs have finished grading PS3. Grades and feedback are now available on Gradescope.

• As always, please review your feedback! Knowing where to improve is more important than just seeing a raw score.

• Did we make a mistake? Regrades are currently open on Gradescope and are due by next Monday.
Back to CS103!
Intuiting Nondeterminism

• Nondeterministic machines are a serious departure from physical computers. How can we build up an intuition for them?

• There are two particularly useful frameworks for interpreting nondeterminism:
 • *Perfect positive guessing*
 • *Massive parallelism*
Perfect Positive Guessing
Perfect Positive Guessing

Start: $q_0 \rightarrow a \rightarrow q_1 \rightarrow b \rightarrow q_2 \rightarrow a \rightarrow q_3$

Input: Σ

Sequence: a b a b a a
Perfect Positive Guessing

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

Start

a b a b a a
Perfect Positive Guessing

\[\Sigma \]

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

\[\text{start} \]

\[a \quad b \quad a \quad b \quad a \quad b \quad a \]
Perfect Positive Guessing

\[\sum \]

\(q_0 \rightarrow a \rightarrow q_1 \rightarrow b \rightarrow q_2 \rightarrow a \rightarrow q_3 \)

\[
\begin{array}{cccccc}
 a & b & a & b & a & a \\
\end{array}
\]
Perfect Positive Guessing

\[\Sigma \]

\[\text{start} \quad q_0 \quad q_1 \quad q_2 \quad q_3 \]

\[a \quad b \quad a \quad b \quad a \]

Start at \(q_0 \) and follow the path labeled with \(a \) and \(b \).
Perfect Positive Guessing

Start: q_0

- a: $q_0
ightarrow q_1$
- b: $q_1
ightarrow q_2$
- a: $q_2
ightarrow q_3$

Input alphabet: Σ

Sequence: $abaaba$
Perfect Positive Guessing

\[
\begin{aligned}
q_0 & \xrightarrow{a} q_1 \\
q_1 & \xrightarrow{b} q_2 \\
q_2 & \xrightarrow{a} q_3
\end{aligned}
\]

Input: \(\Sigma\)
Perfect Positive Guessing

\[
\begin{align*}
q_0 & \xrightarrow{a} q_1 \\
q_1 & \xrightarrow{b} q_2 \\
q_2 & \xrightarrow{a} q_3
\end{align*}
\]

\[\Sigma\]

Start

a b b a b b a a
Perfect Positive Guessing

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[a \quad b \quad a \quad b \quad a \quad b \quad a \]
Perfect Positive Guessing

\[\begin{align*}
q_0 & \xrightarrow{a} q_1 \\
q_1 & \xrightarrow{b} q_2 \\
q_2 & \xrightarrow{a} q_3
\end{align*} \]

\(\Sigma \)
Perfect Positive Guessing

- We can view nondeterministic machines as having *Magic Superpowers* that enable them to guess choices that lead to an accepting state.
 - If there is at least one choice that leads to an accepting state, the machine will guess it.
 - If there are no choices, the machine guesses any one of the wrong guesses.
- There is no known way to physically model this intuition of nondeterminism – this is quite a departure from reality!
Massive Parallelism

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

\[\Sigma \]

\[a \ b \ a \ b \ a \ b \ a \ a \]
Massive Parallelism
Massive Parallelism

\[\sum \]

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

\[\begin{array}{cccccc}
 a & b & a & b & a & a \\
\end{array} \]
Massive Parallelism

\[\Sigma \]

q₀ → q₁ → q₂ → q₃

\[\text{a b a b a b a} \]
Massive Parallelism

\\quad q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3

\begin{align*}
\begin{array}{cccccccc}
a & b & a & b & a & b & a \\
\end{array}
\end{align*}
Massive Parallelism

$a \ b \ a \ b \ a \ b \ a$
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input: \(a \ b \ a \ b \ a \)
Massive Parallelism

\[
\begin{align*}
\Sigma & \\
q_0 & \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3
\end{align*}
\]

\[
\begin{array}{cccccc}
 a & b & a & b & a & a \\
\end{array}
\]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

Input sequence: \[\text{a b b a b b a a} \]

Start state: \[q_0 \]
Massive Parallelism

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

Start

\[\Sigma \]

Input sequence: a b a b a b a
Massive Parallelism

\[q_0 \xrightarrow{\text{a}} q_1 \xrightarrow{\text{b}} q_2 \xrightarrow{\text{a}} q_3 \]

\[\Sigma \]

\[\text{start} \]

\[a \ b \ a \ b \ a \ b \ a \]
Massive Parallelism

\[a \quad b \quad b \quad a \quad b \quad a \quad a \]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input sequence: \(abaabbaa\)
Massive Parallelism

\[
\Sigma
\]

start

\[
\begin{array}{c}
q_0 \\
q_1 \\
q_2 \\
\vdots \\
q_3
\end{array}
\]

\[
\begin{array}{c}
a \\
b \\
a \\
\vdots \\
a
\end{array}
\]

a b a b a b a
Massive Parallelism

start

q_0 → q_1 → q_2 → q_3

a b a b a b a
Massive Parallelism

\[
\begin{align*}
q_0 & \xrightarrow{a} q_1 \\
q_1 & \xrightarrow{b} q_2 \\
q_2 & \xrightarrow{a} q_3
\end{align*}
\]

Input: \(a \ b \ a \ b \ a \ b \ a\)
Massive Parallelism

\[\sum \]

\begin{align*}
q_0 & \rightarrow a \rightarrow q_1 \rightarrow b \rightarrow q_2 \rightarrow a \rightarrow q_3 \\
\text{start} & \rightarrow q_0
\end{align*}

Input: \(ababaab\)
Massive Parallelism

start

q_0 a q_1 b q_2 a q_3

Σ

a b a b a b a
Massive Parallelism

Figure: A diagram illustrating a state transition with symbols 'a', 'b', and a transition from q_0 to q_1, q_1 to q_2, and q_2 to q_3. The transition symbols are labeled as Σ, 'a', and 'b' respectively. The sequence of symbols 'a b b a b a a' is shown at the bottom.
Massive Parallelism

\[\Sigma a b a b a a \]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Start state: \(q_0 \)

Input alphabet: \(\Sigma = \{a, b\} \)
Massive Parallelism

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

\[\sum \rightarrow a \rightarrow b \rightarrow q_2 \rightarrow a \rightarrow q_3 \]

Input sequence:

\[a \ b \ a \ b \ a \ b \ a \]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input string: a b a b a a
Massive Parallelism

\[
\begin{align*}
q_0 & \xrightarrow{a} q_1 \\
q_1 & \xrightarrow{b} q_2 \\
q_2 & \xrightarrow{a} q_3
\end{align*}
\]
Massive Parallelism

\[\sum a \\ q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input: \texttt{abaaba}
Massive Parallelism

\[\sum \]

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

Input: \[a b a b a a \]
Massive Parallelism
Massive Parallelism
Massive Parallelism

\[\sum \]

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

Input sequence: \[\text{a b a b a b a} \]
Massive Parallelism

\[q_3 \]

\[q_2 \]

\[q_1 \]

\[q_0 \]

\[\sum \]

start

\[a \]

\[b \]

\[a \]

\[a \]

\[b \]

\[a \]

\[a \]

\[a \]
Massive Parallelism

We're in at least one accepting state, so there's some path that gets us to an accepting state.
Massive Parallelism

\[\Sigma \]

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[a \ b \ a \ b \ b \]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input: \(\Sigma \)

States: \(q_0, q_1, q_2, q_3 \)

Transitions:
- \(q_0 \xrightarrow{a} q_1 \)
- \(q_1 \xrightarrow{b} q_2 \)
- \(q_2 \xrightarrow{a} q_3 \)
- \(q_3 \xrightarrow{a} q_3 \) (loop)

Input sequence: a b a b a b
Massive Parallelism

\[q_0 \xrightarrow{\sum} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_3 \]

\[
\begin{array}{cccc}
\text{a} & \text{b} & \text{a} & \text{b} \\
\end{array}
\]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[a \ b \ a \ b \ a \ b \]

\[\uparrow \]
Massive Parallelism

\[\Sigma \]

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\begin{array}{cccccc}
q_0 & q_1 & q_2 & q_3 \\
\text{start} & a & b & a
\end{array} \]
Massive Parallelism

\[
\begin{align*}
q_0 & \xrightarrow{a} q_1 \\
q_1 & \xrightarrow{b} q_2 \\
q_2 & \xrightarrow{a} q_3
\end{align*}
\]

\[\Sigma\]

\[
\begin{array}{cccc}
a & b & a & b \\
\end{array}
\]
Massive Parallelism

a b a b b

start

q_0 q_1 q_2 q_3

Σ
Massive Parallelism

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

\[\Sigma \]

\[
\begin{align*}
q_0 & \rightarrow a \rightarrow q_1 \\
q_1 & \rightarrow b \rightarrow q_2 \\
q_2 & \rightarrow a \rightarrow q_3
\end{align*}
\]

\[
\begin{array}{cccc}
a & b & a & b \\
\end{array}
\]
Massive Parallelism

\[\sum \]

\[
\text{start} \quad q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3
\]

\[
\begin{array}{cccccc}
\text{a} & \text{b} & \text{a} & \text{b} & \text{a} & \text{b}
\end{array}
\]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

Start

\[
\begin{array}{cccc}
\text{a} & \text{b} & \text{a} & \text{b} \\
\end{array}
\]
Massive Parallelism

\[
\sum \quad q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3
\]

\[
a \quad b \quad a \quad b \quad a \quad b
\]
Massive Parallelism

\[Q_0 \rightarrow a \rightarrow Q_1 \rightarrow b \rightarrow Q_2 \rightarrow a \rightarrow Q_3 \]

\[\Sigma \]

\[\text{a b a a b b} \]
Massive Parallelism
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

Start

[Sequence: a b a b b b]
Massive Parallelism

\[
\begin{align*}
q_0 & \xrightarrow{a} q_1 \\
q_1 & \xrightarrow{b} q_2 \\
q_2 & \xrightarrow{a} q_3
\end{align*}
\]

\[\Sigma\]

Input sequence: \[a \ b \ a \ b \ a \ b\]
Massive Parallelism

\[q_0, q_1, q_2, q_3 \]

\[\sum \]

\[a, b, a, b \]

\[\text{start} \]
Massive Parallelism

\[\begin{align*}
q_0 & \xrightarrow{a} q_1 & q_1 & \xrightarrow{b} q_2 & q_2 & \xrightarrow{a} q_3 \\
\text{start} & & & & & \Sigma
\end{align*} \]
Massive Parallelism
Massive Parallelism

start

$q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3$

$a b a b a b$

∑
Massive Parallelism

a b a b b
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input: \(\Sigma \)

States: \(q_0, q_1, q_2, q_3 \)

Transitions: \(a, b \)

Starting state: \(q_0 \)

Ending state: \(q_3 \)

Words accepted: \(ababab \)
Massive Parallelism

\[
\sum \rightarrow q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3
\]
Massive Parallelism

\[\sum \]

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[a \ b \ a \ b \]
We're not in any accepting state, so no possible path accepts.
Massive Parallelism

• An NFA can be thought of as a DFA that can be in many states at once.

• At each point in time, when the NFA needs to follow a transition, it tries all the options at the same time.

• (Here's a rigorous explanation about how this works; read this on your own time).

 • Start off in the set of all states formed by taking the start state and including each state that can be reached by zero or more ε-transitions.

 • When you read a symbol a in a set of states S:
 - Form the set S' of states that can be reached by following a single a transition from some state in S.
 - Your new set of states is the set of states in S', plus the states reachable from S' by following zero or more ε-transitions.
Just how powerful are NFAs?
Next Time

- **The Powerset Construction**
 - So beautiful. So elegant. So cool!
- **More Closure Properties**
 - Other set-theoretic operations.
- **Language Transformations**
 - What’s the deal with the notation Σ^*?