Intuiting Nondeterminism

- Nondeterministic machines are a serious departure from physical computers. How can we build up an intuition for them?
- There are two particularly useful frameworks for interpreting nondeterminism:
 - Perfect guessing
 - Massive parallelism
Perfect Guessing

\begin{itemize}
\item q_0
\item a
\item q_1
\item b
\item q_2
\item a
\item q_3
\end{itemize}
Perfect Guessing

\[\Sigma\]

\[
\begin{array}{c}
q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \\
\end{array}
\]

\[
\begin{array}{cccccc}
a & b & a & b & a & a
\end{array}
\]
Perfect Guessing

Transition diagram with states q_0, q_1, q_2, and q_3. The transitions are:
- From q_0: a to q_1
- From q_1: b to q_2
- From q_2: a to q_3

Input alphabet $\Sigma = \{a, b\}$.
Perfect Guessing

\[
\begin{align*}
q_0 & \xrightarrow{\text{a}} q_1 & q_1 & \xrightarrow{\text{b}} q_2 & q_2 & \xrightarrow{\text{a}} q_3 \\
\text{start} & & & & \Sigma
\end{align*}
\]

\[
\begin{align*}
\text{a} & \quad \text{b} & \quad \text{a} & \quad \text{b} & \quad \text{a} & \quad \text{a}
\end{align*}
\]
Perfect Guessing

\[\Sigma \]

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[a b a b a b a a \]
Perfect Guessing

\[\Sigma \]

\[
\begin{array}{cccc}
q_0 & \xrightarrow{a} & q_1 & \xrightarrow{b} & q_2 & \xrightarrow{a} & q_3 \\
\text{start} & & & & & & \\
\end{array}
\]

\[
\begin{array}{cccc}
a & b & a & b & a & a \\
\end{array}
\]
Perfect Guessing

δ

\begin{align*}
\text{start} & \rightarrow q_0 \\
q_0 & \xrightarrow{a} q_1 \\
q_1 & \xrightarrow{b} q_2 \\
q_2 & \xrightarrow{a} q_3
\end{align*}

a b a b a b a
Perfect Guessing

\[a \rightarrow b \rightarrow a \rightarrow b \rightarrow a \rightarrow b \rightarrow a \]

Diagram:
- Start at state \(q_0 \)
- Move to state \(q_1 \) on input \(a \)
- Move to state \(q_2 \) on input \(b \)
- Move back to state \(q_0 \) on input \(a \)
- Move to state \(q_3 \) on input \(a \)
Perfect Guessing

\[
\begin{align*}
\Sigma & \quad q_0 \\
\quad & \quad q_1 \quad \quad \quad \quad \quad \quad \quad a \quad \quad \quad \quad \quad \quad \quad b \quad \quad \quad \quad \quad \quad \quad q_2 \quad \quad \quad \quad \quad \quad \quad a \quad \quad \quad \quad \quad \quad \quad q_3
\end{align*}
\]

\[
\begin{array}{ccccccc}
\text{a} & \text{b} & \text{a} & \text{b} & \text{a} & \text{a}
\end{array}
\]
Perfect Guessing

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

Start

\[a \ b \ a \ b \ a \ b \ a \]
Perfect Guessing

\(a \ b \ b \ a \ b \ a \ a \)
Perfect Guessing

• We can view nondeterministic machines as having *Magic Superpowers* that enable them to guess choices that lead to an accepting state.

 • If there is at least one choice that leads to an accepting state, the machine will guess it.

 • If there are no choices, the machine guesses any one of the wrong guesses.

• No known physical analog for this style of computation – this is totally new!
Massive Parallelism

\[\sum \]

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

[Sequence: a b a b a b a]
Massive Parallelism

\[\Sigma \]

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[a \ b \ a \ b \ a \ b \ a \]
Massive Parallelism

\[
\Sigma \\
\text{start} \\
q_0 \rightarrow a \rightarrow q_1 \rightarrow b \rightarrow q_2 \rightarrow a \rightarrow q_3
\]

\[
\text{a b a b a b a}
\]
Massive Parallelism

Σ

start

q_0 q_1 q_2 q_3

a b a a a b a a
Massive Parallelism

The diagram shows a state transition diagram with states labeled \(q_0, q_1, q_2, q_3 \) and transitions labeled with symbols \(a \) and \(b \). The input alphabet is \(\Sigma \). The transitions are:

- From \(q_0 \) to \(q_1 \) on input \(a \)
- From \(q_1 \) to \(q_2 \) on input \(b \)
- From \(q_2 \) to \(q_3 \) on input \(a \)
- From \(q_3 \) to \(q_0 \) on input \(a \) (loop)

The sequence of inputs shown in the diagram is \(a \ b \ a \ b \ a \ a \).
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

a b a b a a
Massive Parallelism

\[\Sigma \]

\[\text{start} \rightarrow q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\text{a b a b a b a a} \]
Massive Parallelism

=start

$q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3$

$a\ b\ a\ b\ a\ a$

Σ
Massive Parallelism

\[\Sigma \]

\[
\begin{align*}
q_0 & \xrightarrow{a} q_1 \\
q_1 & \xrightarrow{b} q_2 \\
q_2 & \xrightarrow{a} q_3
\end{align*}
\]
Massive Parallelism

\[a \ b \ a \ b \ a \]

Diagram:

- Start state: \(q_0 \)
- States: \(q_1, q_2, q_3 \)
- Transitions:
 - \(a \rightarrow q_1 \)
 - \(b \rightarrow q_2 \)
 - \(a \rightarrow q_3 \)

Input alphabet: \(\Sigma \)
Massive Parallelism

\[\sum \]

\[
\begin{array}{c}
q_0 \\
\rightarrow \\
q_1 \\
\rightarrow \\
q_2 \\
\rightarrow \\
q_3
\end{array}
\]

\[
\begin{array}{cccc}
a & b & a & b \\
\rightarrow & \rightarrow & \rightarrow & \rightarrow \\
q_0 & q_1 & q_2 & q_3
\end{array}
\]

\[
\begin{array}{cccc}
a & b & a & b \\
\rightarrow & \rightarrow & \rightarrow & \rightarrow \\
q_0 & q_1 & q_2 & q_3
\end{array}
\]
Massive Parallelism
Massive Parallelism

a b a b a a

\[\sum \]

q₀ → q₁ → q₂ → q₃
Massive Parallelism

Start

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

Input: \[a, b, a, b, a, b, a \]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\sum \]

\[
\begin{array}{cccccc}
\text{start} & q_0 & q_1 & q_2 & q_3 \\
\end{array}
\]

\[
\begin{array}{cccccc}
a & b & a & b & a \\
\end{array}
\]
Massive Parallelism

\[\Sigma \]

\(q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \)

Input sequence: \(ababaaba \)
Massive Parallelism

\[\sum \]

start \[q_0 \] \[\rightarrow \] \[q_1 \] \[a \rightarrow \] \[q_2 \] \[b \rightarrow \] \[q_3 \] \[a \rightarrow \]

\[a \ b \ a \ b \ a \ b \ a \ a \]
We're in at least one accepting state, so there's some path that gets us to an accepting state.

Therefore, we accept!
Massive Parallelism

• An NFA can be thought of as a DFA that can be in many states at once.

• At each point in time, when the NFA needs to follow a transition, it tries all the options at the same time.

• (Here's a rigorous explanation about how this works; for reading after class).
 • Start off in the set of all states formed by taking the start state and including each state that can be reached by zero or more ε-transitions.
 • When you read a symbol a in a set of states S:
 - Form the set S’ of states that can be reached by following a single a transition from some state in S.
 - Your new set of states is the set of states in S’, plus the states reachable from S’ by following zero or more ε-transitions.
So What?

- Each intuition of nondeterminism is useful in a different setting:
 - Perfect guessing is a great way to think about how to design a machine.
 - Massive parallelism is a great way to test machines – and has nice theoretical implications.
- Nondeterministic machines may not be feasible, but they give a great basis for interesting questions:
 - Can any problem that can be solved by a nondeterministic machine be solved by a deterministic machine?
 - Can any problem that can be solved by a nondeterministic machine be solved *efficiently* by a deterministic machine?
- The answers vary from automaton to automaton.