Finite Automata

Part Three
Recap from Last Time
Tabular DFAs

These stars indicate accepting states.
Since this is the first row, it's the start state.
If D is a DFA, the **language of D**, denoted $\mathcal{L}(D)$, is \{ $w \in \Sigma^* \mid D$ accepts w \}.

A language L is called a **regular language** if there exists a DFA D such that $\mathcal{L}(D) = L$.
NFAs

• An **NFA** is a
 • **N**ondeterministic
 • **F**inite
 • **A**utomaton

• Can have missing transitions or multiple transitions defined on the same input symbol.

• Accepts if *any possible series of choices* leads to an accepting state.
\(\varepsilon\)-Transitions

- NFAs have a special type of transition called the \textbf{\(\varepsilon\)-transition}.
- An NFA may follow any number of \(\varepsilon\)-transitions at any time without consuming any input.
New Stuff!
Designing NFAs
Designing NFAs

- *Embrace the nondeterminism!*

- Good model: *Guess-and-check*:
 - Is there some information that you'd really like to have? Have the machine *nondeterministically guess* that information.
 - Then, have the machine *deterministically check* that the choice was correct.

- The *guess* phase corresponds to trying lots of different options.

- The *check* phase corresponds to filtering out bad guesses or wrong options.
Guess-and-Check

\[L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \} \]
Guess-and-Check

\[L = \{ \, w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \, \} \]
Guess-and-Check

\[L = \{ w \in \{0, 1\}^* \mid w \text{ ends in 010 or 101} \} \]
Guess-and-Check

\[L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \} \]
Guess-and-Check

\[L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \} \]
Guess-and-Check

\[L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \} \]
Guess-and-Check

\[L = \{ \; w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \; \} \]

```
0 1 0 1 0 1 0
```
Guess-and-Check

\[L = \{ \ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \ \} \]
Guess-and-Check

\[L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \} \]
Guess-and-Check

\[L = \{ \, w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \, \} \]
Guess-and-Check

\[L = \{ \ w \in \{0,1\}^* \mid \text{w ends in } 010 \text{ or } 101 \} \]
Guess-and-Check

\[L = \{ \ w \in \{0, 1\}^* \mid \text{w ends in 010 or 101} \} \]
Guess-and-Check

\[L = \{ \ w \in \{0, 1\}^* \mid \text{w ends in 010 or 101} \} \]
Guess-and-Check

\[L = \{ \ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

$L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \}$
Guess-and-Check

$L = \{ \, w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \, \}$

Nondeterministically guess which character is missing.

Deterministically check whether that character is indeed missing.
Guess-and-Check

$L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \}$
Guess-and-Check

$L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \}$

Start state

Diagram:

Start state -> a, c

a, c -> a, b

a, b -> a, c

a, c -> b, c

b, c -> a, c

Input sequence: a c c c a c c c
Guess-and-Check

\[L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

$L = \{ \ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \ \} \quad \begin{array}{c}
\varepsilon \\
\varepsilon \\
\varepsilon \\
\varepsilon \\
\end{array}
$
Guess-and-Check

\[L = \{ \, w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \, \} \]
$L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \}$
Guess-and-Check

\[L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

$L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \}$
NFAs and DFAs

- Any language that can be accepted by a DFA can be accepted by an NFA.
- Why?
 - Every DFA essentially already is an NFA!
- **Question**: Can any language accepted by an NFA also be accepted by a DFA?
- Surprisingly, the answer is **yes**!
Thought Experiment:
How would you simulate an NFA in software?
\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

Start state: \(q_0 \)

Input sequence: \(abaaba \)
\[
\begin{array}{c|cc}
\{q_0\} & a & b \\
\hline
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0\}
\end{array}
\]
<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- Start state: q_0
- Transitions:
 - $q_0 \xrightarrow{a} q_1$
 - $q_1 \xrightarrow{b} q_2$
 - $q_2 \xrightarrow{a} q_3$

Symbols:

- Σ
- q_0
- q_1
- q_2
- q_3
\[\Sigma \]

\[
\begin{array}{c|c|c}
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\hline
\{q_0\} & & \\
\hline
& & \\
\hline
& & \\
\end{array}
\]
The given automaton has the following transitions:

- Start state q_0 transitions to q_1 on input a.
- q_1 transitions to q_2 on input b.
- q_2 transitions to q_3 on input a.

The table below represents the states and their transitions for inputs a and b:

<table>
<thead>
<tr>
<th>Current State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State (q)</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{q_0}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Start state: \(q_0\)
<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- Start state: \(q_0\)
- Transitions:
 - \(q_0\) on \(a\) goes to \(q_1\)
 - \(q_0\) on \(\Sigma\) (input alphabet) goes to \(q_1\)
 - \(q_1\) on \(b\) goes to \(q_2\)
 - \(q_2\) on \(a\) goes to \(q_3\)
 - \(q_3\) is a final state (sink)

Transition table:

- \(a\) transition:
 - \(q_0\) to \(q_1\)
 - \(q_0\) to \(q_1\)
 - \(q_0\) to \(q_1\)
- \(b\) transition:
 - \(q_0\) to \(q_1\)
 - \(q_0\) to \(q_1\)
 - \(q_0\) to \(q_1\)
\begin{array}{c|c|c}
\{ q_0 \} & \{ q_0, q_1 \} & \{ q_0 \} \\
\{ q_0, q_1 \} & \{ q_0, q_1 \} & \\
\{ q_0 \} & & \\
\{ q_0, q_1 \} & & \\
\end{array}
<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>({q_0})</td>
<td>({q_0, q_1})</td>
<td>({q_0})</td>
</tr>
<tr>
<td>({q_0, q_1})</td>
<td>({q_0, q_1})</td>
<td>({q_0, q_1})</td>
</tr>
<tr>
<td>({q_0, q_1})</td>
<td>({q_0, q_1})</td>
<td>({q_0, q_1})</td>
</tr>
</tbody>
</table>

Diagram:
- Start state: \(q_0 \)
- Transitions:
 - \(q_0 \) \(\xrightarrow{a}\) \(q_1 \)
 - \(q_1 \) \(\xrightarrow{b}\) \(q_2 \)
 - \(q_2 \) \(\xrightarrow{a}\) \(q_3 \)
<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td></td>
</tr>
<tr>
<td>${q_0}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The diagram and table represent a nondeterministic finite automaton (NFA). The table illustrates the state transitions for symbols 'a' and 'b'.

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td></td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td></td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following table represents the transitions of the automaton:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The diagram shows the states (q_0, q_1, q_2, q_3) and the transitions labeled with 'a' and 'b'.
<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram

- Start state: q_0
- Transitions:
 - $q_0 \xrightarrow{a} q_1$
 - $q_1 \xrightarrow{b} q_2$
 - $q_2 \xrightarrow{a} q_3$
 - $q_0 \xrightarrow{\Sigma}$ q_0 (loop)

Table

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
$$q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3$$

Transition table:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_2}$</td>
<td></td>
</tr>
</tbody>
</table>
A non-deterministic finite automaton (NFA) with transitions:

- **Start state:** q_0
- **Transitions:**
 - From q_0 on input a: q_1
 - From q_1 on input b: q_2
 - From q_2 on input a: q_3

The transition table is:

<table>
<thead>
<tr>
<th>Current State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Transition Table

<table>
<thead>
<tr>
<th>State</th>
<th>Symbol</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td></td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>a</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>b</td>
<td>${q_0, q_1, q_3}$</td>
<td></td>
</tr>
</tbody>
</table>

Diagram

- **Start State**: q_0
- **Final State**: q_3
- Transitions:
 - $q_0 \xrightarrow{a} q_1$
 - $q_1 \xrightarrow{b} q_2$
 - $q_2 \xrightarrow{a} q_3$
 - $\Sigma \xrightarrow{\cdot} q_0$
The given automaton has the following transition table:

<table>
<thead>
<tr>
<th>State</th>
<th>Transition</th>
<th>State</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>(a) \rightarrow {q_0, q_1}</td>
<td>{q_0}</td>
<td>(b) \rightarrow {q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>(a) \rightarrow {q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>(b) \rightarrow {q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>(a) \rightarrow {q_0, q_1, q_3}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additionally, the automaton has a start state \(q_0\) and a transition on \(\Sigma\) from \(q_0\) to itself.
\begin{itemize}
\item \[q_0\] \text{start} \quad a \quad \Sigma \quad b \quad a \quad \{q_3\}
\end{itemize}

\begin{table}
\begin{tabular}{|c|c|c|}
\hline
 \{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\hline
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\hline
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\hline
\end{tabular}
\end{table}
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1, q_3}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- Start state: q_0
- Transitions:
 - $q_0 \xrightarrow{a} q_1$
 - $q_1 \xrightarrow{b} q_2$
 - $q_2 \xrightarrow{a} q_3$
- Final state: q_3
\[\begin{align*}
q_0 & \xrightarrow{a} q_1 \\
q_1 & \xrightarrow{b} q_2 \\
q_2 & \xrightarrow{a} q_3 \\
\text{start} & \xrightarrow{} q_0
\end{align*} \]

\[\begin{array}{|c|c|c|}
\hline
 & a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & & \\
\hline
\end{array} \]
\[
\begin{array}{c}
q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \\
\text{start}
\end{array}
\]

\[
\begin{array}{c|c|c}
\Sigma & a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & & \\
\end{array}
\]
\[
\begin{array}{c|c|c}
\text{state} & \text{transitions} & \\
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & \{q_0, q_1\} & \end{array}
\]
\[
\begin{array}{c}
\begin{array}{c}
\text{start} \\
q_0 \\
q_1 \\
q_2 \\
q_3
\end{array}
\end{array}
\begin{array}{c}
\Sigma \\
a \\
b \\
a
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
\text{state} & a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & \{q_0, q_1\} & \\
\hline
\end{array}
\]
\begin{align*}
\Sigma & \xrightarrow{a} q_1 \\
& \xrightarrow{b} q_2 \\
& \xrightarrow{a} q_3
\end{align*}

<table>
<thead>
<tr>
<th>{q_0}</th>
<th>{q_0, q_1}</th>
<th>{q_0}</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1, q_3}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>State</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1, q_3}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
</tbody>
</table>

Diagram:

- Start state: \(q_0\)
- States: \(q_0, q_1, q_2, q_3\)
- Transitions:
 - \(a\) from \(q_0\) to \(q_1\)
 - \(b\) from \(q_1\) to \(q_2\)
 - \(a\) from \(q_2\) to \(q_3\)
 - \(\Sigma\) loop from \(q_0\) to \(q_0\)
The given figure represents a deterministic finite automaton (DFA) with the following states and transitions:

- **States:** q_0, q_1, q_2, q_3
- **Transitions:**
 - From q_0, on input a, moves to q_1.
 - From q_1, on input b, moves to q_2.
 - From q_2, on input a, moves to q_3.
 - From q_3, on input a, moves to q_3.

The automaton starts at state q_0 and accepts strings that end in q_3.
Formal Description:

Transition Table:

<table>
<thead>
<tr>
<th>Current State</th>
<th>Input a</th>
<th>Input b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1, q_3}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
</tbody>
</table>

Diagram:

- Start state: \{q_0\}
- Transitions:
 - \{q_0\} \xrightarrow{a} \{q_0, q_1\}
 - \{q_0, q_1\} \xrightarrow{b} \{q_0, q_2\}
 - \{q_0, q_2\} \xrightarrow{a} \{*q_0, q_1, q_3*\}
 - \{*q_0, q_1, q_3*\} \xrightarrow{b} \{q_0, q_1, q_3\}
 - \{q_0\} \xrightarrow{\Sigma} \{q_0\}

End state: \{*q_0, q_1, q_3*\}
The diagram shows a finite automaton with states labeled q_0, q_1, q_2, and q_3. The transitions are labeled with symbols a and b, and the start state is q_0. The input string is $abaaba$. The automaton moves through states as follows:

- Start at q_0.
- On a, move to q_1.
- On b, move to q_2.
- On a, move to q_3.

The automaton accepts the input string if it ends in a final state. In this case, it ends in q_3, indicating acceptance.
The Subset Construction

- This procedure for turning an NFA for a language L into a DFA for a language L is called the \textit{subset construction}.
 - It’s sometimes called the \textit{powerset construction}; it’s different names for the same thing!

- Intuitively:
 - Each state in the DFA corresponds to a set of states from the NFA.
 - Each transition in the DFA corresponds to what transitions would be taken in the NFA when using the massive parallel intuition.
 - The accepting states in the DFA correspond to which sets of states would be considered accepting in the NFA when using the massive parallel intuition.

- There’s an online \textit{Guide to the Subset Construction} with a more elaborate example involving ε-transitions and cases where the NFA dies; check that for more details.
The Subset Construction

- In converting an NFA to a DFA, the DFA's states correspond to sets of NFA states.

- **Useful fact:** \(|\mathcal{P}(S)| = 2^{|S|}\) for any finite set \(S\).

- In the worst-case, the construction can result in a DFA that is *exponentially larger* than the original NFA.

- **Question to ponder:** Can you find a family of languages that have NFAs of size \(n\), but no DFAs of size less than \(2^n\)?
A language L is called a *regular language* if there exists a DFA D such that $\mathcal{L}(D) = L$.

Theorem: A language L is regular if and only if there is some NFA N such that $\mathcal{L}(N) = L$.

Proof Sketch: Pick a language L. First, assume L is regular. That means there’s a DFA D where $\mathcal{L}(D) = L$. Every DFA is “basically” an NFA, so there’s an NFA (D) whose language is L.

Next, assume there’s an NFA N such that $\mathcal{L}(N) = L$. Using the subset construction, we can build a DFA D where $\mathcal{L}(N) = \mathcal{L}(D)$. Then we have that $\mathcal{L}(D) = L$, so L is regular. ■-ish
Why This Matters

• We now have two perspectives on regular languages:
 • Regular languages are languages accepted by DFAs.
 • Regular languages are languages accepted by NFAs.
• We can now reason about the regular languages in two different ways.
Properties of Regular Languages
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$ regular?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$ regular?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.

- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$ regular?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

![Diagram of the intersection of two languages L_1 and L_2]
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

\[\overline{L_1} \cup \overline{L_2} \]
The Intersection of Two Languages

• If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

• Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
Concatenation
String Concatenation

- If $w \in \Sigma^*$ and $x \in \Sigma^*$, the *concatenation* of w and x, denoted wx, is the string formed by tacking all the characters of x onto the end of w.

- Example: if $w = \text{quo}$ and $x = \text{kka}$, the concatenation $wx = \text{quokka}$.

- This is analogous to the $+$ operator for strings in many programming languages.

- Some facts about concatenation:
 - The empty string ε is the *identity element* for concatenation: $w\varepsilon = \varepsilon w = w$
 - Concatenation is *associative*:
 $$wxy = w(xy) = (wx)y$$
Concatenation

• The *concatenation* of two languages L_1 and L_2 over the alphabet Σ is the language

$$L_1L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \land x \in L_2 \}$$
Concatenation Example

• Let $\Sigma = \{ a, b, ..., z, A, B, ..., Z \}$ and consider these languages over Σ:
 • $Noun = \{ Puppy, Rainbow, Whale, ... \}$
 • $Verb = \{ Hugs, Juggles, Loves, ... \}$
 • $The = \{ The \}$
 • The language $TheNounVerbTheNoun$ is
 • $\{ ThePuppyHugsTheWhale,$
 $TheWhaleLovesTheRainbow,$
 $TheRainbowJugglesTheRainbow, ... \}$
Concatenation

• The **concatenation** of two languages L_1 and L_2 over the alphabet Σ is the language

\[L_1 L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \land x \in L_2 \} \]

• Two views of $L_1 L_2$:
 • The set of all strings that can be made by concatenating a string in L_1 with a string in L_2.
 • The set of strings that can be split into two pieces: a piece from L_1 and a piece from L_2.
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Machine for L_1

Machine for L_2
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

![Machine for L_1](image1)

![Machine for L_2](image2)

bookkeeper
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Machine for L_1 Machine for L_2

bookkeeper
Concatenating Regular Languages

• If L_1 and L_2 are regular languages, is L_1L_2?
• Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Machine for L_1

Machine for L_2

book
keeper
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?
- **Idea:**
 - Run a DFA/NFA for L_1 on w.
 - Whenever it reaches an accepting state, optionally hand the rest of w to a DFA/NFA for L_2.
 - If the automaton for L_2 accepts the rest, $w \in L_1L_2$.
 - If the automaton for L_2 rejects the remainder, the split was incorrect.
Concatenating Regular Languages
Concatenating Regular Languages

Machine for L_1
Concatenating Regular Languages

Machine for L_1

Machine for L_2
Concatenating Regular Languages

Machine for L_1

Machine for L_2

ε
Concatenating Regular Languages

Machine for L_1

Machine for L_2
Concatenating Regular Languages

Machine for L_1

Machine for L_2

Machine for L_1L_2
Lots and Lots of Concatenation

• Consider the language $L = \{ \text{aa, b} \}$
• LL is the set of strings formed by concatenating pairs of strings in L.
 \[
 \{ \text{aaaa, aab, baa, bb} \}
 \]
• LLL is the set of strings formed by concatenating triples of strings in L.
 \[
 \{ \text{aaaaaa, aaab, aaba, aabb, baaaa, baab, bbaa, bbb} \}
 \]
• $LLLL$ is the set of strings formed by concatenating quadruples of strings in L.
 \[
 \{ \text{aaaaaaaa, aaaaaab, aaaaaba, aaabba, aabaaaa, aabaab, aabbaa, aababb, baaaaaa, baaaaab, baabaa, baaabb, bbaaaa, bbaaab, bbbbaa, bbbb} \}
 \]
Language Exponentiation

• We can define what it means to “exponentiate” a language as follows:

• $L^0 = \{\varepsilon\}$
 • Intuition: The only string you can form by gluing no strings together is the empty string.
 • Notice that $\{\varepsilon\} \neq \emptyset$. Can you explain why?

• $L^{n+1} = LL^n$
 • Idea: Concatenating $(n+1)$ strings together works by concatenating n strings, then concatenating one more.

• **Question to ponder:** Why define $L^0 = \{\varepsilon\}$?

• **Question to ponder:** What is \emptyset^0?
The Kleene Star
The Kleene Closure

- An important operation on languages is the **Kleene Closure**, which is defined as
 \[L^* = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N}. w \in L^n \} \]

- Mathematically:
 \[w \in L^* \iff \exists n \in \mathbb{N}. w \in L^n \]

- Intuitively, \(L^* \) is the language all possible ways of concatenating zero or more strings in \(L \) together, possibly with repetition.

- **Question to ponder:** What is \(\emptyset^* \)?
The Kleene Closure

If \(L = \{ a, bb \} \), then \(L^* = \{ \)

\(\varepsilon, \)

\(a, bb, \)

\(aa, abb, bba, bbbb, \)

\(aaa, aabb, abba, abbbb, bbbaa, bbabb, bbbba, bbbbbbb, \)

\(...\)

\(\} \)

Think of \(L^* \) as the set of strings you can make if you have a collection of stamps – one for each string in \(L \) – and you form every possible string that can be made from those stamps.
Reasoning about Infinity

• If L is regular, is L^* necessarily regular?

⚠ A Bad Line of Reasoning: ⚠

• $L^0 = \{ \varepsilon \}$ is regular.
• $L^1 = L$ is regular.
• $L^2 = LL$ is regular
• $L^3 = L(LL)$ is regular
• ...

• Regular languages are closed under union.
• So the union of all these languages is regular.
Reasoning about Infinity

\[x \neq 2x \]
Reasoning About the Infinite

• If a series of finite objects all have some property, the “limit” of that process does not necessarily have that property.

• In general, it is not safe to conclude that some property that always holds in the finite case must hold in the infinite case.
 • (This is why calculus is interesting).

• So our earlier argument ($L^* = L^0 \cup L^1 \cup ...$) isn’t going to work.

• We need a different line of reasoning.
Idea: Can we directly convert an NFA for language L to an NFA for language L^*?
The Kleene Star

Machine for L
The Kleene Star
The Kleene Star

Machine for L
The Kleene Star

Machine for L
The Kleene Star

Machine for \(L \)
The Kleene Star

Machine for L

Machine for L^*
The Kleene Star

Question: Why add the new state out front? Why not just make the old start state accepting?
Closure Properties

- **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ, then so are the following languages:
 - $\overline{L_1}$
 - $L_1 \cup L_2$
 - $L_1 \cap L_2$
 - L_1L_2
 - L_1^*

- These properties are called **closure properties of the regular languages**.
Next Time

• **Regular Expressions**
 • Building languages from the ground up!

• **Thompson’s Algorithm**
 • A UNIX Programmer in Theoryland.

• **Kleene’s Theorem**
 • From machines to programs!