Closure Properties of Regular Languages
Closure Properties of Regular Languages

Closure Properties of a set are those operations you can perform on element(s) of the set, where the result of the operation is also an element of the set.

Example: “The set of integers is closed under addition.”
The Complement of a Language

• Given a language $L \subseteq \Sigma^*$, the *complement* of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.

• Formally:

$$\overline{L} = \Sigma^* - L$$
The Complement of a Language

- Given a language \(L \subseteq \Sigma^* \), the complement of that language (denoted \(\overline{L} \)) is the language of all strings in \(\Sigma^* \) that aren't in \(L \).
- Formally:

\[
\overline{L} = \Sigma^* - L
\]
The Complement of a Language

• Given a language $L \subseteq \Sigma^*$, the complement of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.

• Formally:

$$\overline{L} = \Sigma^* - L$$
The Complement of a Language

• Given a language \(L \subseteq \Sigma^* \), the *complement* of that language (denoted \(\overline{L} \)) is the language of all strings in \(\Sigma^* \) that aren't in \(L \).

• Formally:

\[
\overline{L} = \Sigma^* - L
\]
Complements of Regular Languages

- As we saw a few minutes ago, a regular language is a language recognized by some DFA (or NFA).

- **Question**: If \(L \) is a regular language, is \(\overline{L} \) necessarily a regular language?

- If the answer is “yes”: if there is a way to construct a DFA for \(L \), then there must be some way to construct a DFA for \(\overline{L} \).

- If the answer is “no”: some language \(L \) can be recognized by some DFA, but \(\overline{L} \) cannot be recognized by any DFA.
input

Computational Device for L

Yep!

Nope!
Computational Device for L
Computational Device for L

Computational Device for \overline{L}
Computational Device for L

input

Computational Device for \overline{L}

input
Complementing Regular Languages

$L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring } \}$

$\bar{L} = \{ w \in \{a, b\}^* \mid w \text{ does not contain } aa \text{ as a substring } \}$
Closure Properties

• **Theorem:** If L is a regular language, then \overline{L} is also a regular language.

• As a result, we say that the regular languages are *closed under complement*.

![Diagram showing closure under complement]

Regular languages

All languages
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.

- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

Hey, it's De Morgan's laws!
Concatenation
String Concatenation

- If $w \in \Sigma^*$ and $x \in \Sigma^*$, the **concatenation** of w and x, denoted wx, is the string formed by tacking all the characters of x onto the end of w.

- Example: if $w = \text{quo}$ and $x = \text{kka}$, the concatenation $wx = \text{quokka}$.

- Analogous to the + operator for strings in many programming languages.

- Some facts about concatenation:
 - The empty string ε is the **identity element** for concatenation:
 \[w\varepsilon = \varepsilon w = w \]
 - Concatenation is **associative**:
 \[wxy = w(xy) = (wx)y \]
Concatenation

• The *concatenation* of two languages L_1 and L_2 over the alphabet Σ is the language

$$L_1L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \land x \in L_2 \}$$
Concatenation Example

- Let $\Sigma = \{ a, b, ..., z, A, B, ..., Z \}$ and consider these languages over Σ:
 - $\textit{Noun} = \{ \text{Puppy, Rainbow, Whale, ...} \}$
 - $\textit{Verb} = \{ \text{Hugs, Juggles, Loves, ...} \}$
 - $\textit{The} = \{ \text{The} \}$
 - The language $\text{TheNounVerbTheNoun}$ is
Concatenation

- The *concatenation* of two languages L_1 and L_2 over the alphabet Σ is the language

$$L_1L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \land x \in L_2 \}$$

- Two views of L_1L_2:
 - The set of all strings that can be made by concatenating a string in L_1 with a string in L_2.
 - The set of strings that can be split into two pieces: a piece from L_1 and a piece from L_2.

- Conceptually similar to the Cartesian product of two sets, only with strings.
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Machine for L_1

Machine for L_2
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

![Machine for L_1](image)

- Machine for L_1

![Machine for L_2](image)

- Machine for L_2
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Machine for L_1

Machine for L_2

bookkeeper
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Start

Machine for L_1

Machine for L_2

book

keeper
Concatenating Regular Languages

• If \(L_1 \) and \(L_2 \) are regular languages, is \(L_1L_2 \)?

• Intuition – can we split a string \(w \) into two strings \(xy \) such that \(x \in L_1 \) and \(y \in L_2 \)?

• **Idea**: Run the automaton for \(L_1 \) on \(w \), and whenever \(L_1 \) reaches an accepting state, optionally hand the rest off \(w \) to \(L_2 \).

 • If \(L_2 \) accepts the remainder, then \(L_1 \) accepted the first part and the string is in \(L_1L_2 \).

 • If \(L_2 \) rejects the remainder, then the split was incorrect.
Concatenating Regular Languages
Concatenating Regular Languages

Machine for L_1
Concatenating Regular Languages

Machine for L_1

Machine for L_2
Concatenating Regular Languages

Machine for L_1

Machine for L_2
Concatenating Regular Languages

Machine for L_1

Machine for L_2
Concatenating Regular Languages

Machine for L_1

Machine for L_2

Machine for L_1L_2
Lots and Lots of Concatenation

• Consider the language \(L = \{ \text{aa, b} \} \)

• \(LL \) is the set of strings formed by concatenating pairs of strings in \(L \).

\[
\{ \text{aaaa, aab, baa, bb} \}
\]

• \(LLL \) is the set of strings formed by concatenating triples of strings in \(L \).

\[
\{ \text{aaaaaa, aaaaab, aabaa, aabb, baaaa, baab, bbaa, bbb} \}
\]

• \(LLLL \) is the set of strings formed by concatenating quadruples of strings in \(L \).

\[
\{ \text{aaaaaaaa, aaaaaab, aaaaaba, aaaaabb, aabaaaa, aabaab, aabbaa, aabbb, baaaaaa, baaaaab, baabaa, baabb, bbaaaa, bbaab, bbbaa, bbbb} \}
\]
Language Exponentiation

- We can define what it means to “exponentiate” a language as follows:

 - $L^0 = \{ \varepsilon \}$
 - The set containing just the empty string.
 - Idea: Any string formed by concatenating zero strings together is the empty string.

 - $L^{n+1} = LL^n$
 - Idea: Concatenating $(n+1)$ strings together works by concatenating n strings, then concatenating one more.

- **Question:** Why define $L^0 = \{ \varepsilon \}$?
The Kleene Closure

- An important operation on languages is the **Kleene Closure**, which is defined as
 \[L^* = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N}. w \in L^n \} \]
- Mathematically:
 \[w \in L^* \iff \exists n \in \mathbb{N}. w \in L^n \]
- Intuitively, all possible ways of concatenating zero or more strings in \(L \) together, possibly with repetition.
The Kleene Closure

If \(L = \{ a, bb \} \), then \(L^* = \{ \)

\[\varepsilon, \]

\[a, bb, \]

\[aa, aabb, bba, bbbb, \]

\[aaaa, aabbb, abba, aabbb, bbbaa, bbabb, bbbba, bbbbbbb, \]

\[... \]

\}

Think of \(L^* \) as the set of strings you can make if you have a collection of stamps – one for each string in \(L \) – and you form every possible string that can be made from those stamps.
Reasoning about Infinity

• If L is regular, is L^* necessarily regular?

• ⚠ A Bad Line of Reasoning: ⚠

 • $L^0 = \{ \varepsilon \}$ is regular.
 • $L^1 = L$ is regular.
 • $L^2 = LL$ is regular
 • $L^3 = L(LL)$ is regular
 • ...

 • Regular languages are closed under union.
 • So the union of all these languages is regular.
Reasoning About the Infinite

- If a series of finite objects all have some property, the “limit” of that process does not necessarily have that property.
- In general, it is not safe to conclude that some property that always holds in the finite case must hold in the infinite case.
 - (This is why calculus is interesting).
Idea: Can we directly convert an NFA for language L to an NFA for language L^*?
The Kleene Star

Machine for L

Machine for L^*
The Kleene Star

Question: Why add the new state out front? Why not just make the old start state accepting?
Closure Properties

- **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ, then so are the following languages:
 - $\overline{L_1}$
 - $L_1 \cup L_2$
 - $L_1 \cap L_2$
 - L_1L_2
 - L_1^*

- These properties are called **closure properties of the regular languages**.