Recap from Last Time
Tabular DFAs

These stars indicate accepting states.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_1</td>
<td>q_0</td>
</tr>
<tr>
<td>q_1</td>
<td>q_3</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_3</td>
<td>q_0</td>
</tr>
<tr>
<td>q_3</td>
<td>q_3</td>
<td>q_3</td>
</tr>
</tbody>
</table>
Since this is the first row, it's the start state.
If D is a DFA, the **language of D**, denoted $\mathcal{L}(D)$, is $\{ w \in \Sigma^* \mid D \text{ accepts } w \}$.

A language L is called a **regular language** if there exists a DFA D such that $\mathcal{L}(D) = L$.
NFAs

- An **NFA** is a
 - **N**ondeterministic
 - **F**inite
 - **A**utomaton
- Can have missing transitions or multiple transitions defined on the same input symbol.
- Accepts if *any possible series of choices* leads to an accepting state.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
Massive Parallelism

- An NFA can be thought of as a DFA that can be in many states at once.
- At each point in time, when the NFA needs to follow a transition, it tries all the options at the same time.
- The NFA accepts if any of the states that are active at the end are accepting states. It rejects otherwise.
Just how powerful are NFAs?
New Stuff!
NFAs and DFAs

- Any language that can be accepted by a DFA can be accepted by an NFA.
- Why?
 - Every DFA essentially already is an NFA!
NFAs and DFAs

• Any language that can be accepted by a DFA can be accepted by an NFA.

• Why?
 • Every DFA essentially already is an NFA!

• **Question:** Can any language accepted by an NFA also be accepted by a DFA?
Any language that can be accepted by a DFA can be accepted by an NFA.

Why?

• Every DFA essentially already is an NFA!

Question: Can any language accepted by an NFA also be accepted by a DFA?

• Surprisingly, the answer is *yes*!
NFAs and DFAs

• **Question:** Can any language accepted by an NFA also be accepted by a DFA?

• Surprisingly, the answer is **yes**!

 • To prove this, we need to:
 - Pick an arbitrary NFA
 - Describe how we would construct a DFA with the same language (in a generalizable way)
 - For the next few slides, we’ll ponder how to approach that...
Thought Experiment:
How would you simulate an NFA in software?
\[\Sigma \]

Start

\[q_0 \rightarrow a \rightarrow q_1 \rightarrow b \rightarrow q_2 \rightarrow a \rightarrow q_3 \]

\[a \ b \ a \ b \ a \ b \ a \]
Start state: q_0

Transitions:
- From q_0 on input a: q_1
- From q_1 on input b: q_2
- From q_2 on input a: q_3

Input alphabet: Σ

Input string: $abaaba$
\[
\Sigma
\]

Start state: \(q_0\)

\(q_0 \rightarrow q_1\) on input \(a\)

\(q_1 \rightarrow q_2\) on input \(b\)

\(q_2 \rightarrow q_3\) on input \(a\)

Transitions:
- \(q_0 \rightarrow q_1\) on \(a\)
- \(q_1 \rightarrow q_2\) on \(b\)
- \(q_2 \rightarrow q_3\) on \(a\)

Input string: \(aababa\)

Accepting state: \(q_3\)
\[q_3 \xrightarrow{q_2} q_1 \xrightarrow{q_0} q_2 \xrightarrow{\Sigma} q_3 \]

Start

\[\begin{array}{c}
\text{a} \\
\text{b}
\end{array} \]

\[\begin{array}{ccccc}
\text{a} & \text{b} & \text{a} & \text{b} & \text{a}
\end{array} \]
\[
\begin{align*}
\sum & \quad q_3 \\
q_0 & \quad a \quad q_1 \\
& \quad b \quad q_2 \\
& \quad a \quad q_3 \\
\ldots & \quad ? \quad ? \quad ? \quad ? \quad a \quad ? \quad ? \quad ? \quad ? \quad ? \quad \ldots
\end{align*}
\]
\[\Sigma \]

Start

\[q_0 \] → a \[q_1 \] → b \[q_2 \] → a \[q_3 \] →

\[\Sigma \]

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[
\begin{array}{|c|c|}
\hline
\text{State} & \text{Input} \\
\hline
\{q_0\} & \{q_0, q_1\} \\
\hline
\end{array}
\]
\[
\begin{array}{c|cc}
 & a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \\
\hline
\end{array}
\]
The given diagram represents a state transition graph with the following states and transitions:

- States: \(q_0, q_1, q_2, q_3 \)
- Transitions:
 - From \(q_0 \) on input \(a \) to \(q_1 \)
 - From \(q_1 \) on input \(b \) to \(q_2 \)
 - From \(q_2 \) on input \(a \) to \(q_3 \)

The table below shows the transitions for inputs \(a \) and \(b \):

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({q_0})</td>
<td>({q_0, q_1})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[\sum \]

\[a \text{ \rightarrow } q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td></td>
</tr>
</tbody>
</table>
\[
q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3
\]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
</tr>
</tbody>
</table>
\[\Sigma \]

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
</tbody>
</table>

- Start state: \(q_0 \)
- Transitions:
 - \(q_0 \rightarrow q_1 \) on \(a \)
 - \(q_1 \rightarrow q_2 \) on \(b \)
 - \(q_2 \rightarrow q_3 \) on \(a \)
The diagram represents a finite automaton with states q_0, q_1, q_2, and q_3. The transitions are as follows:

- From q_0, on input a, move to q_1.
- From q_1, on input b, move to q_2.
- From q_2, on input a, move to q_3.
- From q_3 (a final state), any input returns to q_3.

The table below shows the transition function for inputs a and b:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The alphabet Σ includes a and b. The start state is q_0. The diagram also shows the transitions for each state.
\[
\begin{array}{c|c|c}
& a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & & \\
\hline
\end{array}
\]
\[\Sigma \]

Transition table:

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ q_0 }</td>
<td>{ q_0, q_1 }</td>
<td>{ q_0 }</td>
</tr>
<tr>
<td>{ q_0, q_1 }</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[\begin{array}{c|cc}
\{q_0\} & a & b \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & & \\
\end{array} \]
\(\Sigma \)

State transition diagram:

- Start state: \(q_0 \)
- Transition on \(a \) from \(q_0 \) to \(q_1 \)
- Transition on \(b \) from \(q_1 \) to \(q_2 \)
- Transition on \(a \) from \(q_2 \) to \(q_3 \)

Transition table:

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({q_0})</td>
<td>({q_0, q_1})</td>
<td>({q_0})</td>
</tr>
<tr>
<td>({q_0, q_1})</td>
<td>({q_0, q_1})</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
</tbody>
</table>

- **Start State:** q_0
- Transitions:
 - a: $q_0 \rightarrow q_1$
 - b: $q_1 \rightarrow q_2$
 - a: $q_2 \rightarrow q_3$
\[\sum \]

\[
\begin{array}{ccc}
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \\
\end{array}
\]
\[
\begin{array}{ccc}
\Sigma & \rightarrow & \{q_0, q_1\} \\
\{q_0\} & \rightarrow & \{q_0, q_1\} \\
\{q_0, q_1\} & \rightarrow & \{q_0, q_1\} \\
\end{array}
\]
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
</tbody>
</table>

Diagram:

- **Start State:** q_0
- **Transitions:**
 - $q_0 \xrightarrow{a} q_1$
 - $q_1 \xrightarrow{b} q_2$
 - $q_2 \xrightarrow{a} q_3$
- **Symbols:** Σ
\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[
\begin{array}{|c|c|c|}
\hline
 & a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\hline
\end{array}
\]
$$\Sigma$$

- Start at state q_0.
- Transition to state q_1 on input a.
- Transition to state q_2 on input b.
- Transition to state q_3 on input a.

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[\Sigma \]

```
\begin{align*}
\{q_0\} & \rightarrow \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \rightarrow \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \rightarrow \quad & \\
\end{align*}
```
\[\sum \]

\[
\begin{array}{c}
q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
 & a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & & \\
\hline
\end{array}
\]
\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Start state: \(q_0\)
\[a \{ q_0 \} a \{ q_0, q_1 \} a \{ q_0, q_1 \} a \{ q_0, q_2 \} \]
The given DFA has the following states and transitions:

- **States:** q_0, q_1, q_2, q_3
- **Start State:** q_0
- **Accepting State:** q_3

Transition Table

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{array}{c}
\Sigma \\
\end{array}
\]

\[
\begin{array}{c}
\text{start} \\
q_0 \\
\text{a} \\
q_1 \\
b \\
q_2 \\
\text{a} \\
q_3 \\
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
\text{state} & a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \text{---} \\
\hline
\end{array}
\]
\[q_3 \]

\[q_2 \]

\[q_1 \]

\[q_0 \]

\[\Sigma \]

The diagram shows a finite automaton with states \(q_0, q_1, q_2, q_3 \) and transitions labeled with symbols \(a \) and \(b \). The transitions are as follows:

- From \(q_0 \) on input \(a \) to \(q_1 \)
- From \(q_1 \) on input \(b \) to \(q_2 \)
- From \(q_2 \) on input \(a \) to \(q_3 \)

The table below lists the transitions for each state and input:

<table>
<thead>
<tr>
<th>State</th>
<th>Input a</th>
<th>Input b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td></td>
</tr>
<tr>
<td>{q_0, q_3}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The automaton starts at \(q_0 \) and accepts strings based on the transitions and inputs.
\begin{align*}
\Sigma & \rightarrow a \rightarrow q_0 \rightarrow a \rightarrow q_1 \rightarrow b \rightarrow q_2 \rightarrow a \rightarrow q_3 \\
\{q_0\} & \rightarrow \{q_0, q_1\} \rightarrow \{q_0\} \\
\{q_0, q_1\} & \rightarrow \{q_0, q_1\} \rightarrow \{q_0, q_2\} \\
\{q_0, q_2\} & \rightarrow \{q_0, q_1, q_3\} \\
\{q_0, q_1, q_3\} & \rightarrow
\end{align*}
The diagram represents a finite automaton with states labeled q_0, q_1, q_2, and q_3. The input alphabet, denoted by \sum, consists of two symbols: a and b. The transitions are as follows:

- From q_0: with a, the transition is to q_1; with b, the transition is to q_2.
- From q_1: with a, the transition is to q_3.
- From q_2: with a, the transition is to q_3.

The table below shows the transition function δ:

<table>
<thead>
<tr>
<th>Transition</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_3}$</td>
<td>---</td>
</tr>
</tbody>
</table>
\Sigma

\begin{array}{ccc}
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \\
\end{array}
\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({q_0})</td>
<td>({q_0, q_1})</td>
<td>({q_0})</td>
</tr>
<tr>
<td>({q_0, q_1})</td>
<td>({q_0, q_1})</td>
<td>({q_0, q_2})</td>
</tr>
<tr>
<td>({q_0, q_2})</td>
<td>({q_0, q_1, q_3})</td>
<td></td>
</tr>
<tr>
<td>({q_0, q_2})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\(\Sigma \)

```
\begin{array}{c|cc}
   & a & b \\
\hline
\{ q_0 \} & \{ q_0, q_1 \} & \{ q_0 \} \\
\{ q_0, q_1 \} & \{ q_0, q_1 \} & \{ q_0, q_2 \} \\
\{ q_0, q_2 \} & \{ q_0, q_1, q_3 \} & \{ q_0 \} \\
\end{array}
```
\[\Sigma \]

Start: \(q_0 \)

- \(q_0 \) to \(q_1 \) on input \(a \)
- \(q_1 \) to \(q_2 \) on input \(b \)
- \(q_2 \) to \(q_3 \) on input \(a \)

<table>
<thead>
<tr>
<th>(q)</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({ q_0 })</td>
<td>({ q_0, q_1 })</td>
<td>({ q_0 })</td>
</tr>
<tr>
<td>({ q_0, q_1 })</td>
<td>({ q_0, q_1 })</td>
<td>({ q_0, q_2 })</td>
</tr>
<tr>
<td>({ q_0, q_2 })</td>
<td>({ q_0, q_1, q_3 })</td>
<td>({ q_0 })</td>
</tr>
</tbody>
</table>
\[\begin{array}{c|cc}
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & & \end{array}\]
\[\Sigma \]

```
start
\[
\begin{array}{ccc}
q_0 & \xrightarrow{a} & q_1 \\
& \xrightarrow{b} & q_2 \\
& \xrightarrow{a} & q_3
\end{array}
\]
```

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1, q_3}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{array}{c|c|c}
\Sigma & a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & & \\
\end{array}
\]
\[
\begin{array}{c|c|c}
\text{State} & \text{a} & \text{b} \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & & \\
\end{array}
\]
\[\sum \]

\[
\begin{array}{c}
\text{start} \\
\rightarrow \\
q_0 \\
\rightarrow a \\
q_1 \\
\rightarrow b \\
q_2 \\
\rightarrow a \\
q_3 \\
\end{array}
\]

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1, q_3}</td>
<td>{q_0, q_1}</td>
<td></td>
</tr>
</tbody>
</table>
\[\Sigma \]

start

\[
\begin{array}{c}
q_0 \\
q_1 \\
q_2 \\
q_3
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
 & a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & \{q_0, q_1\} & \{q_0, q_1\} \\
\hline
\end{array}
\]
\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Transition Table

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1, q_3}</td>
<td>{q_0, q_1}</td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{array}{c}
\Sigma \\
\text{start} \\
q_0 \\
q_1 \\
q_2 \\
q_3 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
 & a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & \{q_0, q_1\} & \\
\end{array}
\]
\[\begin{array}{c|c|c}
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1, q_3}</td>
<td>{q_0, q_1}</td>
<td></td>
</tr>
</tbody>
</table>
\end{array} \]
Σ

\[
\begin{array}{c|cc}
 & a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & \{q_0, q_1\} & \\
\end{array}
\]
\[
\Sigma
\]

\[
\begin{array}{ccc}
q_0 & a & q_1 \\
\downarrow & a & \downarrow b \\
q_1 & b & q_2 \\
\downarrow & a & \downarrow \\
q_2 & & q_3
\end{array}
\]

<table>
<thead>
<tr>
<th>State Sets</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1, q_3}</td>
<td>{q_0, q_1}</td>
<td></td>
</tr>
</tbody>
</table>
A finite automaton with the following transitions:

- Start state: q_0
- Transitions:
 - From q_0: a to q_1, b to q_2
 - From q_1: a to q_3
 - From q_2: a to q_0

Transition table:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
</tbody>
</table>
\[
\begin{array}{c|c|c}
\Sigma & a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\end{array}
\]
Start

\[
q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3
\]

\[
\Sigma
\]

\[
\{ q_0 \}
\]

\[
\{ q_0, q_1 \}
\]

\[
\{ q_0, q_2 \}
\]

\[
\{ q_0, q_1, q_3 \}
\]

Input:

\[
a b a a a b b a
\]
\[
\Sigma
\]

```
start
\{q_0\}

{q_0, q_1}

{q_0, q_2}

\{q_0, q_1, q_3\}
```

```
\begin{array}{ccccccc}
  a & b & a & a & a & b & a
\end{array}
```

```
q_0 \rightarrow a \rightarrow q_1
q_1 \rightarrow b \rightarrow q_2
q_2 \rightarrow a \rightarrow q_3
```

```
\text{start}
\uparrow
```
\[
\Sigma
\]

\[
\{q_0\}
\]

\[
\{q_0, q_1\}
\]

\[
\{q_0, q_2\}
\]

\[
\{q_0, q_1, q_3\}
\]

\[
\begin{array}{c}
\text{start} \\
q_0 \\
\downarrow a \\
q_1 \\
\downarrow b \\
q_2 \\
\downarrow a \\
q_3 \\
\end{array}
\]
\[
\Sigma
\]

Transition diagram:

- **Start state:** \(q_0\)
- **Transitions:**
 - \(q_0 \xrightarrow{a} q_1\)
 - \(q_1 \xrightarrow{b} q_2\)
 - \(q_2 \xrightarrow{a} q_3\)

Input string:

\[
\text{a b a a a b a a a}
\]
The Subset Construction

- This procedure for turning an NFA for a language L into a DFA for a language L is called the **subset construction**.
 - It’s sometimes called the **powerset construction**; it’s different names for the same thing!

- Intuitively:
 - Each state in the DFA corresponds to a set of states from the NFA.
 - Each transition in the DFA corresponds to what transitions would be taken in the NFA when using the massive parallel intuition.
 - The accepting states in the DFA correspond to which sets of states would be considered accepting in the NFA when using the massive parallel intuition.

- There’s an online *Guide to the Subset Construction* with a more elaborate example involving ε-transitions and cases where the NFA dies; check that for more details.
The Subset Construction

- In converting an NFA to a DFA, the DFA's states correspond to sets of NFA states.
- **Useful fact**: $|\mathcal{P}(S)| = 2^{|S|}$ for any finite set S.
- In the worst-case, the construction can result in a DFA that is exponentially larger than the original NFA.
- **Question to ponder**: Can you find a family of languages that have NFAs of size n, but no DFAs of size less than 2^n?
A language L is called a regular language if there exists a DFA D such that $\mathcal{L}(D) = L$.
An Important Result

Theorem: A language L is regular if and only if there is some NFA N such that $\mathcal{L}(N) = L$.

Proof Sketch: Pick a language L. First, assume L is regular. That means there’s a DFA D where $\mathcal{L}(D) = L$. Every DFA is “basically” an NFA, so there’s an NFA (D) whose language is L.

Next, assume there’s an NFA N such that $\mathcal{L}(N) = L$. Using the subset construction, we can build a DFA D where $\mathcal{L}(N) = \mathcal{L}(D)$. Then we have that $\mathcal{L}(D) = L$, so L is regular. ■-ish
Why This Matters

- We now have two perspectives on regular languages:
 - Regular languages are languages accepted by DFAs.
 - Regular languages are languages accepted by NFAs.
- We can now reason about the regular languages in two different ways.
Properties of Regular Languages
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.

- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$ also regular?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.

- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?

Question to ponder: where have you seen this idea before?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

\[\overline{L_1} \cup \overline{L_2} \]
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

Hey, it's De Morgan's laws!
Concatenation
String Concatenation

- If $w \in \Sigma^*$ and $x \in \Sigma^*$, the *concatenation* of w and x, denoted wx, is the string formed by tacking all the characters of x onto the end of w.

- Example: if $w = \text{quo}$ and $x = \text{kka}$, the concatenation $wx = \text{quokka}$.

- This is analogous to the + operator for strings in many programming languages.

- Some facts about concatenation:
 - The empty string ε is the *identity element* for concatenation:
 $$w\varepsilon = \varepsilon w = w$$
 - Concatenation is *associative*:
 $$wxy = w(xy) = (wx)y$$
Concatenation

- The **concatenation** of two languages L_1 and L_2 over the alphabet Σ is the language

$$L_1L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \land x \in L_2 \}$$
Concatenation Example

- Let $\Sigma = \{ \text{a, b, ..., z, A, B, ..., Z} \}$ and consider these languages over Σ:
 - $\textbf{Noun} = \{ \text{Puppy, Rainbow, Whale, ...} \}$
 - $\textbf{Verb} = \{ \text{Hugs, Juggles, Loves, ...} \}$
 - $\textbf{The} = \{ \text{The} \}$

- The language $\textbf{TheNounVerbTheNoun}$ is
 $\{ \text{ThePuppyHugsTheWhale, TheWhaleLovesTheRainbow, TheRainbowJugglesTheRainbow, ...} \}$
Concatenation

- The **concatenation** of two languages L_1 and L_2 over the alphabet Σ is the language

 $$L_1L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \land x \in L_2 \}$$

- Two views of L_1L_2:
 - The set of all strings that can be made by concatenating a string in L_1 with a string in L_2.
 - The set of strings that can be split into two pieces: a piece from L_1 and a piece from L_2.

This is closely related to, but different than, the Cartesian product.

Question to ponder: In what ways are concatenations similar to Cartesian products? In what ways are they different?
Concatenating Regular Languages

• If L_1 and L_2 are regular languages, is L_1L_2?

• Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

• Idea:
Concatenating Regular Languages

- If \(L_1 \) and \(L_2 \) are regular languages, is \(L_1L_2 \)?
- Intuition – can we split a string \(w \) into two strings \(xy \) such that \(x \in L_1 \) and \(y \in L_2 \)?
- **Idea:**
 - Run a DFA/NFA for \(L_1 \) on \(w \).
 - Whenever it reaches an accepting state, optionally hand the rest of \(w \) to a DFA/NFA for \(L_2 \).
 - If the automaton for \(L_2 \) accepts the remainder, \(w \in L_1L_2 \).
 - If the automaton for \(L_2 \) rejects the remainder, the split was incorrect.
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?
- Idea:

 - Run a DFA/NFA for L_1 on w.
 - Whenever it reaches an accepting state, optionally hand the rest of w to a DFA/NFA for L_2.
 - If the automaton for L_2 accepts the remainder, $w \in L_1L_2$.
 - If the automaton for L_2 rejects the remainder, the split was incorrect.
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?
- Idea:

 - Run a DFA/NFA for L_1 on w.
 - Whenever it reaches an accepting state, optionally hand the rest of w to a DFA/NFA for L_2.
 - If the automaton for L_2 accepts the remainder, $w \in L_1L_2$.
 - If the automaton for L_2 rejects the remainder, the split was incorrect.
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?
- Idea:

 - Run a DFA/NFA for L_1 on w.
 - Whenever it reaches an accepting state, optionally hand the rest of w to a DFA/NFA for L_2.
 - If the automaton for L_2 accepts the remainder, $w \in L_1L_2$.
 - If the automaton for L_2 rejects the remainder, the split was incorrect.

Machine for L_1
Machine for L_2
Concatenating Regular Languages

If L_1 and L_2 are regular languages, is $L_1 L_2$?

Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Idea:

- Run a DFA/NFA for L_1 on w.
- Whenever it reaches an accepting state, optionally hand the rest of w to a DFA/NFA for L_2.
- If the automaton for L_2 accepts the rest, $w \in L_1 L_2$.
- If the automaton for L_2 rejects the remainder, the split was incorrect.
Concatenating Regular Languages
Concatenating Regular Languages

Machine for L_1
Concatenating Regular Languages

Machine for L_1

Machine for L_2
Concatenating Regular Languages

Machine for L_1

Machine for L_2
Concatenating Regular Languages

Machine for L_1

Machine for L_2
Concatenating Regular Languages

Machine for L_1

Machine for L_2

Machine for $L_1 L_2$
Lots and Lots of Concatenation

• Consider the language $L = \{\text{ aa, b }\}$
• LL is the set of strings formed by concatenating pairs of strings in L.

 $\{\text{ aaaa, aab, baa, bb }\}$
• LLL is the set of strings formed by concatenating triples of strings in L.

 $\{\text{ aaaaaa, aaaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}\}$
• $LLLL$ is the set of strings formed by concatenating quadruples of strings in L.

 $\{\text{ aaaaaaaaa, aaaaaaab, aaaaabaa, aaaaabb, aabaaaa, aabaab, aabbaa, aabbb, baaaaaa, baaaaab, baabaa, baabb, bbaaaa, bbaaab, bbbaa, bbbb}\}$
Language Exponentiation

- We can define what it means to “exponentiate” a language as follows:
- \(L^0 = \{ \varepsilon \} \)
 - Intuition: The only string you can form by gluing no strings together is the empty string.
 - Notice that \(\{ \varepsilon \} \neq \emptyset \). Can you explain why?
- \(L^{n+1} = LL^n \)
 - Idea: Concatenating \((n+1)\) strings together works by concatenating \(n\) strings, then concatenating one more.
- **Question to ponder:** Why define \(L^0 = \{ \varepsilon \} \)?
- **Question to ponder:** What is \(\emptyset^0 \)?
The Kleene Star
The Kleene Closure

- An important operation on languages is the **Kleene Closure**, which is defined as:

 \[L^* = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N}. w \in L^n \} \]

- Mathematically:

 \[w \in L^* \iff \exists n \in \mathbb{N}. w \in L^n \]

- Intuitively, \(L^* \) is the language all possible ways of concatenating zero or more strings in \(L \) together, possibly with repetition.

- **Question to ponder:** What is \(\emptyset^* \)?
The Kleene Closure

If $L = \{ \text{a, bb} \}$, then $L^* = \{ \varepsilon, \text{a, bb, aa, abb, bba, bbbb, aaaa, aabb, abba, abbb, bbab, bbbba, bbbbbbb, ...} \}$

Think of L^* as the set of strings you can make if you have a collection of stamps – one for each string in L – and you form every possible string that can be made from those stamps.
Reasoning about Infinity

• If L is regular, is L^* necessarily regular?

⚠ A Bad Line of Reasoning: ⚠

• $L^0 = \{ \varepsilon \}$ is regular.
• $L^1 = L$ is regular.
• $L^2 = LL$ is regular
• $L^3 = L(LL)$ is regular
• ...

• Regular languages are closed under union.
• So the union of all these languages is regular.
Reasoning about Infinity

$\chi \{ \chi \neq 2\chi \}$
Reasoning about Infinity

0.9 < 1
Reasoning about Infinity

0.99 < 1
Reasoning about Infinity

$0.999 < 1$
Reasoning about Infinity

0.9999 < 1
Reasoning about Infinity

0.99999 < 1
Reasoning about Infinity

0.99999\bar{9} \leq 1
Reasoning about Infinity

0 is finite
Reasoning about Infinity

1 is finite
Reasoning about Infinity

2 is finite
Reasoning about Infinity

3 is finite
Reasoning about Infinity

4 is finite
Reasoning about Infinity

∞ is finite

^ not
Reasoning About the Infinite

• If a series of finite objects all have some property, the “limit” of that process does not necessarily have that property.

• In general, it is not safe to conclude that some property that always holds in the finite case must hold in the infinite case.
 • (This is why calculus is interesting).

• So our earlier argument ($L^* = L^0 \cup L^1 \cup ...$) isn’t going to work.

• We need a different line of reasoning.
Idea: Can we directly convert an NFA for language L to an NFA for language L^*?
The Kleene Star

Machine for L

Machine for L^*
The Kleene Star

Question: Why add the new state out front? Why not just make the old start state accepting?
Closure Properties

- **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ, then so are the following languages:
 - \overline{L}_1
 - $L_1 \cup L_2$
 - $L_1 \cap L_2$
 - L_1L_2
 - L_1^*

- These properties are called *closure properties of the regular languages.*
Next Time

- **Regular Expressions**
 - Building languages from the ground up!
- **Thompson’s Algorithm**
 - A UNIX Programmer in Theoryland.
- **Kleene’s Theorem**
 - From machines to programs!