Verifiers and RE
Get ready to answer some questions in rapid-fire style!
(about 10 seconds per question, but I won’t close the recorded poll for a while so don’t stress about that)
Definition:

A **k-Clique** is a set of k vertices of a graph that are all adjacent to each other (all possible edges between those k vertices are present in the graph).

has a 4-Clique:

does not have a 4-Clique (has 3-Clique though):
QUICK REACTION: Does this graph contain a 4-clique?

Answer at PollEv.com/cs103 or text CS103 to 22333 once to join, then Y, N, or ? (for “I don’t know”).
WITH A HINT: Does this graph contain a 4-clique?

Answer at PollEv.com/cs103 or text CS103 to 22333 once to join, then Y, N, or ? (for “I don’t know”).
WITH A NEW HINT: Does this graph contain a 4-clique?

Answer at PollEv.com/cs103 or text CS103 to 22333 once to join, then Y, N, or ? (for “I don’t know”).
Key Intuition:

A language L is in RE if, for any string w, if you are convinced that $w \in L$, there is some piece of evidence you could provide to convince someone else.
Discussion Question:

A language L is in RE if, for any string w, if you are convinced that $w \in L$, there is some piece of evidence you could provide to convince someone else.

What about for a $w \notin L$? What would a piece of evidence for that look like?
More examples of helpful hints vs unhelpful hints
Does this Sudoku puzzle have a solution?
<table>
<thead>
<tr>
<th>2</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>6</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>1</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>6</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Does this Sudoku puzzle have a solution?
Does this Sudoku puzzle have a solution?
Verification

Does this graph have a Hamiltonian path (a simple path that passes through every node exactly once?)
Verification

Does this graph have a Hamiltonian path (a simple path that passes through every node exactly once?)
Verification

Does this graph have a Hamiltonian path (a simple path that passes through every node exactly once?)
Does this Sudoku puzzle have a solution?
Does this Sudoku puzzle have a solution?
Verification

Does this Sudoku puzzle have a solution?
Verification

Does this graph have a Hamiltonian path (a simple path that passes through every node exactly once?)
Verification

Does this graph have a *Hamiltonian path* (a simple path that passes through every node exactly once?)
Does this graph have a Hamiltonian path (a simple path that passes through every node exactly once?)
Verification

• In each of the preceding cases, we were given some problem and some evidence supporting the claim that the answer is “yes.”

• Given the correct evidence, we can be certain that the answer is indeed “yes.”

• Given incorrect evidence, we aren't sure whether the answer is “yes.”
 • Maybe there's no evidence saying that the answer is “yes,” because the answer is no!
 • Or maybe there is some evidence, but just not the evidence we were given.

• Let's formalize this idea.
Verifiers

- A **verifier** for a language L is a TM V with the following properties:
 - V halts on all inputs.
 - For any string $w \in \Sigma^*$, the following is true:
 \[
 w \in L \iff \exists c \in \Sigma^*. \ V \text{ accepts } \langle w, c \rangle
 \]
- A string c where V accepts $\langle w, c \rangle$ is called a **certificate** for w.
- Intuitively, what does this mean?
Deciders and Verifiers

Decider M for L

M halts on all inputs.
$w \in L \iff M$ accepts w

Verifier V for L

V halts on all inputs.
$w \in L \iff \exists c \in \Sigma^* . V$ accepts (w, c)

“Solve the problem”

If M accepts, then $w \in L$.

If M rejects, then $w \notin L$.

“Check the answer”

If V accepts (w, c), then $w \in L$.

If V rejects (w, c), we don't know whether $w \in L$.
Deciders and Verifiers

Decider M for L

M halts on all inputs. $w \in L \leftrightarrow M$ accepts w

Verifier V for L

V halts on all inputs. $w \in L \leftrightarrow \exists c \in \Sigma^*. V$ accepts (w, c)

If M accepts, then $w \in L$.
If M rejects, then $w \notin L$.

If V accepts (w, c), then $w \in L$.
If V rejects (w, c), we don't know whether $w \in L$.
Deciders and Verifiers

Decider M for L

- M halts on all inputs.
- $w \in L \leftrightarrow M$ accepts w

Verifier V for L

- V halts on all inputs.
- $w \in L \leftrightarrow \exists c \in \Sigma^*$. V accepts (w, c)

If M accepts, then $w \in L$.

If M rejects, then $w \notin L$.

If V accepts (w, c), then $w \in L$.

If V rejects (w, c), we don't know whether $w \in L$.
Deciders and Verifiers

Decider M for L

- M halts on all inputs. $w \in L \iff M$ accepts w
- "Solve the problem"

Verifier V for L

- V halts on all inputs. $w \in L \iff \exists c \in \Sigma^*. V$ accepts (w, c)
- "Check the answer"

If M accepts, then $w \in L$.
If M rejects, then $w \notin L$.
If V accepts (w, c), then $w \in L$.
If V rejects (w, c), we don't know whether $w \in L$.
If V accepts (w, c), then $w \in L$.
If V rejects (w, c), we don't know whether $w \in L$.

Input string (w)
Certificate (c)

Deciders and Verifiers

Decider M for L

- M halts on all inputs.
- $w \in L \iff M$ accepts w

Verifier V for L

- V halts on all inputs.
- $w \in L \iff \exists c \in \Sigma^*$. V accepts (w, c)

- If M accepts, then $w \in L$.
- If M rejects, then $w \notin L$.
- If V accepts (w, c), then $w \in L$.
- If V rejects (w, c), we don't know whether $w \in L$.

"Solve the problem"

"Check the answer"
Verifiers

• A **verifier** for a language L is a TM V with the following properties:

 • V halts on all inputs.

 • For any string $w \in \Sigma^*$, the following is true:

 $w \in L \iff \exists c \in \Sigma^*. V$ accepts $\langle w, c \rangle$

• Some notes about V:

 • If V accepts $\langle w, c \rangle$, then we're guaranteed $w \in L$.

 • If V does not accept $\langle w, c \rangle$, then either

 – $w \in L$, but you gave the wrong c, or

 – $w \not\in L$, so no possible c will work.
Verifiers

- A **verifier** for a language L is a TM V with the following properties:
 - V halts on all inputs.
 - For any string $w \in \Sigma^*$, the following is true:
 \[w \in L \iff \exists c \in \Sigma^*. V \text{ accepts } \langle w, c \rangle \]

- More notes about V:
 - Notice that c is existentially quantified.
 - Notice V is required to halt *always* (like a decider).
Verifiers

A **verifier** for a language L is a TM V with the following properties:

- V halts on all inputs.
- For any string $w \in \Sigma^*$, the following is true:
 \[w \in L \iff \exists c \in \Sigma^*. V \text{ accepts } \langle w, c \rangle \]

More notes about V:

- Notice that $\mathcal{L}(V) \neq L$. *(Good question to hold on to for a second: what is $\mathcal{L}(V)$?)*
- The job of V is just to check certificates, not to decide membership in L.
Verifiers

- A **verifier** for a language L is a TM V with the following properties:
 - V halts on all inputs.
 - For any string $w \in \Sigma^*$, the following is true:
 $$w \in L \iff \exists c \in \Sigma^*. \; V \text{ accepts } \langle w, c \rangle$$

- A note about c:
 - Figuring out what would make a good certificate (should it be a number of steps to take, an equation-solving variable assignment, a set of graph nodes, an array of numbers to fill in a whole Sudoku board?) is custom work to do for each different language L.
Some Verifiers

• Let L be the following language:

$$
L = \{ \langle n \rangle \mid n \in \mathbb{N} \text{ and the hailstone sequence terminates for } n \}
$$

```cpp
bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}
```
Some Verifiers

$L = \{ \langle n \rangle \mid n \in \mathbb{N} \text{ and the hailstone sequence terminates for } n \}$

```cpp
bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}
```

Does this always halt?

Answer at PollEv.com/cs103 or text CS103 to 22333 once to join, then Y or N.
Some Verifiers

For one given \(\langle n \rangle \in L \) (say 11), how many different values of \(c \) will work to cause the verifier to accept?

\[
L = \{ \langle n \rangle \mid n \in \mathbb{N} \text{ and the hailstone sequence terminates for } n \}
\]

```cpp
bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}
```

Answer at PollEv.com/cs103 or text CS103 to 22333 once to join, then a number.
Some Verifiers

- \(L(V) = L \)
- \(L(V) \subseteq L \)
- \(L \subseteq L(V) \)

\[
L = \{ \langle n \rangle \mid n \in \mathbb{N} \text{ and the hailstone sequence terminates for } n \}
\]

```cpp
bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}
```

Answer at PollEv.com/cs103 or text CS103 to 22333 once to join, then a number.
Some Verifiers

• Let L be the following language:

$$L = \{ \langle G \rangle \mid G \text{ is a graph and } G \text{ has a Hamiltonian path } \}$$

• (A Hamiltonian path is a simple path that visits every node in the graph.)

• Let's see how to build a verifier for L.
Verification

Is there a simple path that goes through every node exactly once?
Verifier Example: Hamiltonian Path

- Let L be the following language:

$$L = \{ \langle G \rangle \mid G \text{ is a graph with a Hamiltonian path} \}$$

```cpp
bool checkHamiltonian(Graph G, vector<Node> c) {
    if (c.size() != G.numNodes()) return false;
    if (containsDuplicate(c)) return false;
    for (size_t i = 0; i < c.size() - 1; i++) {
        if (!G.hasEdge(c[i], c[i+1])) return false;
    }
    return true;
}
```

- Do you see why $\langle G \rangle \in L$ iff there is a c where $\text{checkHamiltonian}(G, c)$ returns true?

- Do you see why checkHamiltonian always halts?
Where We’ve Been

State Elimination

NFA --> Regex

Thompson’s Algorithm
Where We’re Going Today

Verifier

Recognizer

Somehow build this

Somehow build this
Verifier for A_{TM}?

- Consider A_{TM}:

 $$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}.$$

- This is a **canonical** example of an undecidable language. There’s no way, in general, to tell whether a TM M will accept a string w.

- Although this language is undecidable, it’s an **RE** language, and it’s possible to build a verifier for it!
What would make a good certificate for a verifier for A_{TM}?

- Consider A_{TM}:

 \[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \].

- This is a *canonical* example of an undecidable language. There’s no way, in general, to tell whether a TM M will accept a string w.

- Although this language is undecidable, it’s an RE language, and it’s possible to build a verifier for it!

Answer at PollEv.com/cs103 or text CS103 to 22333 once to join, then an idea
Run this TM for fifteen steps.
0 → 0, R
☐ → ☐, R

0 → 0, L
1 → 1, L

1 → ☐, L

☐ → ☐, L

Run this TM for fifteen steps.

... 0 1 ...
Run this TM for fifteen steps.
A Verifier for A_{TM}

- Recall $A_{TM} = \{ (M, w) \mid M$ is a TM and M accepts $w \}$

```cpp
def checkWillAccept(TM M, string w, int c):
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
        simulate the next step of M running on w;
    }
    return whether M is in an accepting state;
```

- Do you see why M accepts w iff there is some c such that checkWillAccept(M, w, c) returns true?
- Do you see why checkWillAccept always halts?
Equivalence of Verifiers and Recognizers

Verifier

Recognizer

Enforce a step count
What languages are verifiable?
Let V be a verifier for a language L. Consider the following function given in pseudocode:

```c
bool mysteryFunction(string w) {
    int i = 0;
    while (true) {
        for (each string c of length i) {
            if (V accepts $\langle w, c \rangle$) return true;
        }
        i++;
    }
}
```

What set of strings does `mysteryFunction` return `true` on?
Equivalence of Verifiers and Recognizers

Verifier

Try all certificates

Recognizer

Enforce a step count
Theorem: If L is a language, then there is a verifier for L if and only if $L \in \text{RE.}$
Verifiers and \textbf{RE}

- **Theorem:** If there is a verifier V for a language L, then $L \in \textbf{RE}$.

- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

Verifiers and **RE**

- **Theorem:** If there is a verifier V for a language L, then $L \in \text{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

![Diagram](image-url)
Theorem: If there is a verifier V for a language L, then $L \in \text{RE}$.

Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)
Theorem: If there is a verifier V for a language L, then $L \in \text{RE}$.

Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)
Verifiers and RE

• **Theorem:** If there is a verifier V for a language L, then $L \in \text{RE}$.

• **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa ...

We will try all possible certificates (values of c)
Theorem: If there is a verifier V for a language L, then $L \in \text{RE}$.

Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

Diagram:
- **Verifier V for L**
 - **input string** (w)
 - **certificate** (c)
- **“Check the answer”**
 - **yes!**
 - **not sure**

We will try all possible certificates (values of c)

- ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, ...

Verifiers and RE
Theorem: If there is a verifier V for a language L, then $L \in \text{RE}$.

Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

```
\epsilon \ a \ b \ aa \ ab \ ba \ bb \ aaa \ aab \ aba \ abb \ baa \ ...
```
Verifiers and \textbf{RE}

- **Theorem**: If there is a verifier \(V \) for a language \(L \), then \(L \in \text{RE} \).

- **Proof goal**: Given a verifier \(V \) for a language \(L \), find a way to construct a recognizer \(M \) for \(L \).

We will try all possible certificates (values of \(c \))
Verifiers and \textbf{RE}

- \textbf{Theorem:} If there is a verifier V for a language L, then $L \in \text{RE}$.

- \textbf{Proof goal:} Given a verifier V for a language L, find a way to construct a recognizer M for L.

\begin{itemize}
 \item \textit{Verifier} V for L
 \item \textit{Check the answer}:
 \begin{itemize}
 \item \text{input string} (w)
 \item \text{certificate} (c)
 \end{itemize}
 \end{itemize}

\textit{We will try all possible certificates (values of c)}

\[
\begin{array}{cccccccccccc}
\varepsilon & a & b & aa & ab & ba & bb & aaa & aab & aba & abb & baa & \ldots \\
\end{array}
\]
Verifiers and RE

- **Theorem:** If there is a verifier V for a language L, then $L \in \text{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)
Verifiers and \textbf{RE}

- **Theorem:** If there is a verifier V for a language L, then $L \in \text{RE}$.

- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c):

ϵ a b aa ab ba bb aaa aab aba abb baa ...
Verifiers and \textbf{RE}

- **Theorem:** If there is a verifier V for a language L, then $L \in \text{RE}$.

- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)
Theorem: If there is a verifier V for a language L, then $L \in \text{RE}$.

Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

Verifiers and RE
Verifiers and RE

- **Theorem:** If there is a verifier V for a language L, then $L \in \text{RE}$.

- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)
Verifiers and RE

- **Theorem:** If there is a verifier V for a language L, then $L \in \text{RE}$.

- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)
Verifiers and \textbf{RE}

- \textbf{Theorem:} If there is a verifier V for a language L, then $L \in \text{RE}$.

- \textbf{Proof goal:} Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

\begin{itemize}
 \item ε
 \item a
 \item b
 \item aa
 \item ab
 \item ba
 \item bb
 \item aaa
 \item aab
 \item aba
 \item abb
 \item baa
 \item \ldots
\end{itemize}
Verifiers and \textbf{RE}

\begin{itemize}
 \item \textbf{Theorem:} If there is a verifier \(V \) for a language \(L \), then \(L \in \text{RE} \).
 \item \textbf{Proof goal:} Given a verifier \(V \) for a language \(L \), find a way to construct a recognizer \(M \) for \(L \).
\end{itemize}

We will try all possible certificates (values of \(c \))

\[\varepsilon \ a \ b \ aa \ ab \ ba \ bb \ aaa \ aab \ aba \ abb \ baa \ ... \]
Verifiers and RE

- **Theorem:** If there is a verifier V for a language L, then $L \in \text{RE}$.

- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c):

- ε
- a
- b
- aa
- ab
- ba
- bb
- aaa
- aab
- aba
- abb
- baa
- ...
Verifiers and \textbf{RE}

- \textbf{Theorem}: If there is a verifier \(V \) for a language \(L \), then \(L \in \text{RE} \).

- \textbf{Proof goal}: Given a verifier \(V \) for a language \(L \), find a way to construct a recognizer \(M \) for \(L \).

We will try all possible certificates (values of \(c \))
Verifiers and \textbf{RE}

- **Theorem**: If there is a verifier V for a language L, then $L \in \text{RE}$.

- **Proof goal**: Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

\begin{align*}
\varepsilon & \quad a & \quad b & \quad aa & \quad ab & \quad ba & \quad bb & \quad aaa & \quad aab & \quad aba & \quad abb & \quad baa & \quad ...
\end{align*}
Verifiers and \textbf{RE}

- **Theorem:** If there is a verifier \(V \) for a language \(L \), then \(L \in \text{RE} \).

- **Proof goal:** Given a verifier \(V \) for a language \(L \), find a way to construct a recognizer \(M \) for \(L \).

We will try all possible certificates (values of \(c \)):
• **Theorem:** If there is a verifier V for a language L, then $L \in \text{RE}$.

• **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)
Verifiers and \textbf{RE}

- **Theorem**: If there is a verifier V for a language L, then $L \in \textbf{RE}$.

- **Proof goal**: Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

ε	a	b	aa	ab	ba	bb	aaa	aab	aba	abb	baa	...

"Check the answer"
Verifiers and RE

- **Theorem:** If there is a verifier V for a language L, then $L \in \text{RE}$.

- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

\[\varepsilon \quad a \quad b \quad aa \quad ab \quad ba \quad bb \quad aaa \quad aab \quad aba \quad abb \quad baa \quad \ldots\]
Verifiers and \textbf{RE}

- **Theorem:** If there is a verifier V for a language L, then $L \in \textbf{RE}$.

- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

Diagram:

- **Verifier V for L:**
 - **Input string (w):**
 - **Certificate (c):**
 - "Check the answer"
 - If the answer is "yes!" then $w \in L$.
 - If the answer is "not sure" then the certificate is invalid.

We will try all possible certificates ($\text{values of } c$):

- ε
- a
- b
- aa
- ab
- ba
- bb
- aaa
- aab
- aba
- abb
- baa
- $...$
Verifiers and RE

- **Theorem:** If there is a verifier \(V \) for a language \(L \), then \(L \in \text{RE} \).

- **Proof goal:** Given a verifier \(V \) for a language \(L \), find a way to construct a recognizer \(M \) for \(L \).

We will try all possible certificates (values of \(c \))
Verifiers and RE

- **Theorem:** If there is a verifier V for a language L, then $L \in \text{RE}$.

- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

ε a b aa ab ba bb aaa aab aba abb baa ...
Verifiers and RE

• **Theorem:** If V is a verifier for L, then $L \in \text{RE}$.

• **Proof sketch:** Consider the following program:

```cpp
bool isInL(string w) {
  int i = 0;
  while (true) {
    for (each string $c$ of length $i$) {
      if ($V$ accepts $\langle w, c \rangle$) return true;
    }
    i++;
  }
}
```

If $w \in L$, there is some $c \in \Sigma^*$ where V accepts $\langle w, c \rangle$. The function `isInL` tries all possible strings as certificate, so it will eventually find c (or some other certificate), see V accept $\langle w, c \rangle$, then return true. Conversely, if `isInL(w)` returns true, then there was some string c such that V accepted $\langle w, c \rangle$, so $w \in L$. ■
Verifiers and RE

- **Theorem:** If $L \in \text{RE}$, then there is a verifier for L.
- **Proof goal:** Beginning with a recognizer M for the language L, show how to construct a verifier V for L.

- The challenges:
 - A recognizer M is not required to halt on all inputs. A verifier V must always halt.
 - A recognizer M takes in one single input. A verifier V takes in two inputs.
- We’ll need to find a way of reconciling these requirements.
Recall: If M is a recognizer for a language L, then M accepts w iff $w \in L$.

Key insight: If M accepts a string w, it always does so in a finite number of steps.

Idea: Adapt the verifier for A_{TM} into a more general construction that turns any recognizer into a verifier by running it for a fixed number of steps.
Verifiers and RE

• **Theorem:** If $L \in \text{RE}$, then there is a verifier for L.

• **Proof sketch:** Consider the following program:

```cpp
bool checkIsInL(string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
        simulate the next step of M running on W;
    }
    return whether M is in an accepting state;
}
```

Notice that `checkIsInL` always halts, since each step takes only finite time to complete. Next, notice that if there is a c where `checkIsInL(w, c)` returns true, then M accepted w after running for c steps, so $w \in L$. Conversely, if $w \in L$, then M accepts w after some number of steps (call that number c). Then `checkIsInL(w, c)` will run M on w for c steps, watch M accept w, then return true. ■
RE and Proofs

- Verifiers and recognizers give two different perspectives on the “proof” intuition for RE.
- Verifiers are explicitly built to check proofs that strings are in the language.
 - If you know that some string w belongs to the language and you have the proof of it, you can convince someone else that $w \in L$.
- You can think of a recognizer as a device that “searches” for a proof that $w \in L$.
 - If it finds it, great!
 - If not, it might loop forever.
RE and Proofs

• If the RE languages represent languages where membership can be proven, what does a non-RE language look like?

• Intuitively, a language is *not* in RE if there is no general way to prove that a given string $w \in L$ actually belongs to L.

• In other words, even if you knew that a string was in the language, you may never be able to convince anyone of it!