The Big Picture
A Fun Historical Note

• The results you’ve seen presented in CS103 were not discovered in the order you may have expected.

• For example:
 • Regular languages were developed after Turing machines.
 • Cantor had worked out different orders of infinity before the \cup and \cap symbols were invented.

• Check out the “Timeline of CS103 Results” on the course website for more information!
Please evaluate this course on Axess.
Your feedback really makes a difference.
Final Exam Logistics

- The final exam will be available Thursday at midnight (i.e., Friday morning)
- The exam is due Saturday at 11:59pm

Best of luck on the exam!
Outline for Today

- **The Big Picture**
 - Where have we been? Why did it all matter?

- **Where to Go from Here**
 - What’s next in CS theory?

- **Your Questions**
 - What do you want to know?

- **Final Thoughts!**
The Big Picture
Take a minute to reflect on your journey.
You’ve done more than just check a bunch of boxes off a list.
You’ve given yourself the foundation to tackle problems from all of computer science.
PRPs and PRFs

- Pseudo Random Function (PRF) defined over \((K,X,Y)\):
 \[
 F: K \times X \rightarrow Y
 \]
such that there exists "efficient" algorithm to evaluate \(F(k,x)\)

- Pseudo Random Permutation (PRP)
 \[
 E: K \times X \rightarrow X
 \]
such that:
 1. There exists "efficient" algorithm to evaluate \(E(k,x)\)
 2. Function \(E(k,\cdot)\) is one-to-one
 3. "Efficient" inversion algorithm \(D(k,x)\)

Definitions in terms of efficiency!

Injectivity!

Functions defined over Cartesian products!
Semantics of JOINs (2 tables)

1. Take cross product:
 \[X = R \times S \]

2. Apply selections / conditions:
 \[Y = \{ (r,s) \in X \mid r.A = r.B \} \]

3. Apply projections to get final output:
 \[Z = (y.A) \text{ for } y \in Y \]

Recall: Cross product \((A \times B)\) is the set of all unique tuples in \(A, B\)
Ex: \(\{a, b, c\} \times \{1, 2\} = \{(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)\}\)

= Filtering!

= Returning only some attributes

Remembering this order is critical to understanding the output of certain queries (see later on...)

From CS145

SELECT R.A
FROM R, S
WHERE R.A = S.B
Strong triadic closure

If a node Q has two strong ties to nodes Y and Z, there is an edge between Y and Z.

What do graphs with these properties look like?

New definitions on graphs!

Transform some object to make it closed under some operation!
Tokenization in NLTK

Bird, Loper and Klein (2009), *Natural Language Processing with Python*. O’Reilly

```python
>>> text = 'That U.S.A. poster-print costs $12.40...

>>> pattern = r''''(?x)  # set flag to allow verbose regexps
... ([A-Z]\.)+  # abbreviations, e.g. U.S.A.
... | \w+(-\w+)*  # words with optional internal hyphens
... | $\d+(\./\d+)?%?  # currency and percentages, e.g. $12.40, 82%
... | \.\.\.  # ellipsis
... | [\[,.;"'?()\:-_‘]  # these are separate tokens; includes ], [...

>>> nltk.regexp_tokenize(text, pattern)
['That', 'U.S.A', 'poster-print', 'costs', '$12.40', '...']
```

It’s a big regex!
Describing the world in set theory!

Let $R(q) \subseteq W$ denote set of points in the world occupied by robot when in configuration q.

Robot in collision $\iff R(q) \cap O \neq \emptyset$.

Accordingly, free space is defined as: $C_{free} = \{q \in C | R(q) \cap O = \emptyset\}$.

Path planning problem in C-space: compute a \textbf{continuous} path: $\tau : [0,1] \rightarrow C_{free}$, with $\tau(0) = q_I$ and $\tau(1) = q_G$.

Model paths as functions!
Problem 1. Hash functions and proofs of work. In class we defined two security properties for a hash function, one called collision resistance and the other called proof-of-work security. Show that a collision-resistant hash function may not be proof-of-work secure.

Hint: let $H : X \times Y \to \{0, 1, \ldots, 2^n - 1\}$ be a collision-resistant hash function. Construct a new hash function $H' : X \times Y \to \{0, 1, \ldots, 2^m - 1\}$ (where m may be greater than n) that is also collision resistant, but for a fixed difficulty D (say, $D = 2^{32}$) is not proof-of-work secure with difficulty D. That is, for every puzzle $x \in X$ it should be trivial to find a solution $y \in Y$ such that $H'(x,y) < 2^m/D$. This is despite H' being collision resistant. Remember to explain why your H' is collision resistant, that is, explain why a collision on H' would yield a collision on H.

Whoa, it's a function!
It's a CFG!

From CS143

It's an automaton derived from a CFG!
Search problems

Definition: search problem

- **States**: the set of states
- $s_{start} \in States$: starting state
- **Actions**(s): possible actions from state s
- **Succ**(s, a): where we end up if take action a in state s
- **Cost**(s, a): cost for taking action a in state s
- **IsEnd**(s): whether at end

- **Succ**$(s, a) \Rightarrow T(s, a, s')$
- **Cost**$(s, a) \Rightarrow Reward(s, a, s')$

From CS221
II. Transfer Functions

- A family of transfer functions F
- Basic Properties $f : V \rightarrow V$
 - Has an identity function
 - $\exists f$ such that $f(x) = x$, for all x.
 - Closed under composition
 - if $f_1, f_2 \in F$, $f_1 \circ f_2 \in F$

It's functions with specific properties!
O(...) means an upper bound

- Let $T(n), g(n)$ be functions of positive integers.
 - Think of $T(n)$ as being a runtime: positive and increasing in n.

- We say “$T(n)$ is $O(g(n))$” if $g(n)$ grows at least as fast as $T(n)$ as n gets large.

- Formally,

\[
T(n) = O(g(n)) \iff \exists c, n_0 > 0 \text{ s.t. } \forall n \geq n_0, \ 0 \leq T(n) \leq c \cdot g(n)
\]
Graph $G(V, E)$ has expansion α: if $\forall S \subseteq V$:

\# of edges leaving $S \geq \alpha \cdot \min(|S|, |V \setminus S|)$

Or equivalently:

$$\alpha = \min_{S \subseteq V} \frac{\# \text{ edges leaving } S}{\min(|S|, |V \setminus S|)}$$

Set difference and cardinality!
Typed lambda calculus

To understand the formal concept of a type system, we’re going to extend our lambda calculus from last week (henceforth the “untyped” lambda calculus) with a notion of types (the “simply typed” lambda calculus). Here’s the essentials of the language:

\[
\text{Type } \tau ::= \ \text{int} \quad \text{integer} \\
\quad \quad | \quad \tau_1 \rightarrow \tau_2 \quad \text{function} \\

\text{Expression } e ::= \ x \quad \text{variable} \\
\quad \quad | \quad n \quad \text{integer} \\
\quad \quad | \quad e_1 \oplus e_2 \quad \text{binary operation} \\
\quad \quad | \quad \lambda (x: \tau). e \quad \text{function} \\
\quad \quad | \quad e_1 \ e_2 \quad \text{application} \\
\text{Binop } \oplus ::= + | - | \ast | /\
\]

First, we introduce a language of types, indicated by the variable tau (\(\tau\)). A type is either an integer, or a function from an input type \(\tau_1\) to an output type \(\tau_2\). Then we extend our untyped lambda calculus with the same arithmetic language from the first lecture (numbers and binary operators)\(^4\). Usage of the language looks similar to before:
Definitions in terms of strings!

The Anatomy of a Suffix Tree

- A **branching word** in $T\$ is a string ω such that there are characters $a \neq b$ where ωa and ωb are substrings of $T\$.
 - Edge case: the empty string is always considered branching.

- **Theorem:** The suffix tree for a string T has an internal node for a string ω if and only if ω is a branching word in $T\$.

nonsense$\$ 012345678
Finite State Machines

- Represent protocols using state machines
 - Sender and receiver each have a state
 - Start in some initial state
 - Events cause each side to select a state transition

- Transition specifies action taken
 - Specified as events/actions
 - E.g., software calls send/put packet on network
 - E.g., packet arrives/send acknowledgment
By definition, we need to output \(y \) if and only if \(y \in S \). That is, answering membership queries reduces to solving the Heavy Hitters problem. By the “membership problem,” we mean the task of preprocessing a set \(S \) to answer queries of the form “is \(y \in S \)?” (A hash table is the most common solution to this problem.) It is intuitive that you cannot correctly answer all membership queries for a set \(S \) without storing \(S \) (thereby using linear, rather than constant, space) — if you throw some of \(S \) out, you might get a query asking about the part you threw out, and you won’t know the answer. It’s not too hard to make this idea precise using the Pigeonhole Principle.\(^5\)
Kolmogorov Complexity (1960’s)

Definition: The shortest description of x, denoted as $d(x)$, is the lexicographically shortest string $\langle M, w \rangle$ such that $M(w)$ halts with only x on its tape.

Definition: The Kolmogorov complexity of x, denoted as $K(x)$, is $|d(x)|$.

Using Turing machines to define intrinsic information content!
Suppose we are given a set of documents \(D \)

- Each document \(d \) covers a set \(X_d \) of words/topics/named entities \(W \)

For a set of documents \(A \subseteq D \) we define

\[
F(A) = \bigcup_{d \in A} X_d
\]

Goal: We want to

\[
\max_{|A| \leq k} F(A)
\]

Note: \(F(A) \) is a set function: \(F(A): \text{Sets} \rightarrow \mathbb{N} \)
You’ve given yourself the foundation to tackle problems from all of computer science.
There’s so much more to explore. Where should you go next?
Course Recommendations

Theoryland
- CS154
- Phil 151
- Phil 152
- Math 107
- Math 108
- Math 113
- Math 120
- Math 161
- Math 152

 - Complexity
 - Computability
 - Graphs
 - Functions
 - Set Theory
 - Number Theory

Applications
- CS124
- CS143
- CS161
- CS224W
- CS242
- CS243
- CS246
- CS251
- CS255

Languages / Automata
- Graphs
- Functions
Want to get involved in research?
Learning patterns in randomness
(Greg Valiant)
Fairness and models of computation
(Omer Reingold)
Approximating NP-hard problems
(Moses Charikar)
Structure from symmetries
(Leo Guibas)
Computing on encrypted data
(Dan Boneh)
Correcting errors automatically
(Mary Wootters)
Game theory, P, and NP
(Aviad Rubenstein)
Efficiency on parallel computers
(Nima Anari)
Logic circuits and random bits
(Li-Yang Tan)
How powerful are quantum computers?
(Adam Bouland)
Solving optimization problems quickly
(Aaron Sidford)
Your Questions
What do you want to know?
Final Thoughts
A Huge Round of Thanks!
There are more problems to solve than there are programs capable of solving them.
There is so much more to explore and so many big questions to ask – many of which haven't been asked yet!
You now know what problems we can solve, what problems we can't solve, and what problems we believe we can't solve efficiently.
Our questions to you:

What problems will you *choose* to solve?
Why do those problems matter to you?
And how are you going to solve them?